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Abstract: Path planning, as the core of navigation control for mobile robots, has become the focus 

of research in the field of mobile robots. Various path planning algorithms have been recently 

proposed. In this paper, in view of the advantages and disadvantages of different path planning 

algorithms, a heuristic elastic particle swarm algorithm is proposed. Using the path planned by the 

A* algorithm in a large-scale grid for global guidance, the elastic particle swarm optimization 

algorithm uses a shrinking operation to determine the globally optimal path formed by locally 

optimal nodes so that the particles can converge to it rapidly. Furthermore, in the iterative process, 

the diversity of the particles is ensured by a rebound operation. Computer simulation and real 

experimental results show that the proposed algorithm not only overcomes the shortcomings of the 

A* algorithm, which cannot yield the shortest path, but also avoids the problem of failure to 

converge to the globally optimal path, owing to a lack of heuristic information. Additionally, the 

proposed algorithm maintains the simplicity and high efficiency of both the algorithms. 

Keywords: path planning; PSO algorithm; A* algorithm; elastic strategy 

 

1. Introduction 

Mobile robot path planning aims to allow a robot to identify a safe, collision-free path from a 

starting point to a target point in a given environment, for example, for intelligent security or 

industrial manufacturing [1–3]. Path planning is the core problem in mobile robot autonomous 

navigation. In recent years, it has become a prominent research topic in the field of mobile robotics. 

Many path planning algorithms are proposed [4–7], including grid methods, which include the A* 

algorithm based on an exact grid [8], and the probability grid method, based on an approximate grid 

[9,10]. Intelligent optimization algorithms, which are based on natural heuristics, are as follows: 

Neural network algorithms [11], genetic algorithms [12], ant colony algorithms [13], particle swarm 

optimization (PSO) [14–16], artificial bee colony algorithms [17,18], artificial potential field (APF) 

algorithms based on the virtual force field [19], the Voronoi graph method, and the tangent graph 

method, based on a cell structure [20,21]. Each of these algorithms has its own advantages and 

disadvantages. However, no single algorithm has been able to solve all the problems in path 

planning. Therefore, researchers attempt to improve the existing methods to overcome these issues. 

The A* and PSO algorithms are simple and efficient for path planning. Improving the A* 

algorithm is primarily focused on overcoming the shortcoming that it does not yield the shortest path, 

owing to the effect of the grid resolution. Xin [22] proposes an improved A* algorithm that extends the 

eight neighbourhood propagation directions of the standard A* algorithm to infinity, thereby 

overcoming the disadvantage of the A* algorithm being constrained by the grid. Mac et al. [14] 

propose a global path planning method, for a moving robot, based on the optimization of multiple 

target particle groups in a chaotic environment. In this method, a geometric free configuration space of 
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the robot was established by using the triangular decomposition method, and a non-collision path, as 

the input reference for the next level and was found by using the Dijkstra algorithm. Study [15] 

presents a type of motion path planning for an underwater robot, based on PSO. Since the local 

minimum value problem and inefficient path planning are easily caused by APFs, study [16] proposes 

an improved APF (PSO-TVAPF) based on the tangent vector method and PSO. The tangent vector 

obtained is generated at an angle that considers the gravitational force and repulsive force in the 

standard APF and then the driving force for the robot path planning is determined. To further 

improve the robustness of the algorithm and efficiency of the path planning, the APF based on the 

tangent vector (TVAPF) was optimized by using the particle swarm algorithm. The primary drawback 

of the PSO algorithm is the lack of heuristic information, causing it to easily fall into a local extremum. 

Hence, [23] combined PSO with the crossover and mutation mechanism of a genetic algorithm to 

maintain the diversity of the particles in the iterative process, such that the particles could converge to 

the global optimum. Ao et al. [24] make the inertial weight factor of the particles with poor fitness 

values in the iterative process zero, which reduces the invalid iterations of the algorithm. The 

convergence is further improved by analyzing the relationship between the acceleration factor and 

PSO convergence. Jiang et al. [25] propose an improved linear PSO algorithm with adaptive 

acceleration factors, which improve the convergence of the algorithm. Gong et al. [26] propose a 

hybrid of PSO and a genetic algorithm for path planning. To enhance the accuracy of path planning, 

study [27] first improves the standard particle swarm algorithm, which increases the functionality of 

the parameters, at all stages of the algorithm, and improves the search capability of the algorithm. 

Second, the chicken swarm algorithm is introduced into the algorithm to disturb the search for 

stagnant particles and the globally optimal solution is used to bring the disturbed particles closer to it, 

in the introduced equation. Although these improvements enhance the planning performance relative 

to the standard algorithm to a certain extent, they do not completely solve the problems of path 

planning. The real-time problem caused by the algorithmic complexity and the local convergence 

problem caused by the lack of heuristic information remains. To solve the problem of the PSO 

algorithm easily falling into a local extremum, owing to the lack of heuristic information, we propose a 

heuristic elastic PSO path planning algorithm. The contributions of this study are as follows:  

(1) Using a path planned on a large-scale grid employing the A* algorithm for global guidance, a 

heuristic elastic particle algorithm, which can overcome the disadvantage that the A* 

algorithm cannot yield the shortest path, is proposed. 

(2) The contraction operation of the elastic particle algorithm yields the globally optimal path, 

which is composed of locally optimal nodes. This causes the particles to converge rapidly 

toward the globally optimal path and ensures particle diversity in the iterative process by a 

rebounding operation. The particle swarm algorithm cannot converge to the globally optimal 

path, owing to the lack of heuristic information, but the elastic particle algorithm avoids this 

deficiency successfully. 

(3) Based on the global convergence of the A* algorithm and iterative convergence of the PSO 

algorithm, the path converges to the global optimum while ensuring the real-time performance 

of the algorithm for robot path planning. 

The remainder of this paper is organized as follows. In Section 2, the A* algorithm is 

introduced. In Section 3, we describe our proposed algorithms for robot path planning. The 

experimental results are presented in Section 4, where we compare the simulation and subsequently 

validate our algorithm using the MT-R robot. Finally, the conclusions are summarized in Section 5. 

2. A* Algorithm 

The A* algorithm is a classic grid-based optimal path planning algorithm. The A* algorithm is a 

heuristic search algorithm that combines the advantages of the Dijkstra algorithm and the best-first 

search (BFS) algorithm. The Dijkstra algorithm is a typical breadth priority algorithm. Its advantage is 

that the optimal path can typically be found with it, however, its search efficiency is low and it has 

difficulty meeting the needs of rapidly planned paths. The largest difference between the BFS and 
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Dijkstra algorithm is assessed in terms of the distance from the target node. The BFS algorithm can 

rapidly guide the target node search and significantly improve the search efficiency, however, 

obtaining the reasonable shortest path is not often possible. The A* algorithm uses heuristic 

information to guide the search direction, which reduces the search range and improves the search 

efficiency. 

The A* algorithm links the travel path through the node points. First, the starting point searches its 

neighbourhoods; subsequently, the neighbourhood grid indicates the starting point. Finally, the optimal 

neighbourhood for the next node to be extended is selected. The target points are found using this cycle 

until the neighbourhood is extended. Choosing the optimal neighbourhood requires an evaluation 

criterion. The following evaluation function is used as the basis for selecting the optimal neighbourhood: 

�(�) = �(�) + ℎ(�) (1) 

where �(�) is the global assessment value of the current node, �(�) is the cost of travel from 

current node n to the start point, and ℎ(�) is the cost from current node n to the target point. Since 

the path from the current node to the target is ambiguous, ℎ(�) provides the search trend, i.e., a 

type of heuristic information. Heuristic function, ℎ(�), plays a major role in the A* algorithm. The 

smaller the ℎ(�) estimation value, the more nodes the A* algorithm must calculate and the more the 

algorithm efficiency will decrease, gradually approaching that of the Dijkstra algorithm. However, if 

the ℎ(�) value is much larger, the role of �(�) will fail and the A* algorithm will gradually tend 

toward the BFS algorithm; speed alone will not ensure a reasonable path. Thus, when designing a 

heuristic function, ℎ(�) and �(�) must be relatively comparable to ensure that their contributions 

to �(�) are relatively equal. 

The basic planning path of the A* algorithm adopts the starting point as the first calculation point 

in calculating cost value �(�) of each node in its eight neighbourhoods. If a node is occupied it is an 

obstacle and it does not enter the stack. Then, the smallest �(�) value is taken as the next calculation 

point and its parent node is stored until the search ends. Finally, the planning path is derived by 

tracing the parent node from the destination. Accordingly, the A* algorithm achieves an optimum f(n) 

that is close to the exact f(n). The A* algorithm introduces a heuristic function to guide the direction of 

the search and ensure the integrity of the algorithm while improving the search efficiency. 

3. Proposed Algorithm 

3.1. Standard PSO Algorithm 

The PSO algorithm is a heuristic algorithm for solving the optimization problem; it is inspired 

by the foraging behaviour of birds. Each particle interacts with the nearby particles and combines its 

historical information with the global optimum information to adjust the state of the search and 

converge to the globally optimal solution. Thus, the iteration formula of a single particle is as 

follows: 

���� = ω�� + c������
� − ��� + c������

� − ��� (2) 

���� = �� + ���� (3) 

where ��  is the speed of the i-th iteration, �� is the particle position of the �-th iteration, ��
� is the 

local best position of the �-th iteration, ��
�  is the globally best position of the �-th iteration, ω is the 

inertia weight of the current speed when updating the speed, ��, �� are the follow factors, and ��, �� 

are random numbers from 0–1. To prevent fast convergence of the particles, the particle update 

speed can be restricted to −���� ≤ � ≤ ����. If (� < −����); subsequently, � = −����. If (� > ����), 

then � = ����. 

With the standard PSO algorithm, the global path planning can be divided into the following 

steps: 

Step 1. The environment map is built: The environment map is constructed by visual or other 

methods to obtain the starting position, target position, and obstacle information. 
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Step 2. The particles are initialized: Parameters ω, ��, ��, ��, �� of the PSO algorithm are set, as is 

the initial position and velocity of the particle. 

Step 3. The particle fitness is calculated: The fitness function of a particle is the common 

constraint of the current particle position and its direction of motion along the path length, 

path hazard coefficient, and current velocity of the particle. The fitness function is defined 

as f = αfit� + βfit� + γfit�, where α, β, and γ are the inertia weights of the path length, path 

hazard coefficient, and current velocity of the particle, respectively. 

Step 4. The particle state is updated: The current optimal path is obtained by the particle fitness 

and the particle state (position and velocity) is updated according to the optimal path. 

Step 5. The particle convergence is determined: Based on the convergence threshold, the 

convergence of the current particle is determined. If it has converged, the path is saved and the 

iteration is exited. Otherwise, the third step is started again to continue the iteration. 

3.2. Elastic PSO Algorithm 

In a two-dimensional path planning problem, a particle is a path. This path consists of 

numerous nodes. The standard PSO algorithm uses the globally optimal path as the basis for the 

update. Furthermore, the globally optimal path, as a globally optimal value, is calculated by the path 

as a whole and the local path node is not necessarily optimal. Therefore, the final path can probably 

converge to a non-optimal path and the optimal path may not be obtained. To address this issue, a 

new elastic PSO algorithm, based on local and global optimal values, is proposed. 

After the standard PSO algorithm provides the optimal path, it uses locally optimal nodes to 

optimise the globally optimal path to yield the true globally optimal path with a flexible strategy. 

This ensures the diversity of the particles and acceleration of the convergence rate. 

3.2.1. Concept Definition 

Path planning for a moving robot, based on the PSO algorithm, is a problem governed by the 

coordinating points of non-collision in a feasible path, so that each particle represents a viable path. 

The dimension of a particle is the coordinate point from the starting point to the target point. In the 

particle groups, a set of N particles is described as N viable paths. In a d-dimensional solution space, 

each particle contains a hypothetical path. The motion state of each particle is represented by its 

position and velocity, and each particle contains N nodes. The node location is defined as 

� = (��, ��, … , ����, ��). (4) 

The node velocity is defined as 

� = (��, ��, … , ����, ��). (5) 

Subsequently, a node can be represented as 

� = (�, �). (6) 

One particle can be expressed as 

�� = ���
�, ��

�, … , ��
�, … , ��

���, ��
��. (7) 

3.2.2. Evaluation Function 

To obtain the best path, an evaluation method needs to be defined to evaluate the effectiveness 

of a given path. The general evaluation method primarily includes three aspects, as follows: Path 

length, path safety, and path smoothness. Since our focus is on obtaining the shortest path, our 

evaluation method includes only the first two aspects. 

(a) Path Safety Evaluation Function 

Each path is composed of n nodes and n−1 lines. Provided that each line does not intersect with 

the obstacles, a path is a safe path; a greater number of line segments intersecting with the obstacles 
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results in a less safe path. To prioritize the safe path selection, we add priority evaluation value ε. 

The evaluation value of a safe path is significantly higher than that of a non-safe path. The formula 

is as follows: 

fit� = � f�

�

���

+ ε (8) 

where �� is the value for the node security evaluation. As shown, the evaluation function aims to 

obtain the safety evaluation value of a node, f�. As, in this study, the obstacles are present on a grid, 

the starting and end points of a node are used as a diagonal to form a rectangle to determine 

whether the diagonal line intersects the obstacle grid. If it does not intersect, then the node is a safe 

node, otherwise, this node is a non-safe node. 

f� = �
0, ������������
1

n
, ��� − �����������

 (9) 

If none of the nodes intersect with the obstacles, i.e., ∑ f�
�
��� = 1, then this path may be a safe 

path or a non-secure path. For a safe path, ε is 1; for a non-safe path, ε is 0, as follows: 

ε =

⎩
⎪
⎨

⎪
⎧0, � f�

�

���

≠ 1

1, � f�

�

���

= 1

 (10) 

Among them, all the safe path evaluation values are 2 and all the non-safe path evaluation 

values are less than 1. The above evaluation function can provide a good evaluation of the path 

safety and makes a significant distinction between safe and non-safe paths. 

(b) Path Length Evaluation Function 

The length of each path is the sum of the lengths of the line segments as follows: 

fit� =
1

d���

� d�

�

���

 (11) 

where �� is the length of each node and ����  is the distance between the starting point and 

ending point. When there is no obstacle, the path is a straight line that connects the start point and 

end point and the value of the path length is maximum, i.e., 1. 

(c) Final Evaluation Function 

In multi-objective optimization, the convergence process of an algorithm is actually the process 

of obtaining the Pareto front by algorithmic optimization, which approaches the true Pareto front of 

a multi-target optimization problem. The multi-objective optimization problem requires a set of 

solutions to balance the relationships between multiple goals. This set of solutions is often named as 

the Pareto optimal front. The target solution vector that corresponds to these solutions is the Pareto 

optimal non-dominant solution set. A dynamic multi-objective optimization problem is continuous, 

with different time constraints. For multi-objective optimization, the preservation of the diversity of 

the population is of equal importance. Since a fast convergence of algorithms implies a loss in the 

population diversity, it increases the difficulty in tracking the Pareto optimal front and optimal 

solution set. For dynamic multi-objective optimization problems, the algorithm uses the synergy 

between multiple populations to ensure the global population has a certain diversity, to cope more 

readily with a complex and changeable environment and to improve the convergence speed. The 

final path evaluation function is the weighted sum of the previous two functions. 

f = u�fit� + ��fit�  (12) 
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In this equation, �� + �� = 1. The path with the maximum evaluation value is the optimal path, as 

follows: 

b = argmax
�

f = argmax
�

(f�, f�, … , f�, … , f�) (13) 

The optimal path is �� . 

3.2.3. Elastic Strategy 

The elastic strategy is accomplished by two operations, shrink and rebound. 

Shrink: The globally optimal path is formed from locally optimal nodes and the particles shrink 

to the globally optimal path rapidly, thus accelerating the convergence speed. 

Rebound: When a particle converges to the optimal path over a certain range, the shrunken 

particles that are rebounded adopt the optimal path as their centre to ensure diversity in the particle 

population. 

(a) Shrink 

A path is composed of n nodes. The fitness value of each path is the weighted sum of the fitness 

values of all the nodes. The resulting globally optimal path is optimal for the weighted sum over all 

the paths, but the fitness of each node of the optimal path is not necessarily the optimal fitness. 

Hence, in this study, the contraction operation is completed in two steps to update the globally 

optimal path. The first step is the same as in the standard PSO algorithm, obtaining the globally 

optimal path. In the second step, the node with the optimal fitness value of the same node of each 

path is obtained and the corresponding node of the globally optimal path is updated by the locally 

optimal node. The resulting globally optimal path can more accurately describe the position of the 

real optimal solution and enable the particle to reach the optimal solution rapidly. 

To determine a locally optimal node, a criterion to evaluate its merits is required. In this study, 

we use the shortest path criterion, where, under the premise of maintaining path safety, the node 

with the shortest distance from the adjacent nodes is the best node. If the optimal node is better 

than the corresponding node of the globally optimal path, then the corresponding node of the 

optimal path is updated with this node; otherwise, the globally optimal path remains unchanged. 

Thus, globally optimal path �� is obtained by the formula: 

argmax
�

f = argmax
�

(f�, f�, … , f�, … , f�) (14) 

We define ��
� as the distance between the �-th node and � − 1-th node of the �-th path: 

d�
� = �(X��

� − X��
���)� + (X��

� − X��
���)� + ⋯ + �X��

� − X��
����

��

 (15) 

Subsequently, the local evaluation value of the �-th node of the �-th path, D�
�, is defined as the 

sum of the distances from the �-th node to its adjacent nodes (the � − 1-th and � + 1-th nodes): 

��
� = ��

� + ��
��� (16) 

Subsequently, the node with the minimum estimated value of D�
� is the locally optimal node, 

N���
� , and min is 

min = argmin
�

(D�
� , D�

� … D�
�, … , D�

� ) (17) 

After the locally optimal node is determined, the local node of the globally optimal path is 

updated. Based on local evaluation value ��
�  for the �-th node of globally optimal path p�, N�

�  is the 

�-th node of p�. If 

���� 
� < ��

�  (18) 

then, 

��
� = ����

� . (19) 
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This implies that 

X�
� = X���

� . (20) 

Otherwise, no changes are required. 

For each node of this operation, each node of the globally optimal path is the optimal node. This 

path may more accurately describe the state of the optimal solution and allow other particles to 

move closer to the optimal solution more rapidly. This is a shrink operation to accelerate the 

convergence of the particles. 

(b) Rebound 

After the globally optimal path is determined, the particles are updated. During updating, the 

particle diversity is steadily reduced, owing to the gradual shift toward the optimal solution. To 

ensure the diversity of the particles and prevent falling into a local extreme, we apply the particle 

rebound operation. When all the particles converge to within a certain range of the globally optimal 

path, the rebound operation is performed and all the particles rebound. Subsequently, a better path 

is obtained. The value d�
�  is defined as the sum of the corresponding node distances between �-th 

path p� and the globally optimal path, as follows: 

��
�

= ∑ �(���
� − ���

� )� + (���
� − ���

� )�����
��� . (21) 

Particle p���, which is the furthest from the globally optimal path, is obtained as follows: 

max = argmax
�

d�
�
 (22) 

where ϵ is the bound threshold, and the furthest distance is d�
���. 

When the distance from the global optimal path to the most remote particles reaches the 

rebound threshold, i.e., 

d�
��� ≤ ϵ (23) 

the rebound operation is performed, as follows: 

X�
� = X�

� + rand(RANGE) (24) 

V�
� = V� (25) 

RANGE for the rebound range above is that of the most distant particle to be rebound. It is 

predefined for all the experiments. The value V� is the initial particle velocity, and rand(RANGE) is 

named as random rebound. Otherwise, the particles are updated according to the strategy of the 

standard PSO algorithm with Equations (2) and (3). 

The rebound operation will cause the rapidly shrunken particles to rebound to maintain the 

diversity of the particles and prevent falling into a local extremum owing to the excessive shrinkage. 

3.2.4. EPSO Algorithm 

The pseudo code of the EPSO algorithm is as follows: 

Algorithm 1: EPSO algorithm 

1. START 
2.   EPSO_INIT(); 
3.   FOR iterate N 
4.   CALCULARFITNESS(); 
5.   Pb=MIN_OF_FITNESS(); 
6.   FOR all nodes 
7.    FOR all particles 
8.     LFit=LOCALFITNESS(); 
9.     LFitb=LOCALFITNESS_OF_PB(); 
10.    END FOR 
11.    LFitmin=MIN_OF_NODEFIT(); 
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12.    Nmin=BEST_LOCAL_NODE; 
13.   END FOR 
14.   FOR all nodes of Global Optimal Path Pb 
15.    IF(LFitmin < LFitb) 
16.     Nb=Nmin; 
17.    END IF 
18.   END FOR 
19.   FOR all particles 
20.    Dp=CALCULAR_DIST_TO_BESTPATH(); 
21.   END FOR 
22.   Dpmax=MAX_OF_DP(); 
23.   IF(Dpmax<REBOUND_THRESHOLD) 
24.    REBOUND_PARTICLE(); 
25.   ELSE 
26.    NORMAL_PSO_UPDATE(); 
27.   END IF 
28.   END FOR 
29.   END 
30.   In this algorithm, the EPSO_INIT() function is used for the EPSO particle 

initialisation; the CALCULARFITNESS () function is used to obtain the particle 
fitness. Globally optimal path Pb can be obtained with this function. 
GET_LOCALNODE() is a function for obtaining the locally optimal node of each 
path; SHRINK() is a function according to formula (26) and formula (27) used to 
perform the particle shrinkage operation. CALCU_DIST() can be used to calculate 
the distance between a particle and the globally optimal path; this distance and 
rebound threshold REBOUND_THRESHOLD are compared to determine whether 
to perform rebound operation REBOUND (). NOMAL_UPDATE () is used for the 
standard PSO particle update function. 

3.3. Heuristic Elastic PSO Algorithm 

Although the EPSO algorithm enhances the convergence rate of the PSO algorithm for particle 

diversity, it is still based on the PSO framework. Therefore, it is inevitable that the iteration result 

depends on the initialisation of the particles. When the initial position is near the optimal solution, 

the solution is rapidly obtained and accurate. When the initial position is far from the optimal 

solution, the result is not satisfactory. To overcome this shortcoming, heuristic information is added 

when initialising the particles, thereby causing the initial position of the particle to be close to the 

optimal solution. 

The A* algorithm, as a global path planning algorithm, can yield the optimal path (but not the 

shortest path) and is simple and efficient. The path of the large-scale-grid A* algorithm is used as the 

heuristic information for the particle initialisation of the EPSO algorithm, such that the particles are 

initialized to the optimal solution. Subsequently, the globally optimal path can be obtained rapidly 

by the contraction and rebound operations of the EPSO algorithm. This is the principle of the HEPSO 

algorithm proposed herein. This algorithm can overcome the disadvantage of the PSO algorithm of 

easily falling into a local optimum and it can ensure efficiency. The flowchart of the HEPSO 

algorithm is shown in Figure 1. 
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(a) (b) 

Figure 1. Flowcharts of algorithms. (a) Flowchart of ordinary PSO algorithm; (b) Flowchart of 

HEPSO algorithm. 

4. Experimental Result 

4.1. Simulation Experiment 

In the PSO algorithm, the state of motion of the particles is described by position and velocity. 

The trajectories of the particles are established over time. The velocities of the particles are limited, 

so that their search space is a limited and gradually decreasing area that cannot entirely cover the 

feasible solution space. Thus, the PSO algorithm cannot ensure global convergence. The heuristic 

elastic PSO algorithm proposed in this paper overcomes the A* algorithm disadvantage of not 

yielding the shortest path and avoids the particle group algorithm deficiency of not converging to 

the globally optimal path, owing to the lack of heuristic information. The number of particles and 

iterations is fewer, calculation time is shorter, and the accuracy of the path planning is higher. 
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4.1.1. Random Map Experiment 

The obstacles were randomly initialized to build an experimental map. The experimental 

results are shown in Figure 2. 

  
(a)Case 1 (b) Case 2 

  
(c) Case 3 (d) Case 4 

  
(e) Case 5 (f) Case 6 

  
(g) Case 7 (h) Case 8 

  
(i) Case 9 (j) Case 10 

Figure 2. Path planning for random obstacle maps.  

A distinct terrain map was built to meet the requirements of a particular environment, such as an 

office, a gate, a narrow corridor, and spiral corridors. The experimental results are shown in Figure 3. 
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(i) Case 9 (j) Case 10 

  
(k) Case 11 (l) Case 12 

  
(m) Case 13 (n) Case 14 

Figure 3. Path planning in distinct maps. 

4.1.2. Experimental Result Analysis 

An output table can be created from the path planning results for the random obstacles map in 

Figure 2, as presented in Table 1. 

Table 1. Data for path planning on random obstacles maps. 

 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 

Time (s) 0.213 0.221 0.217 0.212 0.234 0.200 0.200 0.214 0.205 0.214 

Shortest path length 853 881 869 846 934 800 799 855 813 856 

HEPSO path length 853 884 869 849 936 800 799 855 818 857 

A*length 906 939 914 904 984 837 854 906 871 914 
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HEPSO path optimal 

degree 
100 99.7 100 99.7 99.8 100 100 100 99.4 99.9 

A*path optimal degree 93.2 93.4 94.8 93.1 94.6 95.4 93.1 94.0 92.9 93.2 

Table 1 contains 10 sets of results for the algorithm planning times for the random obstacles 

map, shortest path length from the corresponding starting point and target point of each map, path 

length of the algorithm of this study, and path length for the A* algorithm. 

To evaluate the degree of the planning path approach to reach the shortest path, we define the 

path optimal degree as follows: 

P� = 100 −
s − s�

s�
 (26) 

where � is the path length and �� is the length of the shortest path. When planning for the shortest 

path the P� value is 100, which is close to the planning for the optimal path. The larger the value, the 

closer it is to the shortest path and the planning results are better. The range of P�  is (−∞, 100). From 

Equation (26), the path optimal degrees of the algorithm proposed herein and the A* algorithm can 

be calculated by the random obstacles map, as shown in Table 1. The path length comparison 

diagram can be obtained from the data for the path planning length on the random map from Table 

1, as shown in Figure 4. Additionally, from the data for the path optimal degree in this table, the path 

optimal degree diagram is as shown in Figure 5. 

 

Figure 4. Comparison of path length between A* and HEPSO on random obstacles maps. 

 

Figure 5. Comparison of optimal degrees of A* and HEPSO algorithms on random obstacles maps. 
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As shown in Figures 4–5, in the random obstacles map, the average path optimal degree of the 

proposed algorithm herein is 99.9% and the minimum path optimal degree is as high as 99.4%, 

which reaches the optimal path level. Furthermore, the range of the path optimal degree is only 

0.6%. The planning results are stable. However, the average path optimal degree of the A* algorithm 

is 93.8%, which differs significantly from that of the optimal path. The range of the path optimal 

degree is 2.5% and the planning results are not stable. 

The experimental results of this group of path planning on the random obstacles map shows 

that, for long distances, multiple obstacles, and random complex terrains, the algorithm proposed 

herein combines the global heuristic information and local elastic iterative strategy, rendering an 

average error rate of only 0.1% for the planning of the shortest path. Furthermore, because of planning 

the optimal path, the planning result is stable. When the average path length is 852 pixels, the average 

planning time is 0.2 s, thus demonstrating that the algorithm has a better real-time performance. 

An output table can be constructed, from the path planning results on the distinct terrain map 

shown in Figure 3, as shown in Table 2. The table contains 10 sets of results, which include the 

algorithm planning time on the distinct terrain map, the shortest path length from the corresponding 

starting point, the target point of each map, the path length of the algorithm proposed herein, and the 

path length of the A* algorithm. From Equation (26), the path optimal degrees of the algorithm 

proposed herein and A* algorithm can be calculated from the random obstacles map, as presented in 

Table 2. 

Table 2. Data of path planning on distinct maps. 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

Time (s) 0.090 0.132 0.160 0.145 0.065 0.209 0.114 0.126 0.131 0.161 

Shortest path length 405 592 716 648 293 941 508 572 587 720 

HEPSO path length 409 598 724 656 294 947 515 575 591 729 

A* path length 437 642 791 694 321 994 557 607 615 779 

HEPSO path 

optimal degree 
99.0 99.0 98.9 98.8 99.7 99.4 98.6 99.5 99.3 98.8 

A* path optimal 

degree 
92.1 91.6 89.5 92.9 90.4 94.4 90.4 93.4 95.2 91.8 

A path length comparison diagram can be constructed from the results for the path planning 

length using the distinct terrain map listed in Table 2, as shown in Figure 6. Using the data for the 

path optimal degree in Table 2, the path optimal degree diagram is as shown in Figure 7. 
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Figure 6. Comparison of path lengths on distinct maps of A* and HEPSO algorithms. 

 

Figure 7. Comparison of optimal degrees on distinct maps of A* and HEPSO algorithms. 

As shown in Figures 6–7 in the random obstacle map, the average path optimal degree of the 

algorithm proposed herein is 99.1%, which reaches the optimal path level. Additionally, the range of 

the path optimal degree is only 1.1%. The planning results are stable. Comparatively, the average 

path optimal degree of the A* algorithm is 92.2%, which differs significantly from the optimal path. 

Furthermore, the range of the path optimal degree is up to 5.7%. Thus, the planning results are 

highly unstable. 

The experimental results of this group of path planning on the distinct terrain map indicate that 

for various unique terrains, including a narrow gate, a T shape, a zigzag, a bow, a spiral, and a 

tunnel shape (established according to the actual scene and practical problems), the algorithm 

proposed herein, by combining the global heuristic information and a local elastic iterative strategy, 

renders an average path length of 604 pixels and average planning time of 0.1 s, which are better 

real-time performances. Furthermore, the planning path with the shortest path average error rate is 

only 0.9%, and the shortest path is planned. 

To summarize, this algorithm can ensure real-time performance, yield the shortest path, and 

provide stable planning results regardless of the complexity of the random obstacles map or the 

various structures on the distinct terrain map. Therefore, this demonstrates the efficiency and 

reliability of the algorithm proposed herein. 

4.2. Robot Experiment 
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To verify the effectiveness of the path planning algorithm, we physically verified the MT-R 

research intelligent robot platform. The diameter of the MT-R robot was 50 cm, the maximum speed 

was 2.5 m/s, and the turning radius was zero. 

In this study, the planning path is converted to an instruction set and the control instructions of 

the set are sent individually to the robot driver so that it can autonomously control the robot. The flat 

indoor experimental environment is comprised of two static obstacles, the starting point S(x) and 

target point T(x), as shown in Figure 8. The robot operation results are shown in Figure 9. 

 

Figure 8. Result of path planning on robot. 

  
(a)Frame 10 (b) Frame 20 

  
(c) Frame 30 (d) Frame 40 

  
(e) Frame 50 (f) Frame 60 

  
(g) Frame 70 (h) Frame 80 

  
(i) Frame 90 (j) Frame 100 
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(k) Frame 110 (l) Frame 120 

Figure 9. Result of robot experience.  

In the early stages of the research, to solve the problems of the standard robot path planning 

algorithm (being prone to the local minimum value problem and having a low quality), study [16] 

proposes an improved path planning problem. The path planning, PSO–TVAPF, was based on the 

tangent vector method and a particle swarm algorithm. The algorithm proposed by study [16] 

effectively avoids the local minimum value problem and shortens the path length. Similar 

experiments with real machines were performed. The heuristic PSO optimal path planning 

algorithm presented in this paper has achieved better real-time execution. Based on the insight 

gained from the efficient A* algorithm for particle initialization, to enhance its real-time properties, 

the algorithm uses the improved elastic PSO algorithm to iterate the initial heuristic path and 

performs contraction and rebound operations to avoid the local minimum problem and shorten the 

path length. Similar experiments are conducted. Therefore, the robot path planning by the algorithm 

proposed in this study shows better real-time performance then the algorithm in study [16]. 

However, when the classical APF encounters obstacles in the path planning, the path planning fails. 

5. Conclusion 

In this paper, a heuristic elastic PSO optimal path planning algorithm is proposed in which the 

efficient A* algorithm is used to collect heuristic information for particle initialisation. Using an 

improved elastic PSO algorithm, the initial heuristic path is iterated, and the particle is assembled 

along the optimal path using the shrink operation in the elastic strategy. Particle degradation occurs 

when the particles shrank to the rebound threshold. This phenomenon is overcome by a rebound 

operation, thus avoiding the local extremum among the particles. The simulation and robot 

experiment demonstrates that the algorithm herein could plan the shortest path efficiently and it 

achieves good performance in solving the two major problems of path planning in real time and low 

stability. Path planning could be optimized further for the safe and smooth operation of a mobile 

robot, according to its motion characteristics. 
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