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Abstract: Selecting representative objects from a large-scale database is an essential task to understand
the database. A skyline query is one of the popular methods for selecting representative objects.
It retrieves a set of non-dominated objects. In this paper, we consider a distributed algorithm for
computing skyline, which is efficient enough to handle “big data”. We have noticed the importance
of “big data” and want to use it. On the other hand, we must take care of its privacy. In conventional
distributed algorithms for computing a skyline query, we must disclose the sensitive values of
each object of a private database to another for comparison. Therefore, the privacy of the objects
is not preserved. However, such disclosures of sensitive information in conventional distributed
database systems are not allowed in the modern privacy-aware computing environment. Recently
several privacy-preserving skyline computation frameworks have been introduced. However, most
of them use computationally expensive secure comparison protocol for comparing homomorphically
encrypted data. In this work, we propose a novel and efficient approach for computing the skyline in
a secure multi-party computing environment without disclosing the individual attributes” value of
the objects. We use a secure multi-party sorting protocol that uses the homomorphic encryption in the
semi-honest adversary model for transforming each attribute value of the objects without changing
their order on each attribute. To compute skyline we use the order of the objects on each attribute
for comparing the dominance relationship among the objects. The security analysis confirms that
the proposed framework can achieve multi-party skyline computation without leaking the sensitive
attribute value to others. Besides that, our experimental results also validate the effectiveness and
scalability of the proposed privacy-preserving skyline computation framework.

Keywords: secure skyline; homomorphic encryption; Paillier cryptosystem; information security;
data-mining; data privacy; semi-honest adversary model; multi-party computation

1. Introduction

Data is an integral part of the current business and technology world. Every day, different
organizations are producing a massive amount of data also known as “big data”. This “big data”
analysis has attracted much attention to many organizations and researchers because it can assist in
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making strategic decisions and creating new knowledge. Product pricing for the open market place,
investment risk estimation, mining customers’ spending/buying behaviors, credit card usage patterns,
health issues, and so on are some common example of big data analytics. Designing a new framework
for collecting, storing and analyzing this “big data” is undoubtedly a challenging task.

In the current IT era, multiple organizations dealing with similar kind of services want to perform
analysis on their joint databases. It is often referred to as multi-party computation or analysis.
This analysis may involve data-mining, querying over the joint dataset, data classification, statistical
decision making, etc. [1,2]. Since the business applications contain sensitive data, such as personal
health-related data or financial data, unveiling these data can potentially violate individual privacy
and lead to significant financial loss to the organizations. Therefore, organizations do not want to
disclose their data to anyone. However, when multiple organizations want to conduct a data-mining
operation jointly, they are willing to get the result from the union of their databases without disclosing
their sensitive data.

On the other hand, the skyline query is one of the popular methods for selecting representative
objects from a large dataset. It retrieves a set of representative objects, each of which is not dominated
by any other object within the database. For example, let us consider the issue of financial investment:
an investor usually wants to purchase the stock that can minimize the commission costs and predicted
risks. As a result, the target can be formalized as finding the skyline stock with minimal cost and
minimal risk. Figure 1 shows a sample plot diagram of stock records along with their costs and risks.
If we want to provide a suitable suggestion list for our clients using skyline query, the result will be
{U,0,P,X,Q,Y,Z}. From Figure 1, it is obvious that no other object, within the given sample dataset,
can dominate those seven objects. Therefore, they are in the skyline result. The skyline query attracts
consistent attention in database research, due to its applications in decision making as well as analytics.
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Figure 1. A skyline Problem.

Like other data analysis applications, the distributed skyline computation certainly can benefit the
participating organizations by producing skyline objects set from the joint database of the organizations.
However, such computation also depends on managing data security and privacy challenges, especially
for the skyline computation from the distributed multi-party databases. So far, several algorithms
have been proposed for skyline computation, some of them are designed in a distributed computing
environment and able to handle “big data” [3-5]. However, none of them considered database
privacy issues.
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Let us assume that several organizations have done surveys about commission cost and risk
prediction where each of the organization has collected the same kind of privacy information from
their customers/clients. This information is sensitive since the privacy of client information is a vital
responsibility for each organization. Therefore, one organization does not want to disclose the dataset
to other organization. Hence one organization cannot compute global skyline on organizations” union
databases but only compute skyline query of its own, although all parties (organizations) are willing to
get the skyline result from their combined databases. In conventional skyline computation algorithm,
it is not possible to get skyline query result without disclosing the objects” attributes value to others.

When concerning the privacy of the database objects in a distributed multi-party computation
environment, most of the existing work on privacy-preserving skyline computation focused on the
secure comparison of encrypted values owned by participating organizations [6-9]. Although these
frameworks can preserve the data objects privacy, they are not much suitable concerning computational
efficiency. In our previous work [10], we introduced MapReduce framework-based secure ordering
of database objects on each attribute in a semi-honest computation environment. Then computes
the skyline by using the dominance relationship among the order of multi-party’s objects on each
attribute. Although it is more efficient compared to secure comparison-based skyline query, it requires
several rounds of ID encryption and decryption by the individual parties on each attribute of the
database objects for creating the order of the objects. It also needs several rounds of data sorting
by the coordinator on each dimension of the database objects. In this regard, our previous work
consumes a significant amount of time for preparing the secure object order on each attribute. We also
included the MapReduce framework only for sorting numeric values. However, using the MapReduce
framework just for object ordering does not seem to be wise, since the framework itself requires a
significant amount of time for inter-node communication and managing the process execution among
multiple nodes.

In this work, we introduced an extended approach of [10] that can process the distributed object
order more efficiently in a semi-honest computation environment; at the same time, it preserves the
privacy of individual objects. In this extended work, we incorporate Paillier cryptosystem [11]
for transforming the objects attributes value without changing the order of the objects on each
attribute; where each participating party securely prepare encrypted object order on each attribute in
collaboration with other participating parties. Then computes skyline from the order of the objects
attribute value on each dimension without obtaining the original attributes’ value of the objects.

The remaining part of this paper is organized as follows. Section 2 reviews the related work.
Section 3 discusses the notions and basic properties of skyline and Paillier cryptosystem. We briefly
explain our secure skyline computation problem and proposed system model in Section 4. In Section 5,
we specify the detailed algorithm with proper examples and analysis. Next, we discuss the privacy
and security of our proposed framework in Section 6. We experimentally explain the efficiency of our
algorithms in Section 7 under a variety of settings. Finally, Section 8 concludes this work.

Throughout this paper, we have used the hexadecimal number system for describing our
proposed algorithm.

2. Related Work

Our previous research [10], as well as current research work, are motivated by earlier studies
of skyline query processing, secure multi-party computation, and privacy-preserving secure skyline
computation. Following Section 2.1 focuses on skyline query and Section 2.2 discuses about multi-party
secure computation. Lastly, we highlighted on privacy-preserving secure skyline in Section 2.3.

2.1. Skyline Query

Borzsonyi et al., the original introducer of the skyline operator, proposed three algorithms for
computing skyline from a large dataset: Block-Nested-Loops (BNL), Divide-and-Conquer (D&C),
and B-tree-based schemes [12]. The BNL algorithm compares each object of the database with every
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other object and lists an object as a skyline object when any other object within the database does not
dominate it. The D&C algorithm noticed the problem of memory limitation of a system. It divides the
large dataset into several partitions and computes the skyline objects set for each partition by using a
main-memory skyline algorithm. The skyline computation on the merged set of the skyline objects
of each partition produces the final skyline. Later Kossmann et al. improved the D&C algorithm
and proposed the Nearest Neighbor (NN) algorithm for pruning out dominated objects efficiently by
iteratively partitioning the data space based on the nearest objects in the domain space [13]. Similarly,
Chomicki et al. improved BNL by presorting, known as Sort-Filter-Skyline (SFS) [14]. The current
most efficient algorithm is Branch-and-Bound Skyline (BBS) [15,16], which is a progressive algorithm
based on the Fest-First Nearest Neighbor (BE-NN) algorithm proposed by Papadias et al. [17].

Presently, the distributed skyline computation becomes very popular. Balke et al. introduced
skyline queries in distributed environments [18]. In their study, they presented several models for
computing distributed skyline queries from the vertically partitioned web information. Wang et al. and
Chen et al. both researched skyline query in structured P2P networks, named BATON networks, where
peers are responsible for a partial region of data space [19,20]. Alternatively, a grid-based approach for
distributed skyline processing (AGiDS) proposed by Rocha-Junior et al. [21] assuming that each peer
maintains a grid-based data summary structure for describing its data distribution. Arefin et al. [22]
worked on agent-based privacy skyline-set for the distributed database, but their query is different
from us.

2.2. Multi-Party Secure Computation

The story of secure multi-party computation problem is widespread. Yao, who is the first
introducer of this problem, presented a secure function evaluation process [23]. The process allows a
set P = {p1,- -, pm} of m players/parties to compute an arbitrary agreed function of their private
data. The function preserves the privacy of data even if an adversary may corrupt and control some
players/parties in various ways. After that, Goldreich, Micali, and Wigderson [24] and many others
extended the research. According to Goldreich et al. [24], Security in Multi-party Computation means
that the parties’ data remain secret except the intended results of the computation. Fundamentally,
secure multi-party computation protocols are relatively less efficient than specific purpose protocols.

Privacy-preserving data-mining problems are another example of secure multi-party computation
problem. We addressed it in this literature. Lindell et al. and Agrawal et al. proposed two different
privacy-preserving data-mining approach [1,25]. Lindell defines the problem considering two parties;
each of them has a nonpublic database, where the parties want to conduct a data-mining operation
jointly on the union of their databases without disclosing their database to other parties, or any third
party. In Agrawal’s paper, the problem was defined in another way, assuming two parties: Alice and
Bob. The problem is to allow Alice to conduct data-mining operation on a private database owned
by Bob, where Bob wants to prevent Alice from accessing precise information in individual data
records. Although the problems are quite similar, the solution of these two similar problems proposed
by Lindell and Agrawal are different: Lindell and Pinkas adopted secure multi-party computation
protocols to solve their problem, while Agrawal applied the data perturbation method.

Most of the existing solutions used homomorphic encryption for secure comparison [26-28] although
these protocols are highly expensive concerning computation and communication complexity [29].
Linetal. introduced an efficient comparison protocol based on homomorphic encryption [30].
They have improved the secure comparison protocol by comparing two secret values in two rounds
of data communication between two participating parties. However, this protocol is only limited to
comparing secure attribute values owned by two parties, and it is not scalable.

Besides that, several multi-party computation tasks could be performed over the sorting
order of the objects” attributes. Such as skyline computation, querying with aggregation function,
statistical analysis, and so on [10,31-33]. The oblivious radix sort is a renowned protocol for sorting
privacy-preserving multi-party objects, proposed by Hamada et al. [31]. However, it demands multiple
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rounds of computation and communication between the participating parties for sorting multi-party
objects based on attribute value. Recently Xin et al. also proposed a solution for secure multi-party
sorting problem [34]. However, their protocol is based on the assumption that the attributes’ value
are elements of a universal set, which is known by all participating parties and the computational
complexity of the protocol will become high when the size of the universal set is large.

2.3. Secure Skyline Query

Due to the information privacy and security awareness of the present era, privacy-preserving
secure data analysis is considered to be one of the major research areas in “big data” processing.
The privacy-preserving secure skyline query is also being researched for multi-criteria data analysis
considering different application aspect. Liu et al. have proposed secure skyline queries on cloud
platform [7]. On the other hand, Hua et al. have proposed another privacy-preserving skyline
computation model, called CINEMA [8]. They have considered computing skyline based on the
user’s dynamic query. Using their proposed framework, they have considered keeping the privacy
of the user’s dynamic query point and keep the database objects secret from the users, so that the
users cannot access the secure database objects, and the database owner cannot obtain the user’s
query point during computation. Although their proposed model produces a secure computation
environment concerning data privacy, their circumstances are entirely different from us. Moreover, both
models involve computationally expensive secure comparison protocols. Where Liu et al. integrates
secure comparison and secure bit-decomposition protocols proposed by Veugen et al. [27] and
Samanthula et al. [35]. On the other hand, Hua et al. reduced the communication overhead of
secure comparison by using 0-encoding and 1-encoding scheme proposed by Lin et al. [30].

Liu et al. proposed another privacy-preserving skyline computation framework [6], which
can be deployable in a multi-party computation platform. They also improved the efficiency of
multi-party secure skyline computation by using secure comparison protocol based on the 0-encoding
and 1-encoding scheme proposed by [30] and Lightweight Additive Homomorphic Public Key
Encryption(LAHE) Scheme. They also reduce the number of secure comparisons by using the
additivity property of skyline [36]. They considered that each party computes local skyline objects set
at first. Then the global skyline object set could be computed by using secure dominance relationship
computation among each party’s local skyline objects. However, their proposed framework is based on
pairwise secure skyline computation for computing global skyline. So, the computational complexity
increases rapidly with the number of participating parties. Moreover, the complexity of 0-encoding
and 1-encoding scheme used by their framework for comparing two private attributes value increase
with the length of the attribute value in the number of binary bits.

Recently, Liu et al. also proposed a new framework for privacy-preserving user-centric dynamic
skyline query over multi-party databases, called PUSC [9]. Although it is a new framework for
dynamic skyline query over distributed multi-party databases, it is not efficient enough since it
requires a massive time for execution due to the complexity of different protocols integrated with the
computation process. And the skyline computation time of PUSC increases with the total number of
encrypted data objects supplied by data providers.

Besides that, our previous work introduced secure objects” ordering-based skyline computation
framework [10]. In this framework, the participating parties jointly construct their database objects
order in collaboration with a semi-honest third party, called the coordinator. It requires several rounds
of ID encryption and decryption by individual parties and requires several rounds of data sorting by
the coordinator for generating objects’ order securely on each attribute. In this regard, our previous
work consumes a significant time for preparing a secure object order. We also deployed the MapReduce
framework for sorting the numeric values there. However, employing the MapReduce framework just

7

for sorting values does not improve the efficiency of the computation, since the framework requires
significant time for inter-node communication and controlling the task execution using multiple
computing nodes.



Information 2019, 10, 119 6 of 20

3. Preliminaries

This section defines related properties of the proposed algorithm.

3.1. Dominance and Skyline

Given a dataset DS with d-dimensions {dj,dy, - - - ,d;} and n objects {O1,0;, - - - , Oy }. We use
O;.d; to denote the j-th dimension value of object O;. We assume that the smaller value in each attribute
is better, without loss of generality.

Dominance: An object O; € DS is said to dominate another object O; € DS, denoted as O; < O,
if 0;.d, < Oj.d, (1 < r < d) for all d dimensions and O;.d; < Oj.dt (1 <t < d) for at least one
dimension. We call such O; as dominant object and such O; as dominated object between O; and O;. For
example, in Figure 2 object W is dominated by object P.

Skyline: An object O; € DS is said to be a skyline object of DS, if and only if there is no such
object O; € DS (j # i) that dominates O;. The skyline of DS, denoted by Sky(DS), is the set of skyline
objects in DS. For dataset shown in Figure 2, objects {U, O, P, X, Q, Y, Z} are not dominated by any
other objects. Thus, skyline query retrieves Sky(DS) = {U,O,P,X,Q,Y,Z}.

Additivity of Skyline Computation [36]: Given a dataset DS and p datasets such that DS =
DS U- - -UDS,, the following equation holds: Sky(DS) = Sky(Sky(DS;)U- - -USky(DSy)). In Figure 2,
if we consider that the red bubbles represent the objects of DS; and green squares represents the objects
of DS,. Then the skyline objects set of DS; and DS, can be given by Sky(DS;) = {M,N,O,P,Q,R,S}
and Sky(DS;) = {U,V,W,X,Y,Z}. However, the common skyline objects set can be given by
Sky(DS) ={U,0,P,X,Q,Y,Z}, where {O, P,Q}€Sky(DS;) and {U, X, Y, Z}€Sky(DS,).
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Figure 2. A multi-party skyline Problem. Green Squares and Dotted-Line represent the objects
and skyline of DS;. Red Bubbles and Dotted-Line represent the objects and skyline of DSs.
Black Dotted-Line represents the global skyline of DS and DS,.

3.2. Paillier Cryptosystem

In our proposed approach we use the Paillier cryptosystem, which is a probabilistic asymmetric
algorithm for public key cryptography [11]. In Paillier cryptosystem both the public and private key
consists of two integers, where the public key is given by Paillier,(n, g) and the private key is given
by Pailliery (A, ). The scheme is additive homomorphic encryption; this means that given the public
key and the encryption of plain messages m1 and 1y, one can compute the encryption of my + my.
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Let us consider two plain messages m and m; and their corresponding cipher messages (; and
02, where {1 = En(my, Paillier ;) and (o = En(my, Paillier ).

Then, the following equations give the homomorphic addition and multiplication properties of
Paillier cryptosystem.

e Homomorphic Addition
(¢4 % g2) mod n? = En((my 4+ mp) mod n, Paillier )
e  Homomorphic Multiplication

Z¥mod n® = En(k x m;mod n, Paillier )

At the above equations, # is the part of Paillier public key and k is a positive integer constant.

4. Multi-Party Secure Skyline Computation Problem and Proposed System Model

In this section, we formalize privacy-preserving multi-party secure skyline computation problem
and our proposed system model.

4.1. Multi-Party Secure Skyline Problem

Let us consider a situation where several organizations have done some surveys about commission
cost and risk prediction. We assume that each of the organizations has collected similar private
information of their customers. Also, assume that all the organizations computed the local skyline
from their private dataset. Now each organization wants to find the resultant skyline from the union
of these local skyline result also termed as the organizations” global database. However, none of
them is allowed to disclose the attributes’ value of their database objects to other organizations.
We call participant organizations of the skyline computation as parties. Due to additivity property
of skyline computation, it is apparent that the result of skyline query computed from the union of
each party’s dataset must be equal to the skyline query result obtained from the merged results of
individual skyline.

To simplify the problem, we keep the number of participant parties is equivalent to 2. They are
denoted as DataNode! and DataNode?, respectively. To describe the proposed algorithm, assume that
Figure 2 represent the union dataset of these two parties. Where “Green Square” symbol represents
that the objects come from DataNode! and “Red Circle” symbol means objects comes from DataNode?.
Tables 1 and 2 represents the two-dimensional secure skyline objects set of DataNode' and DataNode?.

Table 1. Secure skyline objects set, Sky(DS1) of DataNode!.

ID d d
M 2D E3
N 3B BF
O 41 A7
P 4D 72
Q 90 51
R B6 4C
S F4 42
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Table 2. Secure skyline objects set, Sky(DS;) of DataNode?.

ID dy d;
u 25 B2
V. 54 AC
W 5D 7F
X 6F 66
Y A8 34
zZ D8 28

4.2. System Model

In our proposed system model, we introduced a skyline computation procedure from secure
multi-party databases in an efficient and privacy-preserving way. Like some existing model of
privacy-preserving multi-party computation [7-10], we also adopted the semi-honest adversary
model in our study, as defined in [37], and included a semi-honest third party adversary, called
the coordinator, which will be trusted by all participating parties. We considered that the coordinator
is honest-but-curious. Specifically, all participating parties along with the coordinator strictly executes
the protocol but intend to extract the private data from the computation. Therefore, any participating
party will not expose their object directly to the coordinator or other participating parties. Therefore,
we consider that all parties securely transform their objects’ attributes’ value without changing their
order on each dimension and the coordinator computes the multi-party skyline objects set from the
order of the objects’ attributes value. The detailed process of this skyline query, which does not use
actual attributes’ value but the order of the attributes, can be found in [32]. The sorting order generation
process should need to be secure enough so that nothing could be obtained by the coordinator other
than the relative order of objects’ secret attributes’ value on each dimension. The proposed framework
also needs to confirm that the participating parties should be unable to guess the value of the secret
objects’” attributes of other party’s objects during computation. Therefore, the transformed order
information should need to be secret to all participating parties. In this regard, we consider using
the Paillier cryptosystem, and its properties for transforming the objects” attributes” value. As a
semi-honest model, our proposed framework implicitly assumes that there will be no collude among
the coordinator and some of the corrupted parties.

5. Privacy-Preserving Multi-Party Secure Skyline Computation Algorithm

In this section, we provide details of the proposed algorithm. It consists of eight steps.

Local skyline computation.

Fix the bit-slice length and maximum bit-length of substitute vector element.
Paillier key-pair generation.

Generate and share the encrypted substitute vectors.

Combine the encrypted substitute vectors.

Encrypt the object order and resultant dataset generation.

Decrypt the objects order and global skyline computation.

® NG

Qualified global skyline objects identification.

Figure 3 describes the simplified block-diagram of our proposed privacy-preserving skyline
computation model. Where we use one coordinator and p is the number of participating parties. Each
V™ represents the substitute vector generated by DataNode™, and En(V™) represents the encrypted
substitute vector of V™, where each element of V™ is encrypted using the Paillier public key.
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Coordinator
Paillieryy, Paillier,
Objects’ Attributes Order

Encrypted

Pailliery | | Objects’
Attributes
Order
Datanode! Datanode? Datanode?
Sky(DS,), Paillieryy, Sky(DS,), Paillieryy, (¢ Sky(DSp), Paillieryy,
V1,En(V?),...,En(VP) V2,En(VY),...,En(VP) VP, En(V1), En(V?), ...

Figure 3. Privacy-preserving multi-party skyline computation model.

5.1. Local Skyline Computation

Due to the additivity property of skyline computation, we can say that each global skyline object
must be a member of any one of the local skyline objects set of the participating parties. So, we consider
that each participating party initially computes respective local skyline objects set from their secure
private dataset to compute global skyline. The local skyline query minimizes the risk of database
disclosure by analyzing the objects” attributes” order information by the coordinator. This process
also reduces the complexity of skyline computation from the combined large database of multi-party
objects’ attributes’ order.

5.2. Fix the Bit-Slice Length and Maximum Bit-Length of Substitute Vector Element

We admitted that the objects” attribute value could be significantly large. Therefore, we need
to split the attribute value into multiple slices for substituting the attribute value with the substitute
vector element. These substitute vectors replace the attribute value without changing their order.
We also need to keep the vector size within the acceptable memory capacity during computation.
For example, if we consider the attribute value could have a variation from 0 to (232 — 1), it is not
feasible to create a single vector of length 232 for replacing the attribute value. However, it could be
possible to use three substitute vectors of length 2!! to substitute the attribute value without changing
their sorting order. In this regard, at the beginning of our proposed framework, all participating parties
mutually fix the bit-slice length for splitting the attributes’ value of each dimension to substitute it with
substitute vector element. After that, it generates a separate objects order on each attribute. Each party
also mutually fix the maximum bit-length of substitute vector element. The maximum bit-length of
substitute vector element must need to be higher than the corresponding bit-slice length. It is also
essential that the bit-slice length for splitting the attributes” value should be long enough, since the
coordinator may try to assume the actual attribute value by analyzing the incidence of the bit pattern
of the transformed value of the objects” attributes, while the bit-slice length is small.

Our proposed algorithm considered the most straightforward way for fixing the bit-slice length
and maximum bit-length of substitute vector element without any concern of the coordinator. At first,
each participating party recommend bit-slice length and maximum bit-length and shares it with other
parties. Finally, each participating party computes the rounded-up integer average of all participating
parties” recommendation. All participating parties must follow this rounded-up integer average
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bit-slice length and maximum bit-length of the corresponding vector element for generating encrypted
substitute vector.

Assume that two participating party recommendations are shown in Tables 3 and 4 respectively,
for generating encrypted substitute vector to substitute their two-dimensional integer dataset. Here
each Nj ; indicates the bit-slice length of i" attribute and " slice, where j is indexed from less significant
bits slice to most significant bits slice of the corresponding attribute value. Similarly, each R; ; indicates
the maximum bit-length of substitute vector element for i attribute and j*" slice. Table 5 represent the
computed common bit-slice length for splitting the attribute value and common maximum bit-length
of the corresponding vector element.

Table 3. Bit-slice length, N and maximum bit-length, R recommended by DataN odel.

Attribute,i  Slice,j Nij R;;
1 0 3 7
1 1 5 9
2 0 5 9
2 1 3 8

Table 4. Bit-slice length, N and maximum bit-length, R recommended by DataNode?.

Attribute,i  Slice,j Nij Ry
1 0 5 9
1 1 3 7
2 0 4 8
2 1 4 8

Table 5. Determined bit-slice length, N and maximum bit-length, R.

Attribute,i  Slice,j N;; R;;
1 0 4 8
1 1 4 8
2 0 5 9
2 1 4 8

Although we have considered 8-bit integer attribute values for our running example and 4 or
5-bit bit-slice length for splitting the attribute value, in the real experiment, we have examined our
proposed protocol for 32-bit integer attribute value and bit-slice length higher than 10.

5.3. Paillier Key-Pair Generation

The coordinator generates Paillier public key, Paillieryi(n, g) for data encryption and private key,
Paillierg (A, i) for data decryption. The detail Paillier key construction process is explained in [11].
After generating the key-pair, the coordinator shares the public key with all participating parties.

5.4. Generate and Share the Encrypted Substitute Vectors

To conceal the actual attribute value from the coordinator, all participating parties generate
2Nij unique values between 0 to (2Rij — 1) for substituting j* slice of i dimension. Then each
participating party DataNode™ sort the generated random values into a vector table, V.. After that,
each element of sorted vector table multiplied with 2Kij, except the sorted vector table constructed
for the less significant bit-slice of each attribute (i.e., j = 0). Value of K; ; can be computed using the
following equation.

j-1
Kij=) Ry
1=0



Information 2019, 10, 119 11 of 20

After multiplying with 2Xij, the participating parties encrypt each element of their generated
vector table using Paillier public key, Paillier, to construct encrypted substitute vector table, p:”]
Assume that all parties has determined to construct an encrypted substitute vector table for substituting
the attributes’ value of i*" dimension and j*" slice of a dataset, where the bit-slice length, N;;j =4and
the maximum bit-length, R; ; = 8. The construction of encrypted substitute vector, p}’ j for DataN ode?
described in Table 6.

Table 6. Example of Encrypted Substitute Vector Generation for N; ; = 4 and R; ; = 8.

Index Sorted Random Encrypted Vector,
k Number, VllJ p}’]- = En(2%ii x Vll’, Paillieryy)
0 0D p},]-,O
1 13 p},jrl
2 26 Piin
3 31 Piia
4 3B p}/jA
5 40 p}/j/5
6 44 p},]-ﬁ
7 51 p},ﬂ
8 5E p}’jrs
9 6C p}’jlg
A 9F Piia
B A6 Piip
C AF Piic
D 2 p},]-,D
E DC p},]-,E
F F4 p},le

Following this way, all participating parties generate encrypted substitute vector for all attributes
and slices according to Table 5. After encrypted substitute vectors generation, each participating
party shares their generated vectors to other parties except the coordinator. The Paillier encryption
hides the value of the sorted vector element from the other participating parties, while they shared
the vector among each other. It allows homomorphic addition and multiplication on the encrypted
vector elements.

5.5. Combine the Encrypted Substitute Vectors

After receiving the encrypted substitute vector from all participating parties, each party adds
(using homomorphic addition property) all the encrypted substitute vectors supplied by the individual
parties to obtain the ultimate consolidated encrypted substitute vectors. Table 7 illustrates this process,
where we consider two participating parties and N; ; = 4.
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Table 7. Example of Combined Encrypted Substitute Vector Construction for N; ; = 4.

Index Encrypted Vectors Combined Vector

ko pij [ Gij=pi;+p%
0 p},]»,o o7 i0 Gijo
1 P},j,l P,Z,j,l Gija
2 Piin Piin Gij2
3 P},]',3 piz,j,3 Gijs3
4 P}, A Piz, A Gija
5 p}’]"5 P,Z,j,5 Gijs
6 P},j,e piZ,j,é Ciji6
7 p},ﬂ ,01‘2,]',7 Gij7
8 P},]»,g o7 i8 Gijs
9 le,j,9 pi2,j,9 Cij9
A le,j,A piz,j,A Gija
B P},]-,B P,-z,]-,B CijB
S P },j,C Pzz,j,c Gijc
D pzl',j,D pzz,j,D 8ijp
E P},]',E P,‘Z,]',E gi,j,E
F P},]',p Pzz,]',p gi,j,F

5.6. Encrypt the Object Order and Resultant Dataset Generation

All participating parties split each local skyline objects set attribute values according to
predetermined bit-slice length. For our running example bit-slice is shown in Table 5. The split
value should be used as the index of the combined encrypted vector elements corresponds to their
respective attributes and slices. Finally, the corresponding encrypted vector elements for each attribute
value added together using homomorphic addition to generate encrypted order sequence of the object
on that attribute. For self-blinding, each party also add the encryption of 0 with the value of encrypted
sorting order.

Consider that both parties agreed to split the it" attribute value with S; slices and i, 0051
represent the corresponding encrypted vector elements of the split pieces of that attribute value.
Then the transformation to encrypted object order J; by using the encrypted substitute vector elements
can be computed by the following equation:

Si—1
5 = 2 ;j + En(0, Paillier )
=0

The coordinator may assume the individual skyline object identity by identifying the object
provider. To avoid such situation, we consider that the individual parties do not send their locally
computed skyline objects attributes order separately to the coordinator. In this regard, each party
anonymizes their local skyline object’s IDs as follows: (1) Each party adds redundant bits with
their local skyline objects’” IDs by using CRC scheme [38]. (2) The IDs with padded CRC bits are
then encrypted by the corresponding party’s symmetric encryption key. Let us consider the original
ID of a local skyline object belongs to DataNode' is a and DES; is the symmetric encryption key of
DataNode'. If id, represents the encrypted ID of that object, then id, can be computed by using the
following equation:

idy = En((«||CRC()), DES;)
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Tables 8 and 9 describe the encrypted ordering sequence generation process of DataNode' and
DataNode?.

Table 8. Encrypted disguised object order generation by DataNode!.

ID dy dy o011 1,0 021 02,0 id o1 &2
M 2D E3 {112 G100 G217 G2003 idM  dim oM
N 3B BF G113 G108 G215 G201F N SN OGN
O 41 A7 G4 Gio1 G215 $G2007 o 1,0 G0
P 4D 72 G114 G100 G213 G012 idp  Sp Oop
Q 9 51 &i19 G100 G212 G0m g b0 G0
R B6 4C 118 G106 G212 $G200c iR SR 2R
S F4 42 G G104 G212 G2002 ids  O15  Ops

Table 9. Encrypted disguised object order generation by DataNode?.

ID di dy o011 010 021 020 id 41 02
u 25 B2 &2 G105 G215 G2012 idu  Su Su
V. 54 AC {115 G104 G215 $G200c idv Sy Oy
W 5D 7F G115 G100 G213 G201 idw  Siw  dow
X 6F 66 G116 CioF G213 G2006 dx  d1x  d2x
Y A8 34 {114 G108 G211 C2014  idy Oy doy
Z D8 28 ¢Giip G088 G211 G200 idz Oz Oz

Finally, all participating parties send the encrypted local skyline objects order on each attribute
along with their encrypted IDs to a common participating party. This party is also responsible for
merging all encrypted skyline objects order on each attribute. After that, it sends the merged set of
encrypted local skyline objects order to the coordinator.

5.7. Decrypt the Objects Order and Global Skyline Computation

After receiving the dataset with the encrypted disguised order of the local skyline objects on
each attribute, the coordinator decrypts them by using Paillier private key, Pailliers, and obtain the
transformed value of local skyline objects without changing their relative order.

Table 10 illustrates the sample database with encrypted data obtained from individual parties.
The transformed order value of the objects’ attributes on each dimension after decryption, where each
value in column 6; for i = 1,2 obtained by decrypting each encrypted value in column J;. This process
can be represented by the following equation:

0; = De(6;, Paillierg)

Here we discuss the procedure of obtaining 01 ;4,, = 4C9C, for id);, where the original attribute
value is 2Dq4. Let’s assume the value of substitute vector elements Vll,o, p and V12,0,D for hexadecimal
value D4 generated by DataNode! and DataNode? are C214 and D A1, respectively. Similarly, Vll,l,z =
1D16 and V12,1,2 = 2E16 for 216'

After encrypting with Pailliery, DataNode' and DataNode? obtain P%,O,D = En(C244) and
P%,O,D = En(2E;). Therefore, using homomorphic addition property, both parties can obtain
the combine encrypted substitute vector element for Dig as 1 9p = piO,D + piO,D = En(C2y6) +
En(DAlé) = En(19C16).

Since, Kj1 = 8 for our running example. Hence, for DataNode?, p%,m = En(2K1/1 X V11,1,2 =
En(28 x 1D14) = En(1D0044). By using the same equation DataNode? computes pim = En(2E0045).
Proceeding in the same way of obtaining combine encrypted substitute vector element for D14, both
parties can get &1 1, = p%,l,z + P%,l,z = En(4B004) for 21¢.
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Finally, by adding the encrypted substitute vector elements for original attribute value 2Dy,
DataNode! can produce the encrypted order value as 61y = C10p + C112 = En(19Cig) +
En(4B0016) = En(4C9C16).

After decryption, the coordinator uses the object order on each attribute for computing global
skyline query. From Table 10, we observe that according to the transformed value of the objects secure
attribute value, any other objects within the dataset do not dominate the dataset objects with IDs
{idy,ido,idp,idx, idg,idy,idz }. It can be confirmed from column 6 and 6,. Therefore, the coordinator
computes the skyline result as {idy, ido, idp, idx, idg, idy, id 7 }. Since each id, representing the object
with ID «, hence the result is also correct according to their original attributes value, as illustrated in
Figure 2. After computing the global skyline objects set Sky(DS) the coordinator sends the encrypted
IDs of qualified Sky(DS) objects to all participating parties.

Table 10. Disguised Object Order Decryption by the coordinator.

ID & & 61 )

idyy d1,m dom  4C9C 22A93
idy  d1n  doN 7A60 18BEE
ido 610 20 C572 1891D
idp  d1,p  Oop C69C F874
idg 61,0 90 15060 CA6C
idg  6r Jdyr 185BF  C9DC
ids d15 65 1D1A5 (854
idy oy du 4BAA  18A74
idy o1y oy F2A5 189DC
idy  ow  dow F39C FOEE
idy d1x dx FDED F70E
idy 61y dpy 15C22 869E
idz b1z oz 1B622 853A

5.8. Qualified Global Skyline Objects Identification

After receiving the encrypted IDs of the global skyline objects each party tries to decrypt the
encrypted IDs using their symmetric encryption key. If the party owns that skyline object, the party
can quickly identify it by the decrypted IDs and CRC code checking. Proceeding in a similar way each
participating party recognizes their respective globally qualified skyline objects.

6. Privacy and Security

Our proposed framework of privacy-preserving secure multi-party skyline computation is based
on transforming the attributes” value without changing the order of the objects” attributes on each
dimension. As a semi-honest adversary model, this framework implicitly assumes that all participating
parties trust the coordinator and the coordinator honestly executes the processes and does not make
an alliance with any of the corrupted party for obtaining the combined encrypted substitute vector.

Since only the coordinator has the private decryption key, no other party can obtain the
transformed order information of the objects’ attributes. So, the data privacy of honest parties will
not be affected by the dishonesty of some of the corrupted parties. On the other hand, since the
participating parties only share the attributes order of their local skyline objects set computed from
their secure database, it is not possible to guess the attribute value by analyzing the frequency of the
limited number of objects” attributes order value. However, if the coordinator and any corrupted
party make any conspiracy by sharing substitute vectors, those are used for transforming the objects’
attributes, then the proposed framework cannot meet the privacy and security expectation.

Therefore, now we can claim that the proposed framework secures the privacy of the objects
during multi-party skyline computation.
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7. Experiments

In this section, we evaluate the performance and effectiveness of our proposed framework.
We used four identical computers connected with Cisco Catalyst 2960-X Series Gigabit Switch for the
experimental setup. Out of the four computers one was considered to be the coordinator and other
three computers as individual parties containing private datasets. Each of the computers has an Intel®
Core™ i5-6500 3.20 GHz CPU and 8 GB memory. We used the 64-bit Ubuntu 16.04 operating system
for our experiment. We compiled the source codes of the program under Java V8 and executed the
program under Java™ 1.8.0 Runtime Environment. We generated synthetic datasets for evaluating the
performance of our proposed framework. Each attribute value of the synthetic datasets was randomly
picked from 32-bit unsigned integer. For the proposed study, we put our focus on the performance of
generating secure object order targeting skyline computation from the privacy-preserved multi-party
databases without unveiling the original attributes’ value of the objects to anyone. For evaluating the
efficiency of our model, we considered that all participating parties begin to generate the encrypted
substitute vectors and compute there local skyline objects set simultaneously after obtaining the Pallier
public key, Pailliery; from the coordinator.

From our experiment, we found that the significant time consumes for computing the local skyline
objects set, for generating encrypted substitute vector and for combining the vectors generated by
individual parties. However, since the individual parties compute the local skyline objects set from
their plain dataset without any security protocol, the local skyline computation time remain same
either for non-secured distributed skyline computation or for privacy-preserved multi-party skyline
computation. We also comprehensively compared the complexity of our proposed framework with
the frameworks proposed in [6,10].

A. Encrypted Substitute Vector Generation and Combining: We studied the runtime for
encrypted substitute vector generation process according to the algorithm described in Section 5.4,
which will be executed by each participating party simultaneously. Since the length of the substitute
vector increases twice with each increase of the bit-slice length, the process runtime of generating the
unique random numbers within a given range and encrypting the substitute vector elements also
increases. However, using the larger bit-slice length reduces the number of partitions for splitting
the attribute value to transform the attribute value and thus also reduces the number of the required
substitute vector. For example, a 32-bit attribute value can be substitutable by using two vectors of
16-bit-slice length, but it requires three vectors to substitute using the vector of 11-bit-slice length.
We examined runtime with varied bit-slice length from 10 to 16. Figure 4a shows the effect of encrypted
substitute vector generation process with different bit-slice length.

We also studied the process execution time for joining the encrypted substitute vectors using
homomorphic addition property according to Section 5.5. In this regard, we examined the runtime of
combining three substitute vectors generated by three participating parties for varied bit-slice length.
Our experimental result is illustrated in Figure 4b.

2250 120
2000
100
1750 _
) )
2 1500 g 80
8 (>3
o
§ 1250 g i
E 1000 E
[
g 750 £ 40
[ =
500
20
250
0 0
10 11 12 13 14 15 16 10 1 12 13 14 15 16
Bit Slice Length Bit Slice Length
(a) Encrypted Substitute Vector Generation (b) Combining Encrypted Substitute Vector

Figure 4. Bit-slice length effect on encrypted substitute vector generation process.
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B. Privacy-Preserving Multi-Party Skyline Computation: To evaluate the performance of our
proposed framework, we assumed that each participating party computes local skyline from the equal
amount of data tuples. We evaluate the performance of our proposed framework for different data
distribution and the varied number of objects” dimension. For both experiments, we varied each
participating parties’” tuples number from 10 k to 50 k.

To conduct this experiment, we used three different types of data distribution. They are correlated,
anti-correlated, and independent distributions. As shown in Figure 5, this framework is affected by
data distribution. We found that the framework is more efficient for the correlated dataset and less
efficient for the anti-correlated dataset. However, the performance for independent dataset lies in
between the performance for the anti-correlated and correlated dataset.

1400
1200
'_§1000
S Data
@ 800
é Distribution
:E, 600 ——Independent
Q
ig 400 Coorrelated
——Anti-Correlated
200
0
10000 20000 30000 40000 50000

No. of Tuples/Party

Figure 5. Running time varies with data distribution. [Dimension: 2; Bit-slice length: 11-bit;
Slices/ Attribute: 3].

Figure 6 illustrates the effect of data dimension for computing skyline. We varied the data
dimension from 2 to 6. Since the number of required encrypted substitute vector along with the
number of comparisons and the amount of qualified local skyline objects increases with the vector
dimension, the process execution time also increases. The results of our experiment also reflect it.

12000
10000
Dimension
(%]
T 3000 —_
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o
2
£ 6000 3
£ 4
€ 4000
= 5
2000
- — .
0
10000 20000 30000 40000 50000

No. of Tuples/Party

Figure 6. Running time varies with data dimension. [Data Distribution: Independent; Bit-slice length:
11-bit; Slices/ Attribute: 3].

C. Comparison with Existing Privacy-Preserving Multi-party Skyline Computation
Frameworks: The framework proposed in [6] applies the pairwise secure comparison of the objects’
attributes for computing dominance relationship between two participating parties’ objects. Therefore,
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the complexity of the algorithm increases with the number of participating parties, since each local
skyline object of a party needs to be securely compared with other parties local skyline objects set
separately. The author proposed to generate the homomorphic encryption key-pair twice for each
comparison of the two private objects using the LAHE scheme. The complexity of the Fast Secure
Integer Comparison (FSIC) protocol used by the framework depends on the maximum length of the
attribute value in the number of bits. Furthermore, it also requires five rounds of information exchange
between each pair of the participating parties for each comparison of their local skyline objects.

On the other hand, our proposed framework is comparatively less dependent on the number
of participating parties. The coordinator generates the homomorphic encryption key-pair only for
one time for the whole process. And our framework does not employ secure comparison protocol
like [6]. Moreover, it just requires six rounds of data exchange for the entire computation process: at
the beginning between the coordinator and the participating parties for sharing the public encryption
key. After that, three rounds communication requires between the participating parties for fixing the
bit-slice length, for sharing the encrypted substitute vector and merging the individual parties’ local
skyline objects” encrypted order on each attribute. Then, another round of communication required for
sending the merged set of local skyline objects” encrypted order to the coordinator. The final round of
data communication needed between the coordinator and the participating parties, for sharing the
encrypted IDs of the globally qualified skyline objects. Although it requires to transmit a large amount
of data during the sharing of each party’s encrypted substitute vector, it is negligible compared to five
rounds of information exchange for each dominance relationship comparison of two parties’ objects.

The method proposed in [10] is also scalable for any number of participating parties, although it
requires multiple rounds of data interchange between the participating parties with the coordinator
based on the number of slices of each attribute value and the number of dimension of the objects
for preparing the order of the objects on each attribute. It also requires multiple rounds of sorting
by the coordinator, and partial order merging by the individual parties for generating objects’ order
securely on each attribute. On the other hand, our present work does not need several rounds of
data exchange, data sorting and partial order merging like [10]. Besides that, we consider using
homomorphic encrypted substitute vector to transform the objects” attributes value securely without
altering their order on each attribute.

Therefore, we claim that the proposed algorithm is more efficient and robust in terms of
computation and communication complexity.

8. Conclusions

Our proposed approach addresses the problem of privacy-preserving skyline query in distributed
multi-party databases. Considering privacy awareness, we must take the issue of data privacy during
multi-party computation into account. We offered a secured but straightforward and efficient approach
for skyline query in distributed multi-party databases without unveiling the objects” attributes’ value,
where most of the existing proposed framework for privacy-preserving multi-party skyline query
requires time-consuming, expensive, and complex computation. We demonstrated the effectiveness
and scalability of the proposed algorithm through intensive examples and experiments. It can also be
possible to consider our proposed algorithm for the secure computation of the other variant of skyline
query, such as k-dominant skyline and k-skyband. Besides that, the proposed algorithm of secured
object ordering can also be applicable for retrieving the number of tuples with some given criteria of
the database attributes from the privacy-preserved distributed multi-party databases.
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