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Abstract: The total variation (TV) regularization-based methods are proven to be effective in removing
random noise. However, these solutions usually have staircase effects. This paper proposes a new
image reconstruction method based on TV regularization with Lp-quasinorm and group gradient
sparsity. In this method, the regularization term of the group gradient sparsity can retrieve the
neighborhood information of an image gradient, and the Lp-quasinorm constraint can characterize
the sparsity of the image gradient. The method can effectively deblur images and remove impulse
noise to well preserve image edge information and reduce the staircase effect. To improve the image
recovery efficiency, a Fast Fourier Transform (FFT) is introduced to effectively avoid large matrix
multiplication operations. Moreover, by introducing accelerated alternating direction method of
multipliers (ADMM) in the method to allow for a fast restart of the optimization process, this method
can run faster. In numerical experiments on standard test images sourced form Emory University
and CVG-UGR (Computer Vision Group, University of Granada) image database, the advantage of
the new method is verified by comparing it with existing advanced TV-based methods in terms of
peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and operational time.

Keywords: total variation; group gradient sparsity; Lp-quasinorm; accelerated alternating direction
method of multipliers; image reconstruction

1. Introduction

Owing to the influence of sensing equipment, imaging systems, environmental conditions,
and human factors, digital images are usually subject to a certain degree of degradation such as
image blur, image noise, and partial image information loss. It is widely assumed that the convolution
of a clear original image with a blur kernel gives a blurred image, which will further turn into a
degraded image when interfered with by noise. Common types of blur kernels are Gaussian blur
kernel, motion blur kernel, and average blur kernel [1]. According to the distribution condition of
probability density function (PDF) of their amplitude, noises are classified into Gaussian noise, impulse
noise, Rayleigh noise, exponential noise, gamma noise, etc. [1]. Designing image optimization models
and proposing efficient algorithms by using degraded images and some prior information properly to
reconstruct clear images is of great importance to the advanced postprocessing of images.

Reconstructing a degraded image to the original image is an inverse problem. Seeking solutions
to an inverse problem is ill-posed in the sense that there is a lack of any solution or a lack of a
unique, stable solution [2,3]. To deal with such a type of ill-posed problem, image reconstruction
based on regularization is an effective method. In a regularization model, the image reconstruction
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function consists of two parts: a fidelity term and a regularization term. The fidelity term can be
obtained from a priori information of the image. Given that an imaging process may be affected
by different types of degradation factors, the fidelity terms may be modeled differently. However,
the use of a different regularization term in a regularization function has a large effect on the quality of
reconstructed images. The relative significance of fidelity and regularization terms can be adjusted by
regularization parameters.

The selection of a regularization function is of great research interest in the field of image
processing, and many effective models have been proposed by scholars for different applications [4–7].
Phillips [8] and Tikhonov [9] proposed smooth regularization terms, which were derived from the
L2-norm and referred to as the Tikhonov regularization method. As a classic regularization method,
the Tikhonov regularization method has the advantage of calculation simplicity but usually leads to
oversmoothing of the edges of images. In 1992, Rudin, Osher, and Fatemi [10] pioneered the total
variation (TV) regularization method, also known as the ROF model, which can well preserve image
edge features and has attracted widespread attention in the image denoising field.

The TV models are divided into the anisotropic total variation (ATV) model and the isotropic
total variation (ITV) model [11–13]. In first-order TV models, the image is piecewise smooth,
which makes the models obviously advantageous in preserving image edges, but the models are likely
to produce a staircase effect. Meanwhile, given the nondifferentiability of total variation functionals,
the solution is difficult to find. Since then, some extended models and their algorithms have been
proposed on the basis of the TV models and have been widely used in image reconstruction [14–16],
photoelectric detection [17], geological exploration [18], remote sensing [19], and medical image
analysis [20], among others [21]. For example, the total generalized variation (TGV) model can
effectively approximate a polynomial function of arbitrary order [22–24].

The TGV model has proven, theoretically and practically, to be a more effective method to remove
the staircase effect [23], and has attracted wide attention from scholars. For example, Knoll and
Bredies et al. [25] applied TGV regularization terms to magnetic resonance imaging, and Kong and
Peng et al. [26] applied TGV regularization terms to the denoising of seismic signals. Nonlocal TV
(NLTV) models accomplish the removal of the staircase effect by introducing local information of the
image [27,28]. Although NLTV models are superior to TV models in removing the staircase effect,
their computational complexity is higher than that of traditional TV models. Fractional-order TV
(FrTV) models [29] extend integer-order TV models to the fractional order, taking into account the
nonlocal characteristics of the image while considering the local characteristics of the image, so that
the staircase effect is effectively inhibited. In 2011, Wang et al. [30] proposed Fast Total Variation
deconvolution (FTVd) to solve the TV_L1 problem for image deblurring.

In 2011, Sakurai et al. [31] proposed the four-directional total variation (4-TV) model to extend
gradient information into four directions in contrast to the two vertical directions or horizontal
directions considered by traditional variation methods, to improve the denoising performance.
In recent years, Selesnick and Chen [32,33] proposed an overlapping group sparsity TV (OGSTV)
model in which a regularization term based on overlapping group sparsity is introduced, and applied
it with the L2-norm fidelity term to the denoising of one-dimensional Gaussian noise. The OGSTV
regularization term considers the neighborhood information of an image gradient and retrieves
the neighborhood structural similarity of the image gradient. Liu et al. [34] generalized this to a
two-dimensional OGS_L1 regularization term and applied it with an L1-norm-constrained fidelity
term to the removal of pulse noise from images, and Liu et al. [35] applied it to speckle noise removal.
Their experiments showed that the regularization term can effectively suppress the staircase effect.
However, the L1-norm, which is the convex relaxation of the L0-norm [36], has a limited ability to
induce sparsity. Meanwhile, given the increased computational complexity owing to the neighborhood
information of an image gradient, a longer computational time is required for images with complicated
edge information.



Information 2019, 10, 115 3 of 21

This study proposes a new regularization model that incorporates the Lp-quasinorm

(‖x‖p
p =

N
∑

i=1
|xi|p, 0 ≤ p ≤ 1; ‖x‖p

p is named as Lp-quasinorm for simplicity) in the fidelity term and the

group gradient sparsity in the regularization term to denoise and deblur images containing impulse
noise. Recently, Woodworth and Chartrande [37] proved that the Lp-quasinorm shrinkage is superior
to the soft-thresholding shrinkage when recovering sparse signals. In this study, the regularization term
of the group gradient sparsity is tentatively combined with an Lp-quasinorm constraint to overcome
the drawback of traditional variation methods—namely, focusing on the gradient at a given pixel in
the image without considering the neighborhood information. By retrieving the gradient information
of the surrounding pixels as a reference to form group gradients. This decreases the group gradient
between a single noisy pixel and its neighborhood while still allowing large group gradients between
edge pixels and their neighborhood.

In this study, by setting a reasonable threshold, the edge information of the image is well
preserved while the noise is efficiently removed. To find a solution, the alternating direction method of
multipliers (ADMM) [38,39] and the majorization-minimization (MM) [40] algorithm are used in the
proposed model. To improve the image reconstruction efficiency, a Fast Fourier Transform (FFT) is
introduced to transform the image difference operation in the time domain into the frequency domain
to effectively avoid large matrix multiplication operations. In particular, accelerated ADMM that allows
a faster restart of the optimization process is further introduced in the proposed model, thus greatly
improving the operational speed. In numerical experiments, the FTVd, FrTV, OGS_L1, and TGV
models are compared in terms of objective performance indicators [such as the peak signal-to-noise
ratio (PSNR) [41], structural similarity (SSIM) [42] and operational time] with the proposed model
in this study. The results show that the proposed model achieves higher PSNR, SSIM and better
visual effects for reconstructed images. The proposed model uses a generalized regularization term
applicable to other image reconstruction problems, such as magnetic resonance imaging (MRI) process,
optical coherence tomography (OCT) images noise reducing [43], etc.

The rest of this paper is organized as follows. In the next section, prerequisite knowledge
related to the algorithms is presented, including the definition of the OGS_L1 regularization term
and the MM algorithm. The third section presents the model proposed in this paper, and then
details the problem-solving process in the ADMM framework, after which the section elaborates on
an accelerated ADMM for faster restart of the optimization process and faster calculation speed.
Numerical experimental results are given in the fourth section. Finally, the fifth section draws
the conclusion.

2. Prerequisite Knowledge

2.1. L1- and L2-Norm Modeling in TV Regularization

The goal of image reconstruction is to estimate the original image by using the observed degraded
image. An image degradation model is as follows [1]:

G = H ∗ F + N (1)

G ∈ RN×N represents an observed blurred image with noise, F ∈ RN×N represents the image
reconstructed by the model, H ∈ RN×N represents a blur kernel function, and the symbol ∗ represents
the convolution operator. N ∈ RN×N represents additive noise. When the noise is Gaussian, the TV
regularization (ROF model) is expressed as [10]

F = arg min
F

1
2
‖H ∗ F−G‖2

2 + µR(F) (2)
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In Formula (2), arg min
F

1
2‖H ∗ F−G‖2

2 is the fidelity term using the L2-norm, and µR(F) is the

sparsity-constrained regularization term, with µ as the regularization parameter measuring the weight
of the fidelity term vs. the regularization term.

In the ATV model, R(F) is defined as follows [11]:

RATV(F) = ‖Kh ∗ F‖1 + ‖Kv ∗ F‖1 (3)

In the ITV model, R(F) is defined as follows [2]:

RITV(F) =
√
‖Kh ∗ F‖2

2 + ‖Kv ∗ F‖2
2 (4)

where Kh = [−1, 1] and Kv= [− 1, 1]T represent the horizontal and vertical differential convolution
operators, respectively; ‖ · ‖1 represents the Euclidean L1-norm, and ‖ · ‖2 represents the
Euclidean L2-norm.

The noise distribution might conform to a distribution other than the Gaussian distribution, e.g.,
the Laplace distribution, and in such case the fidelity term of the L1-norm will be used to replace that
of the L2-norm. This paper is primarily intended to explore image reconstruction in the presence of
impulse noise. The impulse noise is additive noise, which is mainly accounted for by the bright and
dark noise generated by sensors, transmission channels, and decoding processing. In 2004, Nikolova
proposed the use of a L1 data-fidelity term for impulse noise related problems [44]. When the noise is
impulse noise, consider the following L1-norm model:

F = arg min
F

1
2
‖H ∗ F−G‖1 + µR(F) (5)

2.2. Lp-Quasinorm

Noise that conforms to a Laplace distribution is usually modeled with the L1-norm. The L1-norm
is the convex relaxation of the L0-norm [36]. In recent years, Woodworth and Chartrand demonstrated
that the Lp shrinkage is superior to the soft-thresholding shrinkage when recovering sparse
signals [37], which has attracted widespread attention in academia [4,45]. The Lp-norm is defined as

‖F‖p = (
N
∑

i=1

N
∑

j=1

∣∣Fij
∣∣p)1/p

, and the Lp-quasinorm is defined as ‖F‖p
p =

N
∑

i=1

N
∑

j=1

∣∣Fij
∣∣p. The L1-norm and

L2-norm are special cases of the more general Lp-norm at p = 1 and p = 2, respectively.
Figure 1a shows the Lp-quasinorm contour, with p values of 0.25, 0.5, 1, 2, and 4 in the order of

the inner to outer contour lines. Figure 1b shows a schematic diagram, assuming that the image is
contaminated by impulse noise with standard deviation σ. The solid line in Figure 1b indicates the
fidelity term for image reconstruction. Owing to noise interference, the fidelity term will fluctuate
between the dashed lines. As seen in the figure, the fidelity term intersects more with the contours of
0 < p < 1 at the axis of higher sparsity. The Lp-quasinorm is more likely than the L1-norm to induce
sparse solutions to the impulse noise removal problem.
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Figure 1. Schematic diagram of feasible domains for various norms. (a) Lp-quasinorm contour: p takes
values of 0.25, 0.5, 1, 2, and 4 from inner to outer contour lines; (b) Feasible domains for 0 < p < 1
(blue) and p = 1 (red).

2.3. OGS_L1 Model

Based on the traditional ATV model, when the noise is impulse noise, the OGS_L1 model is
expressed as follows [46,47]:

F = arg min
F

1
2
‖H ∗ F−G‖1 + µ[ϕ(Kh ∗ F) + ϕ(Kv ∗ F)] (6)

ϕ(Kh ∗ F) and ϕ(Kv ∗ F) represent the horizontal and vertical group gradient,
respectively. The regularization term considering the group gradient sparsity is expressed as
µ[ϕ(Kh ∗ F) + ϕ(Kv ∗ F)]. If the information of K× K pixels of the image neighborhood is considered,
where K is the size of the group, one can define

ϕ(V) =
K

∑
i=1

K

∑
j=1

∥∥∥Ṽi,j,K,K

∥∥∥
2

(7)

where V ∈ RN×N represents the image gradient. The variable Ṽi,j,K,K composed of K× K pixel matrix
of the 2D image is defined as follows:

Ṽi,j,K,K =


Vi−Kl ,j−Kl Vi−Kl ,j−Kl+1 · · · Vi−Kl ,j+Kr

Vi−Kl+1,j−Kl Vi−Kl+1,j−Kl+1 · · · Vi−Kl+1,j+Kr
...

...
. . .

...
Vi+Kr ,j−Kl Vi+Kr ,j−Kl+1 · · · Vi+Kr ,j+Kr

 ∈ RK×K (8)

where Kl =
⌊

K−1
2

⌋
and Kr =

⌊
K
2

⌋
; bxc is the floor function of x, which takes the value of the largest

integer equal to or less than x; the element Vi,j is at the center of the matrix Ṽi,j,K,K, and the center is
enclosed by the selected group. When K = 1, the OGS_L1 model degenerates into an ATV model.

As shown by Formula (8), the group gradient
K
∑

i=1

K
∑

j=1

∥∥∥Ṽi,j,K,K

∥∥∥
2

has fully considered the gradient

information of the pixel neighborhood, and the regrouping of the gradient information through the
two norms increases the difference between the smooth regions and the image edge regions.

To illustrate this problem in a more straightforward manner, a schematic diagram is given as
shown in Figure 2, where Figure 2a depicts the vertical gradients in the smooth image regions with
the two pixels 1© and 2© heavily contaminated by noise, while Figure 2b shows the vertical gradients
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in the image edge regions without noise contamination, with the pixel gradients shown for the two
pixels 3© and 4©. The hollow circles in the figure denote pixels of low grayscale values, while the solid
circles denote pixels of high grayscale values. For convenience of discussion, it is assumed that the
grayscale values of the hollow circles are 0, and the grayscale values of the solid circles are 1.Information 2019, 10, x 6 of 22 
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Figure 2. Two-dimensional diagram of sparse groups: (a) smooth region contaminated by noise and 
(b) edge region not contaminated by noise. 

Given that the probability that a number of consecutive pixels in the smooth regions are all 
contaminated by noise is extremely small, this structural similarity can be used for denoising. 

According to (8), when 3K = , the group gradient of pixels ○1  and ○2  is 2 , while the group 

gradient of pixels ○3  and ○4  is 5 . As long as the threshold is set to 2 , the noise of pixels ○1  and 

○2  can be well removed, while the group gradient of pixels ○3  and ○4  shrink to 5- 2 . Thus, the 
image edge is well preserved. 

In summary, by using group gradients to calculate gradients at pixels, it is possible to highlight 
the difference between the highly noisy pixels in the smooth regions and the pixels in the edge regions 
to achieve image reconstruction in a more robust manner. 

2.4. MM Algorithm 

To seek the optimal solution containing the group gradient sparsity ( )ϕ V , the MM algorithm 
is adopted here [40]. This is a progressive method focused on finding a multivariate auxiliary function 
to construct an iterative series to approximate the solution for a given problem. When solving the 
problem of (9), the iterative cycle is expressed as (10) [34] 

( ) 2

20min ( )
2v

P βμϕ=  
 

+ − V V V V  (9) 

( 1) 2 ( ) 1
0= {[ + ( )] }, 1,2,k k kμ

β
+ − = V mat I D V V  (10) 

( )ϕ V  (10) is defined as (7), 0
N N×∈V , 

2 2N N×∈I  denotes the identity matrix, k  denotes the 

number of iteration steps. For any N N×∈X , 
2 2N N×∈D  is a diagonal matrix with the elements on 

the diagonal defined as 

[ ]
1 2

1 2

1
22

,,( )
r r r r

l l l l

m i k m j km m
i K j K k K k K

K K K K −

− + − +
=− =− =− =−

 
=  

 
   D X X  (11) 

In (11), the diagonal elements of D  can be calculated using MATLAB’s built-in function conv2. 

3. Propose Model and Solution 

In this section, a new image reconstruction model is proposed based on the Lp-quasinorm and 
the regularization term of group gradient sparsity as follows: 

( ) ( )argmin [ ]p
h vp

μ ϕ ϕ= ∗ − + ∗ + ∗
F

F H F G K F K F  (12) 

As mentioned above, the regularization term of the group gradient sparsity is beneficial to 
improving the difference between the smooth regions and the edge regions in the image after noise 
contamination. Meanwhile, with the ability of Lp-quasinorm in characterizing the image gradient 

Figure 2. Two-dimensional diagram of sparse groups: (a) smooth region contaminated by noise and
(b) edge region not contaminated by noise.

If the conventional TV regularization methods are applied to Figure 2a, pixels 1© and 2© are very
likely to be mistaken for and preserved as image edge pixels since they have grayscale values similar
to the gradients at pixels 3© and 4©, so that the noise cannot be effectively removed. In conventional
TV models, the four pixels have an identical horizontal difference and vertical difference, so that no
matter how much the threshold is, the gradients of the four pixels show consistent variation trends.

Given that the probability that a number of consecutive pixels in the smooth regions are all
contaminated by noise is extremely small, this structural similarity can be used for denoising.
According to (8), when K = 3, the group gradient of pixels 1© and 2© is

√
2, while the group gradient

of pixels 3© and 4© is
√

5. As long as the threshold is set to
√

2, the noise of pixels 1© and 2© can be
well removed, while the group gradient of pixels 3© and 4© shrink to

√
5−
√

2. Thus, the image edge
is well preserved.

In summary, by using group gradients to calculate gradients at pixels, it is possible to highlight
the difference between the highly noisy pixels in the smooth regions and the pixels in the edge regions
to achieve image reconstruction in a more robust manner.

2.4. MM Algorithm

To seek the optimal solution containing the group gradient sparsity ϕ(V), the MM algorithm is
adopted here [40]. This is a progressive method focused on finding a multivariate auxiliary function
to construct an iterative series to approximate the solution for a given problem. When solving the
problem of (9), the iterative cycle is expressed as (10) [34]

min
v

P(V) =
{

µϕ(V) +
β

2
‖V− V0‖2

2

}
(9)

V(k+1) = mat{[I + µ

β
D2(V(k))]

−1
V0}, k = 1, 2, · · · (10)

ϕ(V) (10) is defined as (7), V0 ∈ RN×N , I ∈ RN2×N2
denotes the identity matrix, k denotes the

number of iteration steps. For any X ∈ RN×N , D ∈ RN2×N2
is a diagonal matrix with the elements on

the diagonal defined as

[D(X)]m,m =

√√√√√ Kr

∑
i=−Kl

Kr

∑
j=−Kl

[
Kr

∑
k1=−Kl

Kr

∑
k2=−Kl

∣∣∣Xm−i+k1,m−j+k2

∣∣∣2]− 1
2

(11)
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In (11), the diagonal elements of D can be calculated using MATLAB’s built-in function conv2.

3. Propose Model and Solution

In this section, a new image reconstruction model is proposed based on the Lp-quasinorm and
the regularization term of group gradient sparsity as follows:

F = argmin
F
‖H ∗ F−G‖p

p + µ[ϕ(Kh ∗ F) + ϕ(Kv ∗ F)] (12)

As mentioned above, the regularization term of the group gradient sparsity is beneficial to
improving the difference between the smooth regions and the edge regions in the image after noise
contamination. Meanwhile, with the ability of Lp-quasinorm in characterizing the image gradient
sparsity, the proposed model is able to effectively preserve the image edge information and remove
the staircase effect while blurring and denoising the image.

Next, a method for seeking a solution to the proposed model in the ADMM framework is
introduced. For convenience, the following intermediate variables are introduced:

Xi ∈ RN×N(i = 1 ∼ 3), and let


X1 = H ∗ F−G
X2 = Kh ∗ F
X3 = Kv ∗ F

. According to the ADMM framework,

an augmented Lagrangian multiplier (ALM) method [38] is adopted to solve the constrained
optimization problem of (12). By doing so, the problem is transformed into an unconstrained problem
whose augmented Lagrangian objective function can be expressed as

Lβ(F, X1∼3, Λ1∼3) = arg min
F,X1∼3,Λ1∼3

‖X1‖p
p + µ[ϕ(X2) + ϕ(X3)]

−〈β1Λ1, X1 − (H ∗ F−G)〉+ β1
2 ‖X1 − (H ∗ F−G)‖2

2 +
β1
2 Λ2

1 −
β1
2 Λ2

1
−〈β2Λ2, X2 −Kh ∗ F〉+ β2

2 ‖X2 −Kh ∗ F‖2
2 +

β2
2 Λ2

2 −
β2
2 Λ2

2
−〈β3Λ3, X3 −Kv ∗ F〉+ β3

2 ‖X3 −Kv ∗ F‖2
2 +

β3
2 Λ2

3 −
β2
2 Λ2

3
= arg min

F,X1∼3,Λ1∼3
‖X1‖p

p +
β1
2 ‖X1 −H ∗ F + G−Λ1‖2

2 −
β1
2 Λ2

1

+µϕ(X2) +
β2
2 ‖X2 −Kh ∗ F−Λ2‖2

2 −
β2
2 Λ2

2
+µϕ(X3) +

β3
2 ‖X3 −Kv ∗ F−Λ3‖2

2 −
β3
2 Λ2

3

(13)

In (13), the dual variable Λi ∈ RN×N(i = 1, 2, 3) is introduced as a Lagrangian multiplier,
βi > 0(i = 1, 2, 3) is a penalty parameter which controls the linear constraint, and 〈X, Y〉 represents the
inner product of two matrices X and Y.

It is difficult to solve the maximum value problem for the joint variable X1–X3. To solve this
problem, the original optimization problem is decomposed into several smaller local subproblems in
the framework of ADMM [38,48], that is, X1–X3 are separately used in the solution-seeking process,
followed by alternating iteration until the method converges to the optimal solution of the original
model. The subproblems after the decomposition of (13) are as follows, where k denotes the number of
iteration steps: 

F(k+1) = arg min
F

β1
2 ‖X

(k)
1 −H ∗ F + G−Λ

(k)
1 ‖

2

2

+ β2
2 ‖X

(k)
2 −Kh ∗ F−Λ

(k)
2 ‖

2

2 +
β3
2 ‖X

(k)
3 −Kv ∗ F−Λ

(k)
3 ‖

2

2

X(k+1)
1 = arg min

X1
‖X1‖p

p +
β1
2 ‖X

(k)
1 −H ∗ F(k) + G−Λ

(k)
1 ‖

2

2

X(k+1)
2 = arg min

X2
µϕ(X2) +

β2
2 ‖X

(k)
2 −Kh ∗ F(k) −Λ

(k)
2 ‖

2

2

X(k+1)
3 = arg min

X3
µϕ(X3) +

β3
2 ‖X

(k)
3 −Kv ∗ F−Λ

(k)
3 ‖

2

2

(14)
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3.1. Subproblem Solving

(1) Subproblem F

When solving subproblem F of (14), to effectively avoid the computational complexity caused
by large matrix multiplication operations, a fast two-dimensional Fourier transform is introduced to
transform the operation of time-domain to that of frequency-domain. The frequency domain of the
subproblem F is expressed as

F(k+1)
== arg min

F

β1
2 ‖X

(k)
1 −H ◦ F + G−Λ

(k)
1 ‖

2

2 +
β2
2 ‖X

(k)
2 −Kh ◦ F−Λ

(k)
2 ‖

2

2 +
β3
2 ‖X

(k)
3 −Kv ◦ F−Λ

(k)
3 ‖

2

2 (15)

In (15), x denotes the frequency spectrum of x, and the symbol ◦ denotes element-wise matrix
multiplication. Given that the right side of the formula is a smooth convex function, its first-order
difference result is set to zero to find the optimal solution [5], which is obtained by using an inverse
two-dimensional Fourier transform, as shown below:

F(k+1) = FFT−1
2D

{
β1H∗◦(X1

(k)+G−Λ1
(k))+β2Kh

∗◦(X2
(k)−Λ2

(k))+β3Kv
∗◦(X3

(k)−Λ3
(k))

β1H∗◦H+β2Kh
∗◦Kh+β3Kv∗◦Kv)

}
(16)

where FFT−1
2D represents the two-dimensional inverse Fourier transform, and the division symbol

represents element-wise matrix division.

(2) Subproblem X1

The subproblem X1 of (14) is shrunk according to (17):

X(k+1)
1 = shrinkp(H ∗ F(k+1) −G + Λ

(k)
1 ,

1
β1

) (17)

where shrinkp(ξ, τ) = sgn(ξ)max
{
|ξ| − τ2−p|ξ|p−1, 0

}
is the Lp shrinkage operator,

which degenerates into a soft threshold operator when p = 1.

(3) Subproblems X2 and X3

Subproblems X2 and X3 in (14) can be solved by using the following iterative loop based on the
MM algorithm and (10)

X2
(k+1)
(n+1) = mat

{
[I + µ

β2
D2(X2

(k+1)
(n) )]

−1
χ2

(k+1)
(0)

}
X3

(k+1)
(n+1) = mat

{
[I + µ

β3
D2(X3

(k+1)
(n) )]

−1
χ3

(k+1)
(0)

} (18)

In (18), I ∈ RN2×N2
denotes the identity matrix, and Xi

(k+1)
(n) (i = 2, 3) denotes the n-th iteration of

the MM algorithm in the k + 1-th outer loop.
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Finally, according to the ADMM solution rule, the objective function of the dual variable
Λi(i = 1, 2, 3) is

J1 = max
Λ1

β1

〈
Λ1, (H ∗ F(k+1) −G)−X(k+1)

1

〉
J2 = max

Λ2
β2

〈
Λ2, Kh ∗ F(k+1) −X(k+1)

2

〉
J3 = max

Λ3
β3

〈
Λ3, Kv ∗ F(k+1) −X(k+1)

3

〉 (19)

This can be updated by the ascend gradient method as (20)

Λ
(k+1)
1 = Λ

(k)
1 + γβ1(H ∗ F(k+1) −G−X(k+1)

1 )

Λ
(k+1)
2 = Λ

(k)
2 + γβ2(Kh ∗ F(k+1) −X(k+1)

2 )

Λ
(k+1)
3 = Λ

(k)
3 + γβ3(Kv ∗ F(k+1) −X(k+1)

3 )

(20)

where γ is a step length parameter, also known as a relax parameter. The convergence of the ADMM
algorithm has been proven when γ ∈ (0,

√
5+1
2 ) [48]. The entire algorithm proposed in this study is

summarized as Algorithm 1 and is named GGS_Lp.

Algorithm 1: Pseudocode GGS_Lp for image reconstruction

Input: G
Output: F

Initialize: K, k = 1, n = 0, X(k)
i = 0, Λ

(k)
i = 0, βi(i = 1, 2, 3), µ, γ, p, tol, Max.

1: Set ‖F(k+1) − F(k)‖2/‖F(k)‖2 as 1;
2: while ‖F(k+1) − F(k)‖2/‖F(k)‖2 > tol do
3: Update F(k+1) using Equation (16);
4: Update X1

(k+1) using Equation (17);
5: while n < Max do

6: Update Xi
(k+1)
(n+1)(i = 2, 3) using Equation (18);

7: Xi
(k+1) = Xi

(k+1)
(n+1)(i = 2, 3);

8: n = n + 1;
9: end while

10: Update Λ
(k+1)
i using Equation (20);

11: k← k + 1 ;
12: end while
13: Return F(k) as F.

3.2. Fast ADMM Solver with Restart

The convergence rate of the traditional ADMM is O(1/k), while GGS_Lp involves calculation of
the neighborhood gradient, which increases the computational burden. By introducing accelerated
ADMM, the convergence rate can be increased to O(1/k2) [49] to improve the computational efficiency.
In this section, an accelerated ADMM framework is used to solve the proposed model at a faster
convergence speed. To do this, it is necessary to introduce auxiliary variables X̃i(i = 1, 2, 3) and
Λ̃i(i = 1, 2, 3), the acceleration step εi(i = 1, 2, 3), and the sum of primal-dual residuals ci(i = 1, 2, 3).
In the accelerated ADMM, the sum of the primal-dual residuals is monitored. With an increase in the
sum, the iterative result is considered unable to converge, and thus the process is restarted to ensure
high computational efficiency.
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In the accelerated ADMM framework, Xi (i = 1, 2, 3) is updated as

X(k+1)
1 = shrinkp(H ∗ F(k) −G + Λ̃

(k)
1 , 1

β1
)

X2
(k+1)
(n+1) = mat{[I + µ

β2
D2(X2

(k+1)
(n) )]

−1
χ2

(k+1)
(0) }

X3
(k+1)
(n+1) = mat{[I + µ

β3
D2(X3

(k+1)
(n) )]

−1
χ3

(k+1)
(0) }

(21)

where X2
(k+1)
(0) = Kh ∗ F(k+1) + Λ̃

(k)
2 , and X3

(k+1)
(0) = Kv ∗ F(k+1) + Λ̃

(k)
3 .

Λi(i = 1, 2, 3) is updated as

Λ
(k+1)
1 = Λ̃

(k)
1 + γβ1(H ∗ F(k+1) −G−X(k+1)

1 )

Λ
(k+1)
2 = Λ̃

(k)
2 + γβ2(Kh ∗ F(k+1) −X(k+1)

2 )

Λ
(k+1)
3 = Λ̃

(k)
3 + γβ3(Kv ∗ F(k+1) −X(k+1)

3 )

(22)

The sum of primal-dual residuals is calculated as

c(k+1)
i = β−1‖Λ(k+1)

i − Λ̃
(k+1)
i ‖

2

2 + β‖Z(k+1)
i − Z̃(k+1)

i ‖
2

2(i = 1, 2, 3) (23)

When inequality (24) is not satisfied, the optimization process is restarted. η is a number close to
1, and is set to 0.96 to prevent the optimization process from being frequently restarted.

c(k+1)
i < ηc(k)i (i = 1, 2, 3) (24)

When c(k+1)
i < ηc(k)i , the auxiliary variable and the acceleration step are updated as

ε
(k+1)
i =

1+

√
1+4(ε(k)i )

2

2

X̃
(k+1)
i = X(k+1)

i +
ε
(k)
i −1

ε
(k+1)
i

(X(k+1)
i −X(k)

i ), (i = 1, 2, 3)

Λ̃
(k+1)
i = Λ

(k+1)
i +

ε
(k)
i −1

ε
(k+1)
i

(Λ
(k+1)
i −Λ

(k)
i )

(25)

When a restart occurs, the variables are updated according to the following formula:

ε
(k+1)
i = 1

X̃
(k+1)
i = X(k+1)

i

Λ̃
(k+1)
i = Λ

(k+1)
i

c(k+1)
i = η−1c(k)i , (i = 1, 2, 3).

(26)

The algorithm incorporating the accelerated ADMM is summarized as Algorithm 2 and is named
GGS_LP_Fast in this study.
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Algorithm 2: Pseudocode GGS_LP_Fast for image reconstruction

Input: G
Output: F

Initialize:
K, k = 1, n = 0, X(k)

i = 0, Λ
(k)
i = 0, X̃

(k)
i = 0, Λ̃

(k)
i = 0, ε

(k)
i = 1,

c(k)i = 0, βi(i = 1, 2, 3), µ, γ, p, tol, η, Max.
1: Set ‖F(k+1) − F(k)‖2/‖F(k)‖2 as 1;
2: while ‖F(k+1) − F(k)‖2/‖F(k)‖2 > tol do
3: Update F(k+1) using Equation (16);
4: Update X1

(k+1) using Equation (21);
5: while n < Max do

6: Update Xi
(k+1)
(n+1)(i = 2, 3) using Equation (21);

7: Xi
(k+1) = Xi

(k+1)
(n+1)(i = 2, 3);

8: n = n + 1;
9: end while

10: Update Λ
(k+1)
i , c(k+1)

i using Equations (22) and (23);

11: if c(k+1)
i < ηc(k)i then

12: Update ε
(k+1)
i , X̃

(k+1)
i , Λ̃

(k+1)
i using Equation (25),

13: else Update ε
(k+1)
i , X̃

(k+1)
i , Λ̃

(k+1)
i , c(k+1)

i using Equation (26),
14: end if
15: k← k + 1 ;
16: end while
17: Return F(k) as F.

4. Numerical Experiments

In this section, standard test images of various styles (Figure 3) are selected as experimental
objects to evaluate the model proposed in this study. In particular, the image “Satellite” is downloaded
from Emory University image database [50], while other images are downloaded from CVG-UGR
(Computer Vision Group, University of Granada) image database [51], with each image consisting of
512× 512 pixels. The downloaded images are converted to an image size of 256× 256 pixels before the
image reconstruction test. To verify the rationality and effectiveness of the proposed models, Gaussian
blur and impulse noise are added to the experimental objects in the simulation experiment, whereby a
large number of numerical experimental results are obtained to demonstrate the advantages of the
proposed method.

4.1. Evaluation Criteria and Running Environment

A comparison is performed in terms of two evaluation indicators commonly used in image
processing: the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) [52]. The definitions
of PSNR, and SSIM are as follows:

PSNR(X, Y) = 10lg
2552

1
N2

N
∑

i=1

N
∑

j=1
(Xij − Yij)

2
(27)

SSIM(X, Y) =
(2µXµY + 2552k2

1)(2σXY + 2552k2
2)(

µ2
X + µ2

Y + 2552k2
1
)(

σ2
X + σ2

Y + 2552k2
2
) (28)

In (28), X denotes the original image and Y denotes the reconstructed image; µX and µY
denote the mean of X and Y, respectively; µ2

X and µ2
Y denote the variance of X and Y, respectively;

µXY is the covariance of X and Y; and constants k1 and k2 ensure a nonzero denominator in (28),
with k1 = 0.01 and k2 = 0.03 in the experiment. Generally, the larger the PSNR of the reconstructed
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image, the better the reconstructed image quality. The SSIM lies in the range (0, 1), and the closer the
value is to 1, the higher the similarity, the better the image reconstruction effect.
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Figure 3. Test images: (a) Lena, (b) butterfly, (c) boat, (d) plane, (e) seabird, (f) fish, (g) house, and
(h) satellite.

In the experiment, image reconstruction effectiveness is compared between the FTVd model
(The matlab code could be download from the website https://www.caam.rice.edu/~{}optimization/
L1/ftvd/ Version 4.1.), FrTV model, TGV model, OGS_L1 model, and the two models proposed in
this study (GGS_Lp and GGS_LP_Fast), both of which are frequency-domain models. To ensure
the objectivity and fairness of the evaluation, the iterative conditions of the above algorithms are
terminated when satisfying (29), where F(k) denotes the objective function of a model after the k-th
iteration. In the experiment, by setting the relax parameter γ = 1.618 and adjusting the regularization
parameters of each algorithm, each algorithm is allowed to operate at its best performance to ensure
the objectiveness of the test results.

‖F(k+1) − F(k)‖2 · ‖F(k)‖
−1
2 < 10−4 (29)

Hardware environment: The processor is an Intel®Core™ i7-6700 CPU @ 3.4 GHz with 16.0 GB
of memory. Simulation platform: MATLAB R2018a.

Each blur kernel used in the test is generated by the built-in MATLAB function fspecial (‘gaussian’,
N1, N2), which generates a Gaussian blur kernel with a standard deviation of N2 and window size of
N1× N1, with the kernel hereinafter referred to as a GN1× N1, σ = N2 kernel for simplicity. Impulse
noise is added at a noise level of 30%, 40%, 50%, and 60%.

4.2. Parameter Sensitivity Analysis

4.2.1. Number of Inner Iteration Steps

When solving the X2, X3 subproblems, it is necessary to consider the number of inner iteration
steps of the MM algorithm. In general, the greater the number of iteration steps, the more accurate
the solution of a subproblem, but the more time-consuming the computational process. To find a
proper tradeoff, the values taken by the parameter n are first explored while other parameters are fixed.
Each image is subject to multiple tests at different noise levels, as exemplified below.

The images of (a) Lena, (d) plane, and (f) fish are convoluted with a G7 × 7, σ = 5 kernel at
an impulse noise level of 30%. The experimental results are presented in Figure 4. As indicated by

https://www.caam.rice.edu/~{}optimization/L1/ftvd/
https://www.caam.rice.edu/~{}optimization/L1/ftvd/
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Figure 4a,b, both PSNR and SSIM are improved with an increasing number n of inner iterations,
but when n exceeds 5, the promotional effect of the iteration step number on PSNR and SSIM
becomes less significant. With an increase in the iteration step number, the computational time
increases, Figure 4c. As shown in Figure 4a,b, some of the values have little dropped as the graph
is progressed, which is because the other parameters do not be tuned to the best for different n.
Based on a comprehensive consideration of the computational time and optimal PSNR and SSIM
values, the number of inner iteration steps is set to 5 in the subsequent test.Information 2019, 10, x 13 of 22 
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Figure 4. Effects of iteration steps number on the results: (a) PSNR, (b) SSIM, and (c) processing time.

4.2.2. Group Gradient Parameter K

The group gradient parameter K of the proposed algorithm is tested and compared to evaluate
its effect on the overall performance of the algorithms. Given a different image and a different noise
level, K is continuously changed from 1 to 10, and at each value, multiple tests are performed. Take the
image of (e) seabird as an example, which is convoluted with a G7× 7, σ = 5 blur kernel at noise
levels of 30%, 40%, 50%, and 60%. The PSNR and SSIM results are recorded under these different
scenarios, as shown in Figure 5. When K = 1, the algorithm degenerates into a traditional ATV model.

As shown in Figure 5, an increase in K has different effects on PSNR and SSIM at different noise
levels. For example, at a 30% noise level with K = 5, both PSNR and SSIM reach their maximum values,
and this trend is invariant. It is evident that given a low noise level, the neighborhood information
of the image has positive effects on the algorithm performance. However, when the noise level is
60%, the structural characteristics of the neighborhood gradient are seriously damaged, and in this
circumstance, a greater K may lead to decreased algorithm performance.
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Figure 5. Effects of group gradient parameter K on experimental results: (a) PSNR, (b) SSIM,
and (c) processing time.

In addition, the greater the parameter K, the more information is used from the neighborhood
during the computation and the higher the computational complexity, thus increasing the
computational time. With K set to a proper value, the proposed algorithm has a greater capability to
preserve image edges and to resist high-level noise. Based on a comprehensive consideration of both
computational time and the optimal PSNR and SSIM values, K is set to 3 in the subsequent test.
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4.2.3. Regularization Parameter µ and Quasinorm p

Next, the effects of regularization parameter µ on the test results are evaluated. Given a different
test image at various impulse noise levels, µ is gradually increased from a small value to a high value
while the values of PSNR and SSIM of image reconstruction are recorded. Here, take the test images of
(c) boat and (g) house as examples, where the images are convoluted with a G7× 7, σ = 5 blur kernel
at noise levels of 30%, 40%, 50%, and 60%, respectively, while the values of PSNR at various values of
µ are recorded, as shown in Figure 6. The experimental results show that given a test image, PSNR is
relatively stable when µ is greater than a certain value, suggesting that the proposed algorithm is
not sensitive to the regularization parameter µ. That is, the optimal values of µ are relatively stable,
and the proposed algorithm is robust. In the subsequent experiment, µ is set to 100, 90, 80, and 60 at
noise levels of 30%, 40%, 50%, and 60%, respectively.
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Figure 6. Effects of regularization parameter µ on experimental results (a–d) refer to effect of µ on
PSNR at noise levels of 30%, 40%, 50%, and 60%, respectively.

With the above-determined parameters, p is allowed to vary from 0 to 1 in steps of 0.05 in light of
the characteristics of the impulse noise, and a loop statement is used for a thorough search for the p
value that optimizes PSNR, as shown in Table 1. Test images are convoluted with a G7× 7, σ = 5 blur
kernel at noise levels of 30%, 40%, 50%, and 60%, respectively. The results show that to a certain test
image, the p value that optimizes PSNR is relatively stable.

Table 1. The p value that optimizes PSNR for different images.

Noise Level Lena Butterfly Boat Plane Seabird Fish House Satellite

30 0.65 0.45 0.55 0.55 0.50 0.65 0.70 0.75
40 0.65 0.45 0.55 0.55 0.50 0.65 0.70 0.75
50 0.65 0.45 0.55 0.55 0.50 0.65 0.70 0.75
60 0.65 0.50 0.55 0.55 0.50 0.65 0.70 0.75

4.2.4. Comparative Testing of Image Reconstruction Effectiveness between Several Algorithms

To further test the effectiveness of the proposed algorithm, tests are subject to in-depth
comparisons with other state-of-the-art algorithms. The group of images in Figure 3 is used as
the test objects, which are convoluted with a G7× 7, σ = 5 blur kernel at impulse noise levels of 30%,
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40%, 50%, and 60%, respectively. The test results for the different images are listed in Table 2, with the
optimal indicators highlighted in boldface and black font.

Table 2. PSNR (dB) and SSIM values generated by various algorithms in deblurring and denoising
different images.

Images Noise Level
FTVd FrTV TGV OGS_L1 Ours

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Lena

30 27.121 0.813 28.742 0.854 29.108 0.863 29.443 0.875 29.825 0.889
40 25.270 0.750 26.341 0.773 28.589 0.842 28.750 0.857 29.551 0.878
50 23.843 0.654 24.508 0.760 27.673 0.810 27.899 0.832 28.899 0.859
60 21.861 0.592 22.823 0.611 25.904 0.672 26.444 0.794 28.081 0.831
30 26.592 0.813 27.214 0.824 27.852 0.854 27.902 0.859 28.416 0.875
40 26.013 0.782 26.378 0.803 27.078 0.829 26.996 0.827 27.732 0.837
50 25.433 0.761 26.015 0.791 26.429 0.794 26.527 0.770 26.917 0.817

Butterfly

60 24.731 0.730 24.909 0.741 25.041 0.752 24.113 0.721 26.077 0.771

Boat

30 27.543 0.860 28.040 0.865 29.028 0.881 28.938 0.880 29.266 0.883
40 27.251 0.851 27.638 0.862 28.182 0.863 28.077 0.861 28.756 0.868
50 25.703 0.820 26.325 0.826 26.733 0.842 26.594 0.827 27.997 0.860
60 23.902 0.731 24.233 0.760 24.623 0.781 24.923 0.782 26.797 0.828
30 30.245 0.772 30.551 0.833 31.649 0.891 32.751 0.907 33.281 0.913
40 29.869 0.872 30.538 0.851 31.362 0.883 32.092 0.891 32.837 0.919
50 29.072 0.851 29.556 0.862 31.126 0.881 31.371 0.883 32.121 0.890Plane

60 28.167 0.803 28.299 0.841 29.495 0.712 29.732 0.877 31.479 0.885

Seabird

30 29.377 0.872 29.750 0.882 31.344 0.891 31.843 0.910 32.214 0.913
40 28.500 0.863 28.951 0.868 30.530 0.880 30.811 0.889 31.700 0.908
50 27.636 0.829 28.073 0.844 29.156 0.855 29.418 0.864 30.249 0.875
60 26.594 0.812 27.010 0.803 27.881 0.852 27.938 0.840 29.215 0.853
30 23.111 0.693 23.752 0.730 24.554 0.772 24.350 0.764 24.758 0.788
40 22.850 0.661 23.032 0.700 23.310 0.682 23.547 0.737 24.150 0.755
50 21.896 0.623 22.649 0.681 22.881 0.692 22.572 0.685 23.585 0.726Fish

60 20.933 0.572 21.051 0.581 21.113 0.583 21.109 0.601 22.458 0.675

House

30 26.558 0.771 26.791 0.773 28.322 0.832 28.283 0.833 28.659 0.847
40 26.151 0.750 26.573 0.760 27.972 0.821 27.501 0.806 28.246 0.822
50 24.959 0.693 25.100 0.701 25.510 0.722 25.764 0.724 26.868 0.778
60 24.110 0.670 24.212 0.674 24.727 0.684 24.315 0.673 25.692 0.726
30 28.372 0.934 29.190 0.942 30.930 0.963 31.751 0.967 32.732 0.977
40 28.074 0.931 28.635 0.911 30.745 0.952 30.296 0.962 32.362 0.974
50 27.403 0.921 27.682 0.923 29.874 0.951 30.095 0.951 31.397 0.954Satellite

60 26.245 0.901 26.453 0.909 28.152 0.931 28.289 0.942 29.845 0.949

Based on the data in the above table, the following conclusions can be drawn:

1. With the addition of blurring and different levels of noise in various images, the proposed models
in this study are superior to other excellent models for image reconstruction in terms of PSNR and
SSIM. This indicates that the proposed models have good deblurring and denoising performance,
while allowing the reconstructed images to be more similar to the original images.

2. When the proposed models are employed to reconstruct the eight images, the PSNR values are
higher than those of the TGV model by 0.204–2.177 dB, and the superiority of the proposed
models is more evident at higher levels of noise. For example, PSNR of the proposed models
(28.081 dB) is 2.177 dB higher than that of the TGV model (25.904 dB) for the image of Lena at a
noise level of 60%, and the PSNR difference becomes 2.174 dB for the image of the boat at the
same noise level (26.797 dB vs. 24.623 dB).

3. Compared with OGS_L1, the proposed models increase the Lp-quasinorm shrinkage and
improve the ability to characterize image gradient sparsity. When recovering the eight images,
the proposed models have PSNR values that are 0.328–1.964 dB higher than those of the OGS_L1
model. For the butterfly image at the noise level of 60%, PSNR of the proposed models (26.077 dB)
is 1.964 dB higher than that of the OGS_L1 model (24.113 dB).

To better understand the test results, some reconstructed images are illustrated below:
Figure 7 depicts the image reconstruction results of several models for the butterfly, boat, house,

and plane images blurred by convolution with a G7× 7, σ = 5 blur kernel at impulse noise levels of
30–60%. The proposed model of this study shows good image reconstruction performance at each
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noise level, with PSNR values greater than those of the other advanced models. It is noteworthy that
even in the presence of high-level noise contamination, the proposed algorithm is still able to provide
the reconstructed images with good visual effect.
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Figure 7. Random examples of images reconstructed by several advanced models and proposed
model. Top row depicts the blurred and noisy images of the butterfly, boat, house, and plane owing to
convolution with a G7× 7, σ = 5 blur kernel and impulse noise levels of 30%, 40%, 50%, and 60%.
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Figure 8 depicts zoomed-in seabird images recovered by several models after image blurring
owing to a G5× 5, σ = 5 blur kernel at a 40% level of impulse noise. As shown by the visual effects of
the image recovery results, the FTVd method leads to a staircase effect in the recovered image, as shown
in Figure 8d. The protectory effect of the FrTV method on the image edges needs to be improved,
as shown in Figure 8e. The TGV and OGS_L1 methods have satisfactory inhibitory performance
on the staircase effect, but local areas of the TGV-reconstructed image still contain some highly
noisy pixels, as shown in Figure 8f,g. The OGS_L1 method reconstruction leads to relatively smooth
image reconstruction results for smooth image regions, but some image edges are oversmoothed.
The proposed model is able to reconstruct the image pixels of similar grayscale values in the smooth
image regions well, and avoids the staircase effect while preserving the image edges, thereby providing
a satisfactory overall reconstruction performance.
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Figure 8. Comparison of the zoomed-in views of reconstructed images by several advanced models
and proposed model: (a) selected area, (b) zoomed-in part of selected area, (c) blurred and noisy
zoomed-in part owing to convolution with a G5× 5, σ = 5 blur kernel at a impulse noise level of
40%, and (d–h) zoomed-in parts of reconstructed images by FTVd, FrTV, TGV, OGS_L1, and proposed
model, respectively.

Figure 9 depicts a comparison of grayscale values in single channels of the satellite image as
recovered by several algorithms after image blurring with a G9× 9, σ = 5 blur kernel at an impulse
noise level of 40%. To further compare the results of various models, the 100th-channel signals
are extracted from the image. It is evident that the TGV-reconstructed image still contains some
noise-contaminated pixels in some local areas, as shown in Figure 9d. In Figure 9e, the OGS_L1
algorithm results in thorough noise removal, but the image edges are oversmoothed to some extent.
The proposed algorithm can remove the noise entirely while preserving the image edges well, as shown
in Figure 9f.

4.2.5. Comparison of Image Reconstruction Time for Several Algorithms

Finally, to further test the timeliness of the proposed models, the mean time spent for image
reconstruction is compared between the FTVd, TGV, and OGS_L1 models and the proposed models
under the premise that the abovementioned test procedures are free of bias. Here, the proposed models
in this study are named the GGS_Lp model and the GGS_LP_Fast model, with the latter being a model
for accelerated restart of the former. In the test, images are blurred with a G7× 7, σ = 5 blur kernel at
impulse noise levels of 30–60%. The test results are partially presented in Table 3, with the optimal
results highlighted in boldface and black font.
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Figure 9. Comparison of the proposed model and several advanced models in terms of the
100th-channel data of the reconstructed satellite images. (a) refers to the grayscale values of the
100th pixel channel in the original satellite image, with the yellow vertical line on the figure indicating
the 100th-channel position. (b) refers to a blurred image owing to convolution with a G9× 9, σ = 5
blur kernel at impulse noise level of 40%. (c–f) depict images with grayscale values of the 100th channel
recovered by the FTVd, TGV, OGS_L1, and proposed algorithms, respectively.

Analysis of the data in Table 3 leads to the following conclusions:

1. The GGS_Lp model and its accelerated restart version GGS_LP_Fast, both proposed in this study,
lead to similar PSNR values when the two models are used to reconstruct images, but their PSNR
values are all greater than those of the FTVd, TGV, and OGS_L1 models.

2. As a classic algorithm, FTVd is still advantageous in terms of computational speed. TGV and
OGS_L1 give better image reconstruction results than FTVd, but they are more time-consuming.
In this study, neighborhood gradient information is thoroughly considered, and the Lp-quasinorm
is introduced as a regularization constraint, which leads to a greater computational complexity
and thereby greater time consumption for image reconstruction compared with the FTVd model.
By contrast, the GGS_LP_Fast model increases computational efficiency to a great extent, and its
performance is especially prominent for images with a high level of noise.
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Table 3. Mean time (S) spent by several algorithms in deblurring different images.

Images Noise Level
FTVd TGV OGS_L1 GGS_LP GGS_LP_Fast

PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time

Lena
30 27.121 1.02 29.108 5.12 29.443 1.72 29.825 2.56 29.920 1.14
60 21.861 1.98 25.904 8.34 26.444 3.10 28.081 3.45 27.913 2.10
30 26.592 1.33 27.852 6.01 27.902 0.96 28.416 2.06 28.573 1.25Butterfly
60 24.731 1.88 25.041 9.26 24.113 2.82 26.077 2.95 25.827 1.83

Boat
30 27.543 0.83 29.028 4.98 28.938 2.25 29.266 1.48 29.586 1.61
60 23.902 1.95 24.623 9.30 24.923 2.46 26.797 3.04 26.688 2.17
30 30.245 0.72 31.649 3.47 32.751 1.25 33.281 2.28 32.909 1.59

Plane 60 28.167 1.84 29.495 5.92 29.732 3.93 31.479 4.09 31.387 2.82

Seabird
30 29.377 1.56 31.344 5.64 31.843 2.40 32.214 1.70 32.528 1.87
60 26.594 2.35 27.881 9.76 27.938 3.73 29.215 3.84 29.183 2.29
30 23.111 0.92 24.554 6.23 24.350 1.53 24.758 1.36 24.833 1.17

Fish 60 20.933 1.90 21.113 10.85 21.109 3.07 22.458 2.59 22.386 1.87

House
30 26.558 1.15 28.322 6.24 28.283 1.36 28.659 1.59 28.884 1.62
60 24.110 2.38 24.727 11.23 24.315 2.37 25.692 3.34 25.585 2.29
30 28.372 0.76 30.930 3.69 31.751 1.39 32.732 1.67 32.799 1.14

Satellite 60 26.245 1.88 28.152 7.86 28.289 2.85 29.845 1.70 30.013 1.60

5. Conclusions

This study proposed a new image reconstruction method based on total variation regularization
incorporating Lp-quasinorm and group gradient sparsity to deblur images and remove impulse
noise. This method, in which the regularization term of the group gradient sparsity can retrieve
the neighborhood information of an image gradient, and in which the Lp-quasinorm constraint
can characterize the gradient sparsity, can effectively deblur and denoise images to reduce the
staircase effect and well preserve the image edges. A large number of numerical experiments showed
that the proposed method has good overall performance for image reconstruction. The number of
inner iteration steps of the MM algorithm and the group gradient parameter K can be set based
on a comprehensive consideration of both computational time and the optimal PSNR and SSIM
values. Regularization parameter µ and quasinorm p values are relatively stable, which shows that
the proposed algorithm is robust. It is noteworthy that the proposed model uses a generalized
regularization term applicable to other image reconstruction problems. Thus, the model has
wide applicability.
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