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Abstract: Recent expansion of intelligent gadgets, such as smartphones and smart watches,
familiarizes humans with sensing their activities. We have been developing a road accessibility
evaluation system inspired by human sensing technologies. This paper introduces our methodology
to estimate road accessibility from the three-axis acceleration data obtained by a smart phone
attached on a wheelchair seat, such as environmental factors, e.g., curbs and gaps, which directly
influence wheelchair bodies, and human factors, e.g., wheelchair users’ feelings of tiredness and
strain. Our goal is to realize a system that provides the road accessibility visualization services
to users by online/offline pattern matching using impersonal models, while gradually learning to
improve service accuracy using new data provided by users. As the first step, this paper evaluates
features acquired by the DCNN (deep convolutional neural network), which learns the state of the
road surface from the data in supervised machine learning techniques. The evaluated results show
that the features can capture the difference of the road surface condition in more detail than the label
attached by us and are effective as the means for quantitatively expressing the road surface condition.
This paper developed and evaluated a prototype system that estimated types of ground surfaces
focusing on knowledge extraction and visualization.

Keywords: human sensing; wheelchair; road accessibility; feature extraction; deep learning

1. Introduction

Providing accessibility information of the road for people with difficulties in moving, such as
elderly people, mobility impaired people, and visually impaired people, is one of the important
social issues. One method of solving these issues using information communication technology is to
develop an accessibility map as a large geographic information system to provide the accessibility
information [1–3]. The conventional method for gathering accessibility information on a large scale is as
follows: a method for experts to evaluate sidewalks and their images for each case [4]; crowdsourcing
methods to recruit information from volunteers [5,6]; and so on. In all these methods, human labor
is indispensable.

Recent expansion of intelligent gadgets, such as smartphones and smart watches, familiarizes
humans with sensing their activities. Focusing on the fact that the observed values of acceleration
sensors installed in wheelchairs were influenced by the condition of the road surface, we have been
proposing a system which evaluates road surface condition by machine learning from acceleration
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sensor data. Research on human action recognition by applying machine learning to raw human
behavior data measured by an accelerometer attached to the body is as follows: examining the
possibility of various machine learning methods for human action recognition using data sets, such
as everyday life and assembly work at a factory [7–9]; aiming at improving learning efficiency by
imaging time series data of human actions [10]; distinguishing involuntary body vibrations due to
illness from voluntary exercise [11,12]; and so on. This paper estimates the road surface condition
using the deep convolutional neural network (hereinafter referred to as DCNN) that is one of the
most famous expression learning techniques for developing impersonal models in voice recognition,
and analyzes the learned DCNN. Our goal is to realize a system that provides the road accessibility
visualization services to users by pattern matching using impersonal models, while gradually learning
to improve service accuracy using new data provided by users. As the first step, this paper evaluates
features acquired by the DCNN, which learned the state of the road surface from the data in supervised
machine learning techniques. There are no other studies investigating and verifying that feature
quantities extracted from the learned DCNN capture a more detailed road surface condition than the
given road surface condition label.

In the rest of this paper, the outline of the proposed system is shown in Section 2. In Section 3, there
is a preliminary analysis of the wheelchair sensing data, before the machine learning is performed,
to clarify the relationship between the barrier of the sidewalk and the vibration value, and the
relationship between the physical burden of the wheelchair user and the vibration value. Section 4
describes collection of wheelchair sensing data, assignment of learning labels, and data classification
learning by the DCNN. In Section 5, analysis of the relationship between the data and the reaction
pattern of the learned DCNN is conducted, and the analysis result is reported. Section 6 discusses
future tasks, and Section 7 concludes this paper.

2. System for Estimation of Road Accessibilities

This section introduces the authors’ proposed system for providing road accessibility information
which are helpful for all walkers, especially for wheelchair users. Figure 1 shows the outline of the
proposed system. In the proposed system, vibration waveforms during movement are collected
by an acceleration sensor installed in a wheelchair. After extracting road surface information from
vibration waveforms using machine learning, the extracted road surface information is accumulated
and visualized on a map.
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Figure 1. Outline drawing of road surface feature automatic evaluation system by wheelchair sensing
and machine learning.

The simplest type of accessibility visualization utilizing human sensing is simple wheelchair
trails [13]. Such trails provide practical information for wheelchair users regarding wheelchair
accessible roads and facilities. The information is useful but not sufficient. The trail approach
provides the fact that someone could pass there, but not all wheelchair users can pass in the same
way. The physical abilities of wheelchair users are more diverse than generally imagined; there are
users like Paralympic athletes, and some users may damage their bodies with only a few vibrations.
Important information for wheelchair users is the physical state of the road surface, such as the angle
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of the slope of the sidewalk, height of curb, roughness of the road surface, and so on. This information
about the physical state of the road surface is not only helpful for wheelchair users to make decisions
of access/avoidance of the roads according to their physical conditions and abilities, but also all people
with difficulties in moving in the same way. The information about the physical state of the road is the
foundation of the road accessibilities. This paper hereinafter calls this information the road accessibility
information. The purpose of this paper is to propose a system for providing this road accessibility
information by human sensing and machine learning techniques.

Vibration waveforms from acceleration sensors are reasonable in detecting the road accessibility
information because they are influenced by the state of the road surface. Extracting useful information
from noisy vibration waveforms of accelerometers mounted on various wheelchairs is not impossible
because of the recent success of developing impersonal models in pattern matching tasks by the DCNN.
Our final goal is to realize the system that provides road accessibility visualization services to users
by online/offline pattern matching using impersonal models, while gradually learning to improve
service accuracy using new data provided by users. As the wheelchair traveling data of more places is
gathered by more users after the service is launched, the model for pattern matching is incrementally
strengthened. Along with maturity of the model, it will also be possible to extract the road accessibility
information from the running data of baby strollers and bicycles in the same way as wheelchairs.
This paper aims to establish a fundamental method of information extraction from wheelchair running
data using machine learning.

The mobility support information system for people with difficulties in moving has been proposed
as the following examples.

• Creating walking space network data composed of links with information such as width, step,
crossing gradient of walking route, etc., and nodes connecting links with latitude/longitude
information [14–16];

• Collecting walking space network data by on-site survey by community [17];
• Providing information on the road surface condition to users’ mobile terminals [18,19].

All of these have the problem that it is difficult to collect wide-area road surface information
because it costs a huge amount of human power. On the other hand, the following has been tried as a
method for evaluating the road surface condition by automatic processing.

• Using high-resolution satellite images to classify land cover according to the physical condition of
the ground surface, such as agricultural land, grazing land, barren areas [20–22];

• Detecting depression of a road surface using a method based on machine learning which is based
on acceleration sensor data and GPS data installed in cars [23,24];

• Detecting recesses and abnormal traffic conditions on the road surface by acceleration sensor data,
GPS data, voice data, etc. of smartphones for cities [25,26].

In any of these, it is difficult to obtain a detailed road surface condition required for mobility
impaired people using wheelchairs. Therefore, we have aimed at developing a method of automatic
extracting of detailed information on the road surface by machine learning from acceleration sensor
data installed in a wheelchair. It is not easy to extract the influence of the condition of the road
surface from the raw data of the acceleration sensor [27,28]. It is important to convert from the
observed acceleration sensor data to indexes representing the state of the road surface by expression
learning techniques.

3. Preliminary Analysis

3.1. Road Barrier and Vibration

To analyze the relationship between physical vibration and subjective feeling of the road barrier,
we employed a vibration acceleration level (VAL) with decibel units (dB) that was defined as
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20log10(a/a0), where a and a0 indicate the root-mean-square of three-axis acceleration values and a
reference acceleration, respectively. a0 is usually set to 10−5 m/s2 by the Japanese Industrial Standards
(JIS) C1510-1995.

Nine participants with mobility impairments conducted an experiment of wheelchairs moving
around Akihabara Station in Tokyo. In order to obtain pure movement data, each participant was
asked to move their own wheelchair which is being used in their everyday life, and the vibration from
the wheelchair moving was obtained from a Sun SPOT three-axis accelerometer of Sun Microsystems
attached on the axle of the rear wheels. The moving vibration data was sent to a base station from the
accelerometer and the location data obtained from a GPS receiver were automatically recorded into
the laptop contained in the backpack attached to the back of each wheelchair. The experiment was
recorded by video taking, and each subject was asked his/her personal feelings about road barriers
through an interviewer.

To find a higher VAL on the route intuitively, we separated the moving route represented on the
Google map by every 0.02 s, and each part of the route was painted with one of 13 colors according
to the averaged VAL value, i.e., red color for a VAL value over 116 dB. Notice that the location data
obtained from the GPS receiver was revised by hand carefully to remove the multipath effect.

Figure 2 shows the result of a 50 year old male participant who had about 40 years’ experience
in using a wheelchair. He has been using it both inside and outside all the time. In contrast, Figure 3
shows a whole picture of the visualized VAL of a 30 year old male participant who had about 10
years’ experience in using a wheelchair. Since he usually sails a kayak, a human-powered light narrow
boat that has one or more covered cockpits, he enjoyed the wheelchair moving even when the body
vibration turned out to be so high. From those results, it can be observed that the road barrier from
a wheelchair moving does not only come from the vibration level like VAL, but also from vibration
pattern changes.
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Figure 3. A 30 years old male participant moved his wheelchair so fast, and higher VAL values were
often detected. Regardless, he enjoyed his wheelchair moving.

3.2. Physical Burden and Vibration

It is known that the road with low accessibility increases the physical burden of the manual
wheelchair. In this section, we analyzed the relationship between the physical burden and vibration
of the manual wheelchair user. The authors have proposed a method to analyze and quantify the
relationship between the acceleration change caused by thrust when pushing the wheelchair by hand
and the physical burden during manual wheelchair traveling from the acceleration sensor mounted
on the smartphone [29]. Evaluation of the burden has been studied mainly in the field of sports and
healthcare, and it has been utilized [30–32]. NASA-TLX (NASA Task Load Index) [33] and the SWAT
(Subjective Workload Assessment Technique) [34] are the evaluation indexes using a psychological
scale. Representative examples of evaluation methods using biometrics include the evaluation of
muscle fatigue using electromyograms [35], and the evaluation of exercise intensity and psychological
stress by heart rate [36,37].

The physical burden of manual wheelchair driving is influenced by the magnitude of thrust which
is the load of the rowing action. Since the force and the acceleration are proportional to each other from
Newton’s equation of motion, the acceleration waveform of the wheelchair changes depending on the
degree of burden during wheelchair traveling. We hereinafter refer to the action while the hands are
in contact with the handrim of the manual wheelchair as “padding”. Focusing on the peak to peak
value (hereinafter P-P value) of the waveform at the time of padding, correlation with heart rate was
confirmed through experiments.

A total of eleven persons, including five manual wheelchair users and six wheelchair
inexperienced users, wore an iPhone and a heartbeat sensor and ran a preselected route. As a
result, wheelchair running data consisting of 14,189 rowing actions for a total of 4.5 h was obtained.
Routes were selected from four types near Ichigaya station in Tokyo (route A is about 2200 m, route B,
C and D is about 1350 ± 50 m). The iPhone was installed under the seat of the wheelchair and the
acceleration data on the direction of traveling axis and the GPS data were acquired at a 50 Hz sampling
rate. Since acceleration is susceptible to noise, a value smoothed by a simple moving average of 10
points before and after was used. A Poral H7 heartbeat monitor was used for heartbeat sensing, and
data was acquired in RRI (the R wave-to-R wave (RR) interval) format at each beat. The heartbeat data
was converted to bpm format after artifacts and noise were removed.

Two types of sample extraction methods with rowing and padding, and five kinds of feature
amounts of P-P value, maximum value, minimum value, average value, and time width were combined
to create 10 pattern data sets. As a result of comparing correlation coefficients between these data sets
and heart rate data, the maximum value was 0.78 (P < 0.001) of the padding and P-P values. Figure 4
shows the smoothed row vibration P-P value and heart rate of the participant having the highest
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correlation value of 0.92. The two data were normalized with minimum value 0, maximum value
1. It was confirmed that the P-P value of the acceleration data of the manual wheelchair was highly
correlated with the burden of padding, that is, the road surface barrier.
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The difference when comparing the heartbeat and the vibration value by the method as shown in
Figure 4 is hereinafter referred to as an error value. As the result of plotting the error value on the map,
it was found that a difference of 0.33 or more (heart rate > vibration value) occurred at the intersection,
the point where the inclination at right angles to the traveling direction was large, and the place where
the road width narrowed. As confirmed by video, these were all cases when the user operated the
manual wheelchair with one hand. The vibration pattern of one hand operation is different from the
case of two handed operation. By using the pattern classification approach of the vibration waveform
instead of the P-P value of the vibration value, it could be detected that the state of the road surface
was different from the usual state.

4. Road Accessibility Estimation

In this section, we describe the method and results for evaluating the road surface condition by the
DCNN through supervised learning. The data acquisition method, the labeled data set creation method,
the DCNN structure, and the classification accuracy of the road surface condition are explained step
by step.

4.1. Road Sensing and Labeling for Supervised Learning

A total of nine wheelchair users, including six manual wheelchair users and three electric
wheelchair users, participated in the experiment. Their actions when traveling about 1.4 km of
specified route around Yotsuya station in Tokyo were measured by the acceleration sensor (iPod touch)
installed in the lower part of the wheelchair seat, and positioning data of the Quasi-Zenith Satellite
System (QZSS) was added. Acceleration values in the x, y, and z axes of the acceleration sensor were
sampled at 50 Hz, and a total of 1,425,798 samples (about 8 h) were obtained. In order to confirm the
situation where the acceleration sample was acquired, the video image of the participant’s wheelchair
running and of the running road surface were taken at the same time during the experiment. As a
trend of the entire traveling route, there are many flat sidewalks, which are not necessarily smooth.
If the user did not have a problem in raising and lowering wheelchair ramp slopes, it was thought that
excessive burden on the body and risk of accident had less chance of occurring on the route.

The data set which consists of the acceleration values and four types of labels—slope/curb/tactile
block/other—was created by checking the state of the road surface and participants from all of the
captured video images during experiments. Each of these four labels represents an important road
surface feature: in order, a continuous gradient, an abrupt step, a continuous unevenness. In order to
obtain sufficient classification learning accuracy, at least the data ratio of any label needed to be 1% or
more of the total number of data. These labeled data were the number of points and the ratio of data
sufficient for classification learning. The three-axis acceleration data was sliced into 7016 pieces by
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a sliding window method with a window width of 400 samples (about 8 s) and an overlapping rate
of 0.5 and labeled. This window width and overlap rate were determined by searching for suitable
values by research using the same data [38].

4.2. Machine Learning and Estimation Results

The structure of the DCNN used in this paper is shown in Figure 5. This network was composed
of six layers of input layer, three convolution layers, a fully connected layer, and an output layer.
By using the hierarchical structured network to learn functions from input to output, it was possible
to proceed simultaneous learning of the feature extractor h and the classifier f that are effective for
data classification. In the convolution processing part, following the representative research [11],
two processes of convolution and max pooling were used. Here, w in the figure was a weight to be
convoluted with respect to the input data, which was a parameter learned to successfully map the
input to the output. Feature Map (N) in the figure means that different kinds of different weights were
learned to obtain N types of different outputs, respectively. As another setting, Adam was used for
learning of the neural network, and the learning rate was set to 0.0001. Rectified linear units were used
for the activation function, except for the softmax function, which was used in the output layer.
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Figure 5. The structure of the deep convolutional neural network (DCNN) used in this paper.

Table 1 compares the existing method with the DCNN in Figure 4 for the accuracy of the road
surface classification task based on the four kinds of labels. Here, each table’s value is the average value
of nine trials obtained by the leave-one-subject-out method [39]. The leave-one-subject-out method
is an evaluation method that can verify the recognition accuracy for unknown users by evaluating
with user data not included in the learning data. In this paper, we repeatedly evaluated the model
trained with the data set of wheelchair users for eight people with the data set of the remaining one
person. Mean F-score and accuracy of each class were used as the evaluation index. This classification
problem is class imbalance. A high average F value means that it is well recognizable for barriers with
few spots appearing in the data set. Details of the method used for comparison are as follows.

• Raw: The data set for nine people was classified by the K-nearest neighbor method (KNN). Input
was a one-dimensional vector obtained by simply combining three-axis acceleration values for
400 windows. 1, 5, 10, 15, 20, 25, and 30 were used for the value of K, but Table 1 shows the result
of K = 1, which was the most accurate.

• MV: As the same as Raw, KNN was used and Table 1 is the result of K = 1. The difference was
that the average value and standard deviation of each axis of x, y, z of the three-axis acceleration
for 400 windows was applied as six meta value inputs.

• SVM: The data set was classified by a support vector machine (SVM). The same input as MV was
used. A radial bias function was used as a kernel. A grid search was performed for γ (10−12–102)
and C (10−7–107), and the value with the highest accuracy in the verification data was taken as
the hyper parameter.

• Heuri: The same classifier as the SVM was used. In addition to the six inputs used in SVM,
the maximum, minimum, zero crossing, average crossing, average of difference, standard
deviation of difference, maximum of difference, minimum of difference, FFT frequency
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component, the intensity of the 0 spectrum of the FFT frequency component, energy, and entropy
was also used for input. In addition, correlation for each axis pair of x, y, z and maximum value
of cross-correlation (correlation coefficient in time shift with the highest correlation coefficient
taking into consideration the time shift) were also calculated and used.

• ECDF: We used the support vector machine as a classifier, and the empirical cumulative
distribution function (ECDF) as an input. The ECDF has advantages compared to other feature
extraction methods, such as FFT, PCA, statistical quantity, etc., in multiple tasks [40]. For the
number of interpolation points, which was a hyper parameter, it has been reported that the
sensitivity is low, so it was fixed to 10 in the experiment.

Table 1. Performance comparison between conventional methods and the DCNN in supervised
learning. MV: statistical meta value of raw data; SVM: support vector machine; ECDF: empirical
cumulative distribution function.

Method Raw MV SVM Heuri ECDF DCNN

Mean F-score 0.22 0.58 0.56 0.63 0.65 0.71

Accuracy 0.36 0.79 0.74 0.83 0.83 0.88

As Table 1 shows, the method using the DCNN had higher accuracy than the conventional
method. As the result of the classification accuracy of the DCNN was high in the road condition
classification task using wheelchair traveling data, our proposed method is reasonable and practical.

5. Analysis of the Learned DCNN

5.1. Analysis Overview

In this section, it is investigated what type of road surface features the DCNN has learned.
The DCNN seems to capture more detailed characteristics of the road surface as the output pattern of
all the fully connected layers of 400 units was divided into a plurality of clusters. The analysis method
is explained in order of Step 1 to Step 5 below.

Step 1: Acquire the DCNN output pattern
As shown in the previous section, 400 units of output pattern of the fully connected layer was

acquired by creating a DCNN model trained with eight data sets and inputting the remaining one data
set as test data. “Feature amount” is hereinafter used as the term referring to the output pattern of
these 400 units.

Step 2: Clustering of feature amounts
Clustering of feature amounts for each data set of nine participants was done. K-means was used

as a clustering method.

Step 3: Visualize on the map
The clustering results were analyzed by determining the color of data for each cluster and

visualizing the traveling points where individual data were obtained on the map.

Step 4: Determining the optimal number of clusters
It was confirmed that all participants had a case where feature amounts for uplink slope and

down slope data were classified into different clusters. In such a case, it was considered that there
was a high possibility that the features of the detailed road surface were accurately captured even in
other clusters. In this paper, the number of clusters at that time was taken as the optimum number of
clusters. Table 2 shows the optimum number of clusters for all participants (E1–3: electric wheelchair
user, M1–6: manual wheelchair user).

Step 5: Investigation of correspondence between feature amounts and road condition
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Moving pictures taken during wheelchair running were analyzed and the relation between the
feature amounts of clusters and the corresponding road surface condition was examined.

Table 2. The optimum number of clusters for all participants (E1–3: electric wheelchair user, M1–6:
manual wheelchair user).

Participants E1 E2 E3 M1 M2 M3 M4 M5 M6

Optimum number of clusters 14 13 9 8 11 11 9 11 10

5.2. Results

Figure 6 shows the feature amount clustering result example when E1, having the highest
classification accuracy of the DCNN, was used as test data. When visualizing on the map, the
position information corrected based on the moving image was used. As shown in Figure 6, each user
was traveling three times on the route, and on the second lap, the route was traveled in the opposite
direction between the first and third laps.
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(a) Slope
Position (2) in Figure 6 is the place where the slope label was given. All up and down slopes were

divided into different clusters with all participants. It is thought that the DCNN caught the difference
in acceleration in the case of the up and down direction driving; the difference in the number of times
of rowing and padding duration in the case of manual wheelchairs. Because the distance is short,
and the slope is gentle, position (3) in Figure 6 is the point where the slope labels were not given
beforehand. Seven of nine people were included in the same cluster as the uphill slope when this
point was traveling in a direction going up the slope. In the case of E1 with the highest classification
accuracy, it was classified into independent clusters. This suggests that the DCNN gains a more
detailed characterization of the road surface than the labels.

(b) Curb
Depending on participants and places, curbstones showed a difference in classification accuracy.

In case of E1, the curb at position (1) in Figure 6 was classified into three clusters. With this data, it is
considered that the reason why the curbs were clustered in detail is that each has a characteristic of
vibration when passing through the curb stone, and the DCNN can classify the minute difference of
the vibration.

(c) Tactile block



Information 2019, 10, 114 10 of 14

Points across the tactile block were classified into various clusters. The data labeled with haptic
blocks was rich in diversity. Because the tactile block is installed just before the pedestrian crossing,
there is a curb or slope in the vicinity, so the data is likely to be affected by them. Also, the contact
condition with the block, such as the direction of the wheel or the one wheel/two wheels, and the
difference in the contact time can also affect the data. However, the point including the lateral cutting
of the tactile block and the point before and after the haptic block were classified into different clusters.
It was found that the characteristics of the data including and excluding the haptic block were correctly
captured by the DCNN.

6. Future Tasks

In the previous section, we confirmed that the learned DCNN had acquired the characteristics of
the road surface more than the labeled. In this section, we discuss the similarity of the road surface
conditions of these points while confirming by images, using the method of searching points where
the Euclidean distances of the reaction pattern of the DCNN were close.

The point used as a similar data search input is hereinafter called “Query” in this paper. For the
arbitrary points, the top five places where the Euclidean distances of the reaction pattern of the DCNN
were close were extracted as similar sites with Query. Using the raw data of acceleration as the
comparison target, the extraction of the top five places where the Euclidean distances were similar was
performed in the same way.

Figure 7 shows a similar road surface search result with three queries; uphill slope, curbstone,
and a place crossing a tactile block. For the color of the frame of the image, black was used when
having the same road feature, as Query was readable from the image, and red was used if it cannot be
read that it had the same road feature. In an uphill search example, in the case of the raw data of the
acceleration, only the fourth rank among the top five corresponds to uphill slope, and in the case of
using the feature quantity of the DCNN, all the top five corresponded to uphill slope. In a curbstone
retrieval example, when using the raw data of acceleration, curbstone corresponds to the first and
third rank, and in the case of using the feature quantity of the DCNN, all the top five corresponded to
curbstones. In a crossing tactile block example, in the case of the raw data of the acceleration, it was
judged to be similar to the data of the point where the wheelchair was stopped. In the case of using
the feature quantity of the DCNN, only the first place among the top five cases corresponded to the
place where the tactile block was crossed. The misjudged second to fourth were roads with continuous
unevenness composed of small tiles. It can also be said that these were the results that the similarity
with the feature of Query, when traveling on the tactile block, was correctly captured.

By analyzing the similar road surface search in addition to the clustering analysis of the feature
amount, it was shown that the DCNN acquired more detailed road surface conditions than the four
types of labels given in advance for classification learning. Through these analysis results, this paper
confirms the possibility that the reaction pattern of the fully connected layer of the learned DCNN
is effective as a means of quantifying the road surface condition as the feature quantity from the
acceleration sensor data during the wheelchair running.

On the other hand, it was found that the classification accuracy of the road surface condition varied
in the feature quantity obtained for each wheelchair user. In general, inter-class diversity due to users’
differences is recognized as one of the main problems for developing human behavior recognition
models [41]; how to deal with that problem is an important research topic. The simplest solution to this
problem is to develop a large-scale human behavior database. Kawaguchi et al. proposed the concept
of collecting a human behavior corpus for understanding real world activities [42]. A large-scale
behavior corpus is important not only for developing individual estimation models but also for
understanding personal characteristics, and it is technically possible to develop impersonal models
applicable to all users. Also, in this research, by collecting and analyzing more data sets including
the new environment, it was possible to reduce variations in feature quantities obtained for each user
and variations in classification accuracy of road surface conditions. We will collect and analyze more
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data sets including new environments and qualitatively evaluate the acquired features and propose a
method to acquire more accurate feature representation that can reduce the influence of each user.
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7. Conclusions

For providing road accessibility information which is helpful for all walkers, especially for
wheelchair users, this paper proposed the system and the method of extracting detailed information
on the road surface by machine learning from acceleration sensor data installed in a wheelchair. From
preliminary analysis of the relationship between the barrier of the sidewalk and the vibration value
and of the relationship between the physical burden of the wheelchair user and the vibration value,
the characteristics of the wheelchair sensing data were identified and shown. This paper acquired
traveling data of nine wheelchair users, labeled them, classified them by the DCNN, and confirmed
their accuracy. Focusing on the reaction pattern of the learned DCNN for data, cluster analysis and
similar road surface search were performed. As the result, it was confirmed that the DCNN learned
more detailed road surface conditions than the four types of labels preliminarily attached for learning
by the DCNN as the feature quantity. The reaction pattern of the fully connected layer of the learned
DCNN was shown to be effective as a means of quantifying the road surface condition as the feature
quantity from the acceleration sensor data during the wheelchair running.

The first contribution of this paper was to demonstrate the fundamental method of the road
accessibility information extraction from wheelchair running data using machine learning with real
data of wheelchair users. To develop impersonal models applicable to all users, we will examine new
methods to acquire more accurate feature representation that can reduce the influence of each user
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by collecting and analyzing more data sets including the new environment. The second contribution
of this paper was to confirm the possibility of reducing the labeling cost of supervised learning by
showing that the learned feature quantity acquired the road features in more detail than the teacher
data. The road surface features extracted from the learned network were able to be utilized as the
model for pattern matching. The method of weak supervised leaning by using a simple teacher label
that can be automatically assigned without human power will be applied in the next step.
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