
  information

Article

SDN-Based Intrusion Detection System for Early
Detection and Mitigation of DDoS Attacks

Pedro Manso 1, José Moura 2,* and Carlos Serrão 3

1 Department of Information Science and Technology, School of Technology and Architecture,
ISCTE—Instituto Universitário de Lisboa, 1649-026 Lisbon, Portugal; pedro_caetano_manso@iscte-iul.pt

2 Instituto de Telecomunicações (IT), ISCTE—Instituto Universitário de Lisboa, 1649-026 Lisbon, Portugal
3 Information Sciences, Technologies and Architecture Research Center (ISTAR-IUL), ISCTE—Instituto

Universitário de Lisboa, 1649-026 Lisbon, Portugal; carlos.serrao@iscte-iul.pt
* Correspondence: jose.moura@iscte-iul.pt

Received: 18 January 2019; Accepted: 4 March 2019; Published: 8 March 2019
����������
�������

Abstract: The current paper addresses relevant network security vulnerabilities introduced by
network devices within the emerging paradigm of Internet of Things (IoT) as well as the urgent need
to mitigate the negative effects of some types of Distributed Denial of Service (DDoS) attacks that try to
explore those security weaknesses. We design and implement a Software-Defined Intrusion Detection
System (IDS) that reactively impairs the attacks at its origin, ensuring the “normal operation” of
the network infrastructure. Our proposal includes an IDS that automatically detects several DDoS
attacks, and then as an attack is detected, it notifies a Software Defined Networking (SDN) controller.
The current proposal also downloads some convenient traffic forwarding decisions from the SDN
controller to network devices. The evaluation results suggest that our proposal timely detects several
types of cyber-attacks based on DDoS, mitigates their negative impacts on the network performance,
and ensures the correct data delivery of normal traffic. Our work sheds light on the programming
relevance over an abstracted view of the network infrastructure to timely detect a Botnet exploitation,
mitigate malicious traffic at its source, and protect benign traffic.

Keywords: SDN; DDoS; IDS; mirroring; OpenFlow; botnet

1. Introduction

According to [1], in the beginning of 2018, more than 50% of the world population used the
Internet (85% in Europe and 95% in North America). The number of devices connected to the Internet
has skyrocketed during the last decade [2]. Cisco [3] forecasts that in 2021 there will be around
27.1 billion network devices worldwide. This exponential growth represents not only the progress
of technology, however also the opportunity for attackers to take advantage of this extraordinary
infrastructure to compromise many network resources and information assets.

In 2016, the world witnessed one of the world’s largest Distributed Denial of Service (DDoS)
attacks ever seen [4]. This attack was possible due to security weaknesses that allowed the
non-authorized remote access to Internet of Things (IoT) devices. In this way, non-identified attackers
have installed a Botnet (i.e., Mirai) at a very high number of IoT devices. These devices were located at
network domains geographically separated from each other. Then, at a specific instant of time, through
the botnet, the compromised IoT devices simultaneously generated a high amount of traffic towards
specific Internet Servers, exhausting their resources. Consequently, the services normally provided by
those servers were down for several hours due to the huge difficulty to neutralize every attack source.

Information 2019, 10, 106; doi:10.3390/info10030106 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0002-3516-8781
https://orcid.org/0000-0002-4847-2432
http://www.mdpi.com/2078-2489/10/3/106?type=check_update&version=1
http://dx.doi.org/10.3390/info10030106
http://www.mdpi.com/journal/information


Information 2019, 10, 106 2 of 17

Software Defined Networking (SDN) is a promising paradigm that allows the programming of
the logic behind the network’s operation with some abstraction level from the underlying networking
devices. Large companies, such as Google, already deploy SDN with great success [5].

Our work proposes a feasible SDN-based generic solution to mitigate modern Mirai-like DDoS
attacks when and where they originate. In this way, we obtain a more accurate and flexible detection
method without adding too much overload on the network. The current proposal aims to detect and
mitigate the DDoS attack at its origin while maintaining the Quality of Service (QoS) of benign users
even when an online service is under attack. Moreover, the solution is open and scalable enough to
accommodate the detection and mitigation of other types of DDoS attacks at their origin. In a nutshell,
our proposed solution has the following characteristics: (i) it compares at runtime the expected trend
of normal traffic against the trend of monitored traffic; (ii) if a significant deviation on the traffic trend
is detected, then an event is created; (iii) as an event associated to a DDoS attack is produced, then a
SDN controller creates flow rules for blocking the malign traffic; and (iv) we assume that the detection
and mitigation of a DDoS attack is made at each potential source of that DDoS attack.

This article is organized into five different sections. The initial section introduces the motivation
and the goals of our current research. The second section discusses some related work. The following
section is devoted to the design, specification, and deployment of our proposal. The fourth section
describes the proposal evaluation tests and discusses their results. Finally, the last section discusses
the major conclusions and some guidelines for future research.

2. Related Work

Cyber-attacks, especially those based on DDoS, are more and more prevalent, and their impact
is greater than ever on the network infrastructure, online services, and digital information assets.
In parallel, SDN is starting to emerge and is gaining increasing attention from the diverse networking
players. We envision that it is very important to propose SDN-based solutions for urgently thwarting
DDoS attacks, among others.

There is already a plethora of solutions capable of detecting and fighting against DDoS attacks.
To analyze such solutions, we have classified them into two different categories: signature-based and
anomaly-based solutions. Signature-based solutions identify each DDoS attack through its signature.
The signatures of DDoS attacks are stored in a database. Avant-Guard [6] is one of the most referenced
works in this category. It uses two types of modules: Connection Migration (CM) and Actuation
Trigger (AT) module. The CM works as a specialized proxy that receives and classifies TCP-SYN
requests. Additionally, the AT module generates an event to a system’s controller after the CM
has classified some traffic as non-legit. Nevertheless, this work just deals with SYN flood attacks.
Other literature solution proposes DDoS detection by controlling the bandwidth in each router’s
interface [7]. After this solution detects some congestion, it notifies the controller and changes the
available bandwidth. However, it does not distinguish benign from malign traffic. Other works suggest
the integration of an Intrusion Detection System (IDS) with SDN [8]. Further similar signature-based
techniques are detailed in [9–16]. Nonetheless, these have serious limitations because they cannot
detect novel attacks or known attack variants. The next paragraph debates a more flexible alternative.

The solutions classified as anomaly-based learn about the “normal” behavior of the network.
In this way, everything that drives away from the “normal” behavior is classified and reported as a
strange event. For instance, the authors of [17] use a neural network for analyzing the network flows.
In this way, they can classify each flow as either a normal one or associated to an ongoing DDoS attack.
Other similar proposals are [18–20]. However, all these proposals oblige to considerable supervised
training before efficiently detecting attacks. A survey of more network anomaly detection techniques
is available in [21].

According to our best current knowledge, no previous literature contributions mitigate
DDoS-based cyber-attacks directly at their origin, except for some approaches based on clustering [22].
A clustering method is a non-supervised data mining technique. Nevertheless, the clustering method



Information 2019, 10, 106 3 of 17

shows some drawbacks, such as the efficient management of clusters. This can be a very complex task,
demanding enormous processing effort, which creates serious system bottlenecks as well as inaccurate
decisions [22]. To overcome these potential issues of clustering methods, we alternatively propose an
anomaly-based and event-triggered scalable solution to detect these types of cyber-attacks at their
source network domains, completely aligned with [23], minimizing the attacks’ amplification. Our
SDN-based solution mitigates the attack via a blacklist of IP addresses associated with the detected
malign flows. Then, these flows are blocked at their source domains using OpenFlow rules. In addition,
our anomaly-based detection model uses a threshold value to trigger a remediation process for the
detected DDoS-based cyber-attack. The next section discusses the design and implementation of our
proposed DDoS mitigation system.

3. Design and Deployment of Our Flow-Based Proposal Thwarting DDoS Attacks

This section discusses the design and implementation of our flow-based proposal that intends
to detect and mitigate DDoS attacks at their source domains. In addition, our solution protects some
relevant Quality of Service (QoS) metrics for the flows that are associated with normal Web Services.

3.1. System Design

The proposed system uses a DDoS attack detection and mitigation mechanism that integrates an
Intrusion Detection System (IDS) within the SDN architecture at the client side for either domestic or
organizational networking scenarios.

The system operates via a loop control among three basic architectural components (Figure 1):
the network, the IDS, and the controller. The network represents all the data traffic and where a
potentially DDoS attack might be launched. The IDS represents our DDoS attack detection mechanism,
which analyzes all the traffic exchanged across the network. As the IDS detects an ongoing DDoS
attack, the IDS notifies the Controller. After the Controller is notified by the IDS, the Controller
transfers to the networking devices of the data path of some new flow rules for restoring the normal
operation of the network as quickly as possible.

The system has three critical phases: detection, communication, and mitigation. The detection
phase is about the system’s capability of detecting a DDoS attack. The communication phase occurs
when the IDS alerts the controller about the detected DDoS attack. The mitigation phase is when the
controller transfers some flow rules to the local switch, blocking the evil traffic. These flow rules are
stored in a permanent way within that switch.

Information 2019, 10, x 3 of 17 

 

task, demanding enormous processing effort, which creates serious system bottlenecks as well as 
inaccurate decisions [22]. To overcome these potential issues of clustering methods, we alternatively 
propose an anomaly-based and event-triggered scalable solution to detect these types of cyber-
attacks at their source network domains, completely aligned with [23], minimizing the attacks’ 
amplification. Our SDN-based solution mitigates the attack via a blacklist of IP addresses associated 
with the detected malign flows. Then, these flows are blocked at their source domains using 
OpenFlow rules. In addition, our anomaly-based detection model uses a threshold value to trigger a 
remediation process for the detected DDoS-based cyber-attack. The next section discusses the design 
and implementation of our proposed DDoS mitigation system. 

3. Design and Deployment of Our Flow-Based Proposal Thwarting DDoS Attacks 

This section discusses the design and implementation of our flow-based proposal that intends 
to detect and mitigate DDoS attacks at their source domains. In addition, our solution protects some 
relevant Quality of Service (QoS) metrics for the flows that are associated with normal Web Services. 

3.1. System Design 

The proposed system uses a DDoS attack detection and mitigation mechanism that integrates an 
Intrusion Detection System (IDS) within the SDN architecture at the client side for either domestic or 
organizational networking scenarios.  

The system operates via a loop control among three basic architectural components (Figure 1): 
the network, the IDS, and the controller. The network represents all the data traffic and where a 
potentially DDoS attack might be launched. The IDS represents our DDoS attack detection 
mechanism, which analyzes all the traffic exchanged across the network. As the IDS detects an 
ongoing DDoS attack, the IDS notifies the Controller. After the Controller is notified by the IDS, the 
Controller transfers to the networking devices of the data path of some new flow rules for restoring 
the normal operation of the network as quickly as possible.  

The system has three critical phases: detection, communication, and mitigation. The detection 
phase is about the system’s capability of detecting a DDoS attack. The communication phase occurs 
when the IDS alerts the controller about the detected DDoS attack. The mitigation phase is when the 
controller transfers some flow rules to the local switch, blocking the evil traffic. These flow rules are 
stored in a permanent way within that switch.  

 
Figure 1. The System’s Basic Architecture. 

Figure 2 shows the conceptual model of the current work. Our proposal combines the 
functionality offered by both an SDN controller and an Intrusion Detection System (IDS). By 
aggregating these two entities, we have obtained an SDN-Based IDS Monitor. Each new Packet that 
arrives to the system (i.e., it was received in the switch’s port) is classified as belonging to a Flow and 
makes a Request to the system. In this way, the switch processes the received Packet according to a 
Rule associated to the Flow that Packet belongs to, making a Decision. In the case, the switch does 
not initially have any Rule for that Flow, then, the switch requests it to the SDN controller. The SDN 

Figure 1. The System’s Basic Architecture.

Figure 2 shows the conceptual model of the current work. Our proposal combines the functionality
offered by both an SDN controller and an Intrusion Detection System (IDS). By aggregating these two
entities, we have obtained an SDN-Based IDS Monitor. Each new Packet that arrives to the system
(i.e., it was received in the switch’s port) is classified as belonging to a Flow and makes a Request to



Information 2019, 10, 106 4 of 17

the system. In this way, the switch processes the received Packet according to a Rule associated to the
Flow that Packet belongs to, making a Decision. In the case, the switch does not initially have any
Rule for that Flow, then, the switch requests it to the SDN controller. The SDN controller installs the
correct flow Rule in the switch which permits the Packet to proceed to its destination only if the packet
belongs to a “well behaved” flow. Otherwise, a dropping Rule is installed in the switch. In this last
case, the packets of the “bad” flow are discarded. The flow classification as “good” or “bad” is made
by the IDS using a set of pre-configured rules. Each Request that is involved in a Flow results in a
Decision from the developed system.

Information 2019, 10, x 4 of 17 

 

controller installs the correct flow Rule in the switch which permits the Packet to proceed to its 
destination only if the packet belongs to a “well behaved” flow. Otherwise, a dropping Rule is 
installed in the switch. In this last case, the packets of the “bad” flow are discarded. The flow 
classification as “good” or “bad” is made by the IDS using a set of pre-configured rules. Each Request 
that is involved in a Flow results in a Decision from the developed system. 

  
Figure 2. The System’s Conceptual Model (adapted from [24]). 

3.2. System Deployment 

We have implemented the virtualized system that is visualized in Figure 3 as a proof-of-concept 
of the system’s model that was already presented in Figure 2. Our system uses three different Virtual 
Machines (VM): VM A, B, and C. VM A contains two modules: the SDN Ryu controller and the Snort 
Intrusion Detection System (IDS). The SDN Ryu controller programs the network operation when 
specific flow-based events occur (e.g., after the controller has received an OpenFlow Packet_in 
message). The SDN controller changes the network data plane via link (A), sending OpenFlow 
forwarding rules. The Snort IDS is our rule-based system is used to “fire an alarm” in the presence of 
an occurring DDoS attack. Hence, after the IDS detects a DDoS attack, it sends an alert packet via the 
Unix Domain Socket to the SDN controller, which is visualized in Figure 3 as link (D). Therefore, VM 
A has two network interfaces. The first interface (adapter 1) was configured as Host-Only (i.e., 
virtualized networking mode provided by the Hypervisor—VirtualBox) and it supports link (A) 
communication. The second interface (adapter 2) was configured as the internal network (intnet mode 
of the Hypervisor) and it supports link (B) communication. 

VM B emulates the network domain (e.g., home network) where a potential cyber-attack can be 
initiated. It runs a network emulator (i.e., Mininet) which deploys a network domain with some hosts, 
the software-based switch, and the NAT routing device. The software-based switch runs the 
OpenFlow protocol client part and belongs to the data plane of our testbed. This switch performs 
port mirroring and sends the entire traffic to the Snort IDS via link (B). The NAT device is used as a 
gateway for the hosts having access to the online server through link (C).  

VM C represents an online server that can be potentially attacked by a DDoS threat. This VM 
has a single network adapter. This adapter was configured as Host-Only and it supports link (C) 
communication. In a nutshell, our testbed connections are as follows:  

• Bi-directional link (A) between the OpenFlow switch and the SDN controller which exchanges 
control traffic between the data and control planes—the Southbound Application Programming 
Interface (API); 

• Unidirectional link (B) between OpenFlow switch and Snort IDS which enables the switch to 
send all the mirrored traffic to the IDS for further analysis; 

• Bi-directional link (C) which connects the local network domain (i.e., VMs A, B) to the remote 
service; 

Figure 2. The System’s Conceptual Model (adapted from [24]).

3.2. System Deployment

We have implemented the virtualized system that is visualized in Figure 3 as a proof-of-concept
of the system’s model that was already presented in Figure 2. Our system uses three different Virtual
Machines (VM): VM A, B, and C. VM A contains two modules: the SDN Ryu controller and the Snort
Intrusion Detection System (IDS). The SDN Ryu controller programs the network operation when
specific flow-based events occur (e.g., after the controller has received an OpenFlow Packet_in message).
The SDN controller changes the network data plane via link (A), sending OpenFlow forwarding rules.
The Snort IDS is our rule-based system is used to “fire an alarm” in the presence of an occurring DDoS
attack. Hence, after the IDS detects a DDoS attack, it sends an alert packet via the Unix Domain Socket
to the SDN controller, which is visualized in Figure 3 as link (D). Therefore, VM A has two network
interfaces. The first interface (adapter 1) was configured as Host-Only (i.e., virtualized networking
mode provided by the Hypervisor—VirtualBox) and it supports link (A) communication. The second
interface (adapter 2) was configured as the internal network (intnet mode of the Hypervisor) and it
supports link (B) communication.

VM B emulates the network domain (e.g., home network) where a potential cyber-attack can be
initiated. It runs a network emulator (i.e., Mininet) which deploys a network domain with some hosts,
the software-based switch, and the NAT routing device. The software-based switch runs the OpenFlow
protocol client part and belongs to the data plane of our testbed. This switch performs port mirroring
and sends the entire traffic to the Snort IDS via link (B). The NAT device is used as a gateway for the
hosts having access to the online server through link (C).

VM C represents an online server that can be potentially attacked by a DDoS threat. This VM
has a single network adapter. This adapter was configured as Host-Only and it supports link (C)
communication. In a nutshell, our testbed connections are as follows:

• Bi-directional link (A) between the OpenFlow switch and the SDN controller which exchanges
control traffic between the data and control planes—the Southbound Application Programming
Interface (API);



Information 2019, 10, 106 5 of 17

• Unidirectional link (B) between OpenFlow switch and Snort IDS which enables the switch to send
all the mirrored traffic to the IDS for further analysis;

• Bi-directional link (C) which connects the local network domain (i.e., VMs A, B) to the
remote service;

• Unidirectional link (D) which enables Snort IDS to notify the SDN controller (i.e., Ryu) about an
ongoing DDoS attack through alert packets via the Unix Domain Socket.

Information 2019, 10, x 5 of 17 

 

• Unidirectional link (D) which enables Snort IDS to notify the SDN controller (i.e., Ryu) about an 
ongoing DDoS attack through alert packets via the Unix Domain Socket.  

 
Figure 3. System Deployment. 

Figure 4 represents the workflow of our system for each packet that arrives to the OpenFlow 
switch. The reader should now consider a usage scenario where a host tries to send a packet to the 
online resource. The OpenFlow switch receives that packet and tries to match it against the flow rules 
of its table. If no match occurs, then the switch requests to the controller a new rule for the new flow. 
Then, the controller responds by sending the new forwarding rule for that flow. Alternatively, if a 
match occurs within the switch, this means the switch already has a flow rule for that received packet. 
In this case, the switch forwards that packet according to the existing flow rule. In this way, the packet 
traverses the NAT gateway and proceeds towards the online service. In either case, the switch will 
mirror every received packet to Snort IDS. Then, the IDS analyzes the packet, processing it by means 
of a statistical function. This is designated as anomaly detection. In this specific case, the statistical 
function evaluates the mirrored packet as part of a malign flow. Then, the IDS notifies the SDN 
controller about this. By its turn, the SDN controller sends a blocking flow rule to the switch. The 
switch can mitigate the attack by eliminating all packets, matching the new installed blocking rule. 

Figure 5 gives further details about how our solution operates in the presence of a DDoS attack 
driven by User Datagram Protocol (UDP) flooding and originated in a compromised internal host. 
We assume that the SDN controller has already installed a rule in the switch that normally forwards 
packets that originated from that host. We now explain the diverse processing steps a packet follows 
within our proposal. First, the ICMP Echo Request arrives to the switch. Then, the switch forwards 
the ICMP Echo Request to NAT. The switch mirrors with some latency (this depends on the 
internal switch fabric) the ICMP Echo Request to the Snort IDS. While NAT forwards the ICMP 
Echo Request to the Server and waits for the ICMP Echo Reply, the Snort IDS in parallel analyzes 
the ICMP Echo Request by means of a statistical function. If Snort considers that the processed 

V irtual

M achine B

V irtual

M achine A

V irtual

M achine C

N otes:

H 1, H 2, H 3 =  H ost

O pen Flow  vSw itch =  Sw itch

O nline Service =  Server

M ininet

SD N -based M onitor

O nline Service

H 1 H 2 H 3

O pen Flow

vSw itch

N AT

Ryu C ontroller

Snort ID S

Forw arding

Rules

ID S

Rules

(A )

(B)

(C )

(D )

Figure 3. System Deployment.

Figure 4 represents the workflow of our system for each packet that arrives to the OpenFlow
switch. The reader should now consider a usage scenario where a host tries to send a packet to the
online resource. The OpenFlow switch receives that packet and tries to match it against the flow
rules of its table. If no match occurs, then the switch requests to the controller a new rule for the new
flow. Then, the controller responds by sending the new forwarding rule for that flow. Alternatively,
if a match occurs within the switch, this means the switch already has a flow rule for that received
packet. In this case, the switch forwards that packet according to the existing flow rule. In this way,
the packet traverses the NAT gateway and proceeds towards the online service. In either case, the
switch will mirror every received packet to Snort IDS. Then, the IDS analyzes the packet, processing it
by means of a statistical function. This is designated as anomaly detection. In this specific case, the
statistical function evaluates the mirrored packet as part of a malign flow. Then, the IDS notifies the
SDN controller about this. By its turn, the SDN controller sends a blocking flow rule to the switch.
The switch can mitigate the attack by eliminating all packets, matching the new installed blocking rule.

Figure 5 gives further details about how our solution operates in the presence of a DDoS attack
driven by User Datagram Protocol (UDP) flooding and originated in a compromised internal host.
We assume that the SDN controller has already installed a rule in the switch that normally forwards
packets that originated from that host. We now explain the diverse processing steps a packet follows



Information 2019, 10, 106 6 of 17

within our proposal. First, the ICMP Echo Request arrives to the switch. Then, the switch forwards the
ICMP Echo Request to NAT. The switch mirrors with some latency (this depends on the internal switch
fabric) the ICMP Echo Request to the Snort IDS. While NAT forwards the ICMP Echo Request to the
Server and waits for the ICMP Echo Reply, the Snort IDS in parallel analyzes the ICMP Echo Request

by means of a statistical function. If Snort considers that the processed packet has a statistically
incorrect behavior, then the source node of that packet is classified as a malign host. Then, the IDS
notifies the SDN controller about that via the Unix Domain Socket. After this, the controller mitigates
the attack by sending a rule to the switch that blocks future packets that originated from the discovered
malign host. Hence, after receiving the previous dropping packet rule, the switch can protect the
network resources against the malign packets as well as protecting the remote server from that attack.
Nevertheless, the switch suffers from a slight processing overhead due to the mirroring function.
However, it is worth noting that this overhead is not so relevant in our domestic scenario.

Information 2019, 10, x 6 of 17 

 

packet has a statistically incorrect behavior, then the source node of that packet is classified as a 
malign host. Then, the IDS notifies the SDN controller about that via the Unix Domain Socket. After 
this, the controller mitigates the attack by sending a rule to the switch that blocks future packets that 
originated from the discovered malign host. Hence, after receiving the previous dropping packet 
rule, the switch can protect the network resources against the malign packets as well as protecting 
the remote server from that attack. Nevertheless, the switch suffers from a slight processing overhead 
due to the mirroring function. However, it is worth noting that this overhead is not so relevant in our 
domestic scenario. 

 
Figure 4. System Workflow for Each Received Packet. 

 
Figure 5. Sequential Diagram of System Messages. 

To deploy our SDN-based IDS (see Figure 5), we have aggregated the offered functionalities of 
an SDN controller and an IDS. The SDN controller is based on the open-source Python solution 
designated as Ryu [25]. We have coded within this controller a Python function designated as 
process_snort_alert. This function processes alerts received from the IDS. If the received alert 
is detected as a “Ryu block”, then that function sends a blocking flow rule to the Switch to otherwise 
ignore it. We have also used a well-known IDS, Snort [26]. It detects attacks based on known rule 

Figure 4. System Workflow for Each Received Packet.

Information 2019, 10, x 6 of 17 

 

packet has a statistically incorrect behavior, then the source node of that packet is classified as a 
malign host. Then, the IDS notifies the SDN controller about that via the Unix Domain Socket. After 
this, the controller mitigates the attack by sending a rule to the switch that blocks future packets that 
originated from the discovered malign host. Hence, after receiving the previous dropping packet 
rule, the switch can protect the network resources against the malign packets as well as protecting 
the remote server from that attack. Nevertheless, the switch suffers from a slight processing overhead 
due to the mirroring function. However, it is worth noting that this overhead is not so relevant in our 
domestic scenario. 

 
Figure 4. System Workflow for Each Received Packet. 

 
Figure 5. Sequential Diagram of System Messages. 

To deploy our SDN-based IDS (see Figure 5), we have aggregated the offered functionalities of 
an SDN controller and an IDS. The SDN controller is based on the open-source Python solution 
designated as Ryu [25]. We have coded within this controller a Python function designated as 
process_snort_alert. This function processes alerts received from the IDS. If the received alert 
is detected as a “Ryu block”, then that function sends a blocking flow rule to the Switch to otherwise 
ignore it. We have also used a well-known IDS, Snort [26]. It detects attacks based on known rule 

Figure 5. Sequential Diagram of System Messages.



Information 2019, 10, 106 7 of 17

To deploy our SDN-based IDS (see Figure 5), we have aggregated the offered functionalities of
an SDN controller and an IDS. The SDN controller is based on the open-source Python solution
designated as Ryu [25]. We have coded within this controller a Python function designated as
process_snort_alert. This function processes alerts received from the IDS. If the received alert
is detected as a “Ryu block”, then that function sends a blocking flow rule to the Switch to otherwise
ignore it. We have also used a well-known IDS, Snort [26]. It detects attacks based on known rule
signatures. We have configured Snort by editing the files snort.conf as well as ddos_detection.rules
to consider our specific DDoS rules. These DDoS rules are used along the distinct testing scenarios of
our proposal and allow the flexibility of our solution to adapt to other DDoS cyber-attacks.

The Mininet [27] was used in our work to emulate the home network. This network was deployed
using the Mininet Python API. For that, we created a Python script file. Inside that file, there are some
instruction lines for deploying a NAT device within our topology. This NAT device works as a gateway
between our emulated home network and the online remote service. The home network IP address is
10.0.0.0/8. The online service IP address is 192.168.56.104.

Our proposal uses Port Mirroring for traffic monitoring. Port Mirroring consists of duplicating
packets that go in/out one switch’s port and forwards these packets to another switch’s port.
To configure port mirroring, we started by removing the IP address from the interface enp0s8 of
the VM B (sudo ifconfig enp0s8 0). Then, we used the ovs-vsctl tool to add to the switch s1
a new port that connects to the interface enp0s8 (sudo ovs-vsctl add-port s1 enp0s8). Next, we
created a mirror, added it to the switch s1, and finally configured it following the instructions from
the OpenvSwitch Frequently Asked Questions (FAQ) web site (http://docs.openvswitch.org/en/
latest/faq/configuration/?highlight=mirror). The next section discusses the evaluation results of our
current proposal.

4. Results

This section describes the evaluation tests of our proposal and discusses the obtained results.
It also contains useful information about the home simulated network. To simulate the DDoS attack,
we used the hping3 tool that sends customized TCP/IP packets. Table 1 shows the hping3 arguments
that were used throughout our testing scenarios.

Table 1. Hping3 Tool Arguments Used in Our Testing Scenarios.

Arguments Description

-i Indicates the interface to use
-flood Sends packets as fast as possible without taking care to show incoming replies
-1 Uses ICMP mode
-a Sets a fake IP address
-d Defines the size of each packet

4.1. Tests’ Description

We now introduce the three scenarios that were used to assess our proposal. Table 2 summarizes
these scenarios. We recall that these three scenarios assume that each DDoS attack should be preferably
mitigated at its original source domains. In this way, we avoid that the remote servers could suffer
the negative performance effects induced by a DDoS attack. During the next discussion, we evaluate
if the main ideas behind our proposal are completely fulfilled. Therefore, it is not our intention to
perform tests with scenarios with thousands of nodes, because in doing that, a testbed would not be a
convenient option. For that, a network simulator would be a more convenient tool. Nevertheless, this
option is out of the scope of the current work. In this way, the tests listed in Table 2 have been made
with the intent of validating the most relevant functional aspects of our proposal.

http://docs.openvswitch.org/en/latest/faq/configuration/?highlight=mirror
http://docs.openvswitch.org/en/latest/faq/configuration/?highlight=mirror


Information 2019, 10, 106 8 of 17

Table 2. Test Scenarios Summary.

Scenario Description Parameters Evaluated Hping3 Arguments

I
A Distributed Denial of Service (DDoS) attack is
simulated with two malign hosts while a benign host
has its normal access to the online service.

DDoS Mitigation Time;
Average RTT (Round
Trip Time); Packet loss.

-flood

II
A DDoS attack with a spoofed IP address is
simulated with one malign host while two benign
hosts have their normal access to the online service.

DDoS Mitigation Time;
Average RTT; Packet loss.

-a;
-flood

III
A DDoS attack with packet’s size manipulation is
simulated with one malign host while two benign
hosts have their normal access to the online service.

DDoS Mitigation Time;
Average RTT; Packet loss.

-d;
-flood

4.2. Results Presentation and Discussion

We now present and discuss the obtained evaluation results. After some packets were exchanged
within the network, using the pingall Mininet command, the switch updated its flow rule table,
as shown in Figure 6. We can verify that new rules were updated within the switch’s Flow Table with
priority=1. Using these flow rules, the switch has the normal behavior of a legacy switch that learns the
MAC address of each host and binds it to the switch’s port that has last received a frame from that host.

Information 2019, 10, x 8 of 17 

 

hosts have their normal access to the online 
service. 

III 

A DDoS attack with packet’s size manipulation is 
simulated with one malign host while two benign 
hosts have their normal access to the online 
service. 

DDoS Mitigation Time; 
Average RTT; Packet 
loss. 

-d; 
--flood 

4.2. Results Presentation and Discussion 

We now present and discuss the obtained evaluation results. After some packets were 
exchanged within the network, using the pingall Mininet command, the switch updated its flow rule 
table, as shown in Figure 6. We can verify that new rules were updated within the switch’s Flow 
Table with priority=1. Using these flow rules, the switch has the normal behavior of a legacy switch 
that learns the MAC address of each host and binds it to the switch’s port that has last received a 
frame from that host.  

 

Figure 6. OpenFlow Switch Flow Rule Table Before a DDoS Attack. 

Figure 7 visualizes the typical traffic trend of our network when all hosts are well behaved.  

 
Figure 7. Usual System Usage before a DDoS Attack. 

Figure 6. OpenFlow Switch Flow Rule Table Before a DDoS Attack.

Figure 7 visualizes the typical traffic trend of our network when all hosts are well behaved.

Information 2019, 10, x 8 of 17 

 

hosts have their normal access to the online 
service. 

III 

A DDoS attack with packet’s size manipulation is 
simulated with one malign host while two benign 
hosts have their normal access to the online 
service. 

DDoS Mitigation Time; 
Average RTT; Packet 
loss. 

-d; 
--flood 

4.2. Results Presentation and Discussion 

We now present and discuss the obtained evaluation results. After some packets were 
exchanged within the network, using the pingall Mininet command, the switch updated its flow rule 
table, as shown in Figure 6. We can verify that new rules were updated within the switch’s Flow 
Table with priority=1. Using these flow rules, the switch has the normal behavior of a legacy switch 
that learns the MAC address of each host and binds it to the switch’s port that has last received a 
frame from that host.  

 

Figure 6. OpenFlow Switch Flow Rule Table Before a DDoS Attack. 

Figure 7 visualizes the typical traffic trend of our network when all hosts are well behaved.  

 
Figure 7. Usual System Usage before a DDoS Attack. Figure 7. Usual System Usage before a DDoS Attack.



Information 2019, 10, 106 9 of 17

Table 3 gives a numerical perspective of the typical values of some Quality of Service (QoS) metrics
when there is no attack. These results were obtained from ping tests that were executed in each host.

Table 3. Typical System Performance without DDoS Attack.

Test Id.

Host 1 Host 2 Host 3

Average RTT
(ms)

Packet Loss
(%)

Average RTT
(ms)

Packet Loss
(%)

Average RTT
(ms)

Packet Loss
(%)

1 0.588 0 0.439 0 0.765 0
2 0.756 0 1.274 0 0.712 0
3 0.493 0 0.463 0 0.593 0
4 0.766 0 0.904 0 1.37 0
5 2.004 0 0.402 0 0.447 0

Average 0.922 0 0.696 0 0.777 0

Figure 8 shows the traffic volume produced by a DDoS Attack when our proposed Defense System
is disabled. From this, we can analyze that after 50 s, the network was submitted to a significant amount
of traffic, originated by that DDoS attack. In fact, that attack originated a maximum peak that slightly
overlapped the value of 42,000 packets/s (2,520,000 packets/m). The current attack is inspired in the
Center for Applied Internet Data Analysis (https://www.caida.org/home/ (verified in 27/02/2019))
(CAIDA) dataset which was commonly used in recent publications [28]. In the next sub-sections, we
present and discuss the several tests we made to detect and mitigate the diverse cyber-attacks.

Information 2019, 10, x 9 of 17 

 

Table 3 gives a numerical perspective of the typical values of some Quality of Service (QoS) 
metrics when there is no attack. These results were obtained from ping tests that were executed in 
each host. 

Table 3. Typical System Performance without DDoS Attack. 

Test Id. 
Host 1 Host 2 Host 3 

Average RTT 
(ms) 

Packet Loss 
(%) 

Average 
RTT (ms) 

Packet Loss 
(%) 

Average 
RTT (ms) 

Packet Loss 
(%) 

1 0.588 0 0.439 0 0.765 0 
2 0.756 0 1.274 0 0.712 0 
3 0.493 0 0.463 0 0.593 0 
4 0.766 0 0.904 0 1.37 0 
5 2.004 0 0.402 0 0.447 0 

Average 0.922 0 0.696 0 0.777 0 

Figure 8 shows the traffic volume produced by a DDoS Attack when our proposed Defense 
System is disabled. From this, we can analyze that after 50 s, the network was submitted to a 
significant amount of traffic, originated by that DDoS attack. In fact, that attack originated a 
maximum peak that slightly overlapped the value of 42,000 packets/s (2,520,000 packets/m). The 
current attack is inspired in the Center for Applied Internet Data Analysis 
(https://www.caida.org/home/ (verified in 27/02/2019)) (CAIDA) dataset which was commonly used 
in recent publications [28]. In the next sub-sections, we present and discuss the several tests we made 
to detect and mitigate the diverse cyber-attacks. 

 
Figure 8. Network Traffic injected by a DDoS Attack when our Defense System is Off. 

4.2.1. Scenario I  

As described previously, this test consists of performing a DDoS attack originating in both 
hosts 1 and 3, while host 2 maintains its “normal” access to the remote server. Therefore, the 
hping3 tool was used in ICMP mode, flooding packets as fast as possible to the server 
(192.168.56.104). The host 2 flow rate while the server is under attack is displayed in Figure 9. 
We can see that the host 2 rate varies along the time. These rate variations result from the online 
server resource starvation and network congestion, which are both induced by the DDoS attack.  

Figure 8. Network Traffic injected by a DDoS Attack when our Defense System is Off.

4.2.1. Scenario I

As described previously, this test consists of performing a DDoS attack originating in both hosts 1

and 3, while host 2 maintains its “normal” access to the remote server. Therefore, the hping3 tool was
used in ICMP mode, flooding packets as fast as possible to the server (192.168.56.104). The host 2

flow rate while the server is under attack is displayed in Figure 9. We can see that the host 2 rate
varies along the time. These rate variations result from the online server resource starvation and
network congestion, which are both induced by the DDoS attack.

https://www.caida.org/home/


Information 2019, 10, 106 10 of 17
Information 2019, 10, x 10 of 17 

 

 
Figure 9. Scenario I—Host 2 Rate when the Remote Server is Under a DDoS Attack. 

We have configured the Snort to detect a cyber-attack through the rule specified in (1). 
According to that rule, an alert is generated when Snort captures more than 10 packets within one 
second from any source IP within the 10.0.0.0/8 network, destined to 192.168.56.104 (i.e., Online web 
server), and using any Transport ports. 

alert icmp 10.0.0.0/8 any → 192.168.56.104 any (msg:”ryu block”; 
detection_filter:track by_src, count 10, seconds 1, sid:1000001) 

(1) 

When the system detects an attack, it starts the mitigation phase. To mitigate the attack, our 
proposal transfers some flow rules to the local switch (Figure 10). In fact, one can check that our 
proposal reacts to the attack through the initial two rules displayed at the head of the flow table of 
the local switch. These two new rules with high priority values drop the received packets from both 
malicious users, host 1 and host 3.  

 
Figure 10. Scenario I—OpenFlow Switch’s Flow Table after DDoS Attack. 

Our solution only blocks the malicious mirrored traffic after it was detected the first time. 
Therefore, Snort was configured to limit the logging events for 60 s (Figure 11). In this way, the 
controller only deals with a single alert within that period, avoiding the controller overload. This 
configuration to limit the number of alerts was defined in the file threshold.conf. 

 
Figure 11. Snort Extra Configuration. 

A graphical representation of the DDoS attack is shown in Figure 12 where we can see the traffic 
generated as a function of time. Here, one can observe the normal usage of the system during the first 
60 s. Then, host 3 launches a DoS attack (first peak of packets transmitted per second). Next, host 1 
launches another DoS attack (second peak of packets transmitted per second), simulating the DDoS 

Figure 9. Scenario I—Host 2 Rate when the Remote Server is Under a DDoS Attack.

We have configured the Snort to detect a cyber-attack through the rule specified in (1). According
to that rule, an alert is generated when Snort captures more than 10 packets within one second from
any source IP within the 10.0.0.0/8 network, destined to 192.168.56.104 (i.e., Online web server), and
using any Transport ports.

alert icmp 10.0.0.0/8 any → 192.168.56.104 any (msg:”ryu block”;

detection_filter:track by_src, count 10, seconds 1, sid:1000001)
(1)

When the system detects an attack, it starts the mitigation phase. To mitigate the attack, our
proposal transfers some flow rules to the local switch (Figure 10). In fact, one can check that our
proposal reacts to the attack through the initial two rules displayed at the head of the flow table of
the local switch. These two new rules with high priority values drop the received packets from both
malicious users, host 1 and host 3.

Information 2019, 10, x 10 of 17 

 

 
Figure 9. Scenario I—Host 2 Rate when the Remote Server is Under a DDoS Attack. 

We have configured the Snort to detect a cyber-attack through the rule specified in (1). 
According to that rule, an alert is generated when Snort captures more than 10 packets within one 
second from any source IP within the 10.0.0.0/8 network, destined to 192.168.56.104 (i.e., Online web 
server), and using any Transport ports. 

alert icmp 10.0.0.0/8 any → 192.168.56.104 any (msg:”ryu block”; 
detection_filter:track by_src, count 10, seconds 1, sid:1000001) 

(1) 

When the system detects an attack, it starts the mitigation phase. To mitigate the attack, our 
proposal transfers some flow rules to the local switch (Figure 10). In fact, one can check that our 
proposal reacts to the attack through the initial two rules displayed at the head of the flow table of 
the local switch. These two new rules with high priority values drop the received packets from both 
malicious users, host 1 and host 3.  

 
Figure 10. Scenario I—OpenFlow Switch’s Flow Table after DDoS Attack. 

Our solution only blocks the malicious mirrored traffic after it was detected the first time. 
Therefore, Snort was configured to limit the logging events for 60 s (Figure 11). In this way, the 
controller only deals with a single alert within that period, avoiding the controller overload. This 
configuration to limit the number of alerts was defined in the file threshold.conf. 

 
Figure 11. Snort Extra Configuration. 

A graphical representation of the DDoS attack is shown in Figure 12 where we can see the traffic 
generated as a function of time. Here, one can observe the normal usage of the system during the first 
60 s. Then, host 3 launches a DoS attack (first peak of packets transmitted per second). Next, host 1 
launches another DoS attack (second peak of packets transmitted per second), simulating the DDoS 

Figure 10. Scenario I—OpenFlow Switch’s Flow Table after DDoS Attack.

Our solution only blocks the malicious mirrored traffic after it was detected the first time.
Therefore, Snort was configured to limit the logging events for 60 s (Figure 11). In this way, the
controller only deals with a single alert within that period, avoiding the controller overload. This
configuration to limit the number of alerts was defined in the file threshold.conf.

Information 2019, 10, x 10 of 17 

 

 
Figure 9. Scenario I—Host 2 Rate when the Remote Server is Under a DDoS Attack. 

We have configured the Snort to detect a cyber-attack through the rule specified in (1). 
According to that rule, an alert is generated when Snort captures more than 10 packets within one 
second from any source IP within the 10.0.0.0/8 network, destined to 192.168.56.104 (i.e., Online web 
server), and using any Transport ports. 

alert icmp 10.0.0.0/8 any → 192.168.56.104 any (msg:”ryu block”; 
detection_filter:track by_src, count 10, seconds 1, sid:1000001) 

(1) 

When the system detects an attack, it starts the mitigation phase. To mitigate the attack, our 
proposal transfers some flow rules to the local switch (Figure 10). In fact, one can check that our 
proposal reacts to the attack through the initial two rules displayed at the head of the flow table of 
the local switch. These two new rules with high priority values drop the received packets from both 
malicious users, host 1 and host 3.  

 
Figure 10. Scenario I—OpenFlow Switch’s Flow Table after DDoS Attack. 

Our solution only blocks the malicious mirrored traffic after it was detected the first time. 
Therefore, Snort was configured to limit the logging events for 60 s (Figure 11). In this way, the 
controller only deals with a single alert within that period, avoiding the controller overload. This 
configuration to limit the number of alerts was defined in the file threshold.conf. 

 
Figure 11. Snort Extra Configuration. 

A graphical representation of the DDoS attack is shown in Figure 12 where we can see the traffic 
generated as a function of time. Here, one can observe the normal usage of the system during the first 
60 s. Then, host 3 launches a DoS attack (first peak of packets transmitted per second). Next, host 1 
launches another DoS attack (second peak of packets transmitted per second), simulating the DDoS 

Figure 11. Snort Extra Configuration.



Information 2019, 10, 106 11 of 17

A graphical representation of the DDoS attack is shown in Figure 12 where we can see the traffic
generated as a function of time. Here, one can observe the normal usage of the system during the first
60 s. Then, host 3 launches a DoS attack (first peak of packets transmitted per second). Next, host 1
launches another DoS attack (second peak of packets transmitted per second), simulating the DDoS
attack. The DDoS attack was nearly mitigated at 64 seconds. Hence, from then on, we can verify that
the network stabilizes around its “normal” operating status.

Information 2019, 10, x 11 of 17 

 

attack. The DDoS attack was nearly mitigated at 64 seconds. Hence, from then on, we can verify that 
the network stabilizes around its “normal” operating status. 

 
Figure 12. Scenario I—DDoS Attack and Mitigation. 

Table 4 shows our results to the variables: DDoS mitigation time, the average Round Trip Time 
(RTT), and the percentage of the packet loss. The results of the average RTT and the percentage of 
packet loss were retrieved from the ping command of host 2. The DDoS mitigation time was retrieved 
from the Wireshark I/O graph. Our solution needs, on average, approximately five seconds to detect 
and mitigate the DDoS attack. 

Table 4. Scenario I—Performance Results. 

# Tests DDoS Mitigation Time (s) Average RTT (ms) Packet Loss (%) 
1 3 0.619 0 
2 4 0.547 0 
3 5 0.561 0 
4 5 0.484 0 
5 7 0.767 0 

Average 4.8 0.596 0 

4.2.2. Scenario II  

In this scenario, we perform a DDoS attack with a spoofed IP address. Therefore, the hping3 tool 
was used in ICMP mode, flooding packets as fast as possible to the server IP address (192.168.56.104) 
with a spoofed IP address, i.e., 10.0.0.55. 

To give a better idea of the QoS impact in both hosts 2 and 3 while the network was under attack, 
we present the results visualized in Figure 13. Even though we simulated the attack with only one 
host, we can verify that the host’s rate remained constant. 

Figure 12. Scenario I—DDoS Attack and Mitigation.

Table 4 shows our results to the variables: DDoS mitigation time, the average Round Trip Time
(RTT), and the percentage of the packet loss. The results of the average RTT and the percentage of
packet loss were retrieved from the ping command of host 2. The DDoS mitigation time was retrieved
from the Wireshark I/O graph. Our solution needs, on average, approximately five seconds to detect
and mitigate the DDoS attack.

Table 4. Scenario I—Performance Results.

# Tests DDoS Mitigation Time (s) Average RTT (ms) Packet Loss (%)

1 3 0.619 0
2 4 0.547 0
3 5 0.561 0
4 5 0.484 0
5 7 0.767 0

Average 4.8 0.596 0

4.2.2. Scenario II

In this scenario, we perform a DDoS attack with a spoofed IP address. Therefore, the hping3 tool
was used in ICMP mode, flooding packets as fast as possible to the server IP address (192.168.56.104)
with a spoofed IP address, i.e., 10.0.0.55.

To give a better idea of the QoS impact in both hosts 2 and 3 while the network was under attack,
we present the results visualized in Figure 13. Even though we simulated the attack with only one
host, we can verify that the host’s rate remained constant.



Information 2019, 10, 106 12 of 17
Information 2019, 10, x 12 of 17 

 

 
Figure 13. Scenario II—Hosts 2 and 3 Rate during a DDoS Attack Dissimulated by Spoofing. 

We can confirm that the mitigation process is taking over by checking the switch’s flow rule 
table (Figure 14). We can verify that the controller mitigated the attack through the first two lines of 
the Table. It consists of a new rule with higher priority to drop packets for the malign host 
(priority=100, actions=drop, dl_src=00:00:00:00:00:01, nw_src=10.0.0.55 and nw_dst=192.168.56.104).  

 
Figure 14. Scenario II—OpenFlow Switch’s Flow Table after the DDoS Attack. 

The rules used in this test were the same as the test before and the rule specified in (2). The 
detection filter is the same except for all IP addresses that are not in the 10.0.0.0/8 network. This way, 
a wider range of IP addresses is under “surveillance”.  

alert icmp !10.0.0.0/8 any→192.168.56.104 any (msg:”ryu 
block”;detection_filter:trackby_src,count 10,seconds 1,sid:1000002 

(2) 

A graphical visualization of the whole process (i.e., detection and mitigation phase) is presented 
in Figure 15. As can be seen, it illustrates the traffic generated as a function of time. During the initial 
two seconds, the network operated in its normal status. Then, at second 2, host 3 launched a DDoS 
attack. This attack was blocked after two seconds from its start. From four seconds until the end of 
our test, we can see the traffic stabilizing and going back to the “usual” traffic loading. 

Figure 13. Scenario II—Hosts 2 and 3 Rate during a DDoS Attack Dissimulated by Spoofing.

We can confirm that the mitigation process is taking over by checking the switch’s flow rule table
(Figure 14). We can verify that the controller mitigated the attack through the first two lines of the
Table. It consists of a new rule with higher priority to drop packets for the malign host (priority=100,
actions=drop, dl_src=00:00:00:00:00:01, nw_src=10.0.0.55 and nw_dst=192.168.56.104).

Information 2019, 10, x 12 of 17 

 

 
Figure 13. Scenario II—Hosts 2 and 3 Rate during a DDoS Attack Dissimulated by Spoofing. 

We can confirm that the mitigation process is taking over by checking the switch’s flow rule 
table (Figure 14). We can verify that the controller mitigated the attack through the first two lines of 
the Table. It consists of a new rule with higher priority to drop packets for the malign host 
(priority=100, actions=drop, dl_src=00:00:00:00:00:01, nw_src=10.0.0.55 and nw_dst=192.168.56.104).  

 
Figure 14. Scenario II—OpenFlow Switch’s Flow Table after the DDoS Attack. 

The rules used in this test were the same as the test before and the rule specified in (2). The 
detection filter is the same except for all IP addresses that are not in the 10.0.0.0/8 network. This way, 
a wider range of IP addresses is under “surveillance”.  

alert icmp !10.0.0.0/8 any→192.168.56.104 any (msg:”ryu 
block”;detection_filter:trackby_src,count 10,seconds 1,sid:1000002 

(2) 

A graphical visualization of the whole process (i.e., detection and mitigation phase) is presented 
in Figure 15. As can be seen, it illustrates the traffic generated as a function of time. During the initial 
two seconds, the network operated in its normal status. Then, at second 2, host 3 launched a DDoS 
attack. This attack was blocked after two seconds from its start. From four seconds until the end of 
our test, we can see the traffic stabilizing and going back to the “usual” traffic loading. 

Figure 14. Scenario II—OpenFlow Switch’s Flow Table after the DDoS Attack.

The rules used in this test were the same as the test before and the rule specified in (2).
The detection filter is the same except for all IP addresses that are not in the 10.0.0.0/8 network.
This way, a wider range of IP addresses is under “surveillance”.

alert icmp !10.0.0.0/8 any→192.168.56.104 any (msg:”ryu block”;

detection_filter:trackby_src,count 10,seconds 1,sid:1000002
(2)

A graphical visualization of the whole process (i.e., detection and mitigation phase) is presented
in Figure 15. As can be seen, it illustrates the traffic generated as a function of time. During the initial
two seconds, the network operated in its normal status. Then, at second 2, host 3 launched a DDoS
attack. This attack was blocked after two seconds from its start. From four seconds until the end of our
test, we can see the traffic stabilizing and going back to the “usual” traffic loading.

Table 5 shows our results to the variables: DDoS mitigation time, the average Round Trip Time
(RTT), and the percentage of the packet loss. The results of the average RTT and the percentage of
packet loss were retrieved from the host 2 ping command. The DDoS mitigation time was retrieved
from the Wireshark I/O graph.



Information 2019, 10, 106 13 of 17

Information 2019, 10, x 13 of 17 

 

 
Figure 15. Scenario II—DDoS Detection and Mitigation. 

Table 5 shows our results to the variables: DDoS mitigation time, the average Round Trip Time 
(RTT), and the percentage of the packet loss. The results of the average RTT and the percentage of 
packet loss were retrieved from the host 2 ping command. The DDoS mitigation time was retrieved 
from the Wireshark I/O graph.  

Table 5. Scenario II—Performance Results. 

# Tests DDoS Mitigation Time (s) Average RTT (ms) Packet Loss (%) 
1 3 0.504 0 
2 2 0.460 0 
3 2 0.557 0 
4 2 0.513 0 
5 2 0.523 0 

Average 2.2 0.511 0 

4.2.3. Scenario III  

The transmission rate of hosts 2 and 3 are presented in Figure 16. We can observe that the rate 
of these two hosts, despite the cyber-attack occurrence, stayed unchanged during the entire duration 
of our test. These results show that some QoS characteristics of the normal traffic were protected from 
the negative effect of the cyber-attack by the collaborative effort of both Snort and the Ryu SDN 
Controller.  

Figure 15. Scenario II—DDoS Detection and Mitigation.

Table 5. Scenario II—Performance Results.

# Tests DDoS Mitigation Time (s) Average RTT (ms) Packet Loss (%)

1 3 0.504 0
2 2 0.460 0
3 2 0.557 0
4 2 0.513 0
5 2 0.523 0

Average 2.2 0.511 0

4.2.3. Scenario III

The transmission rate of hosts 2 and 3 are presented in Figure 16. We can observe that the rate of
these two hosts, despite the cyber-attack occurrence, stayed unchanged during the entire duration of
our test. These results show that some QoS characteristics of the normal traffic were protected from the
negative effect of the cyber-attack by the collaborative effort of both Snort and the Ryu SDN Controller.

Information 2019, 10, x 14 of 17 

 

 
Figure 16. Scenario III—Hosts 2 and 3 Rate During a DDoS Attack Based on Large Size Packets. 

Through the switch’s flow rule table (Figure 17), we can verify that the SDN controller 
successfully mitigated the attack through the first rule of that table.  

 
Figure 17. Scenario III Test OpenFlow Switch’s Flow Table after DDoS Attack. 

The rule used in this test is in (3). In this case, Snort detects a DDoS attack if a packet that comes 
from the 10.0.0.0/8 network towards the server IP address has more than 800 bytes of data (dsize:>800).  

alerticmp 10.0.0.0/8 any→192.168.56.104 any (msg:”ryu block”; dsize: 
>800; sid:1000003) 

(3) 

Next is presented a graphical representation (Figure 18) of the system’s load during the detection 
and mitigation phases. During the initial 11 s, the network shows a normal status. Then, at 11 seconds, 
host 1 launched the DoS attack. This attack is mitigated and blocked in nearly 3 s. After 14 seconds, 
the network traffic stabilizes returning to its “normal” load.  

 
Figure 18. Scenario III—DDoS Detection and Mitigation. 

Figure 16. Scenario III—Hosts 2 and 3 Rate During a DDoS Attack Based on Large Size Packets.



Information 2019, 10, 106 14 of 17

Through the switch’s flow rule table (Figure 17), we can verify that the SDN controller successfully
mitigated the attack through the first rule of that table.

Information 2019, 10, x 14 of 17 

 

 
Figure 16. Scenario III—Hosts 2 and 3 Rate During a DDoS Attack Based on Large Size Packets. 

Through the switch’s flow rule table (Figure 17), we can verify that the SDN controller 
successfully mitigated the attack through the first rule of that table.  

 
Figure 17. Scenario III Test OpenFlow Switch’s Flow Table after DDoS Attack. 

The rule used in this test is in (3). In this case, Snort detects a DDoS attack if a packet that comes 
from the 10.0.0.0/8 network towards the server IP address has more than 800 bytes of data (dsize:>800).  

alerticmp 10.0.0.0/8 any→192.168.56.104 any (msg:”ryu block”; dsize: 
>800; sid:1000003) 

(3) 

Next is presented a graphical representation (Figure 18) of the system’s load during the detection 
and mitigation phases. During the initial 11 s, the network shows a normal status. Then, at 11 seconds, 
host 1 launched the DoS attack. This attack is mitigated and blocked in nearly 3 s. After 14 seconds, 
the network traffic stabilizes returning to its “normal” load.  

 
Figure 18. Scenario III—DDoS Detection and Mitigation. 

Figure 17. Scenario III Test OpenFlow Switch’s Flow Table after DDoS Attack.

The rule used in this test is in (3). In this case, Snort detects a DDoS attack if a packet that comes
from the 10.0.0.0/8 network towards the server IP address has more than 800 bytes of data (dsize:>800).

alerticmp 10.0.0.0/8 any→192.168.56.104 any (msg:”ryu block”; dsize: >800; sid:1000003) (3)

Next is presented a graphical representation (Figure 18) of the system’s load during the detection
and mitigation phases. During the initial 11 s, the network shows a normal status. Then, at 11 seconds,
host 1 launched the DoS attack. This attack is mitigated and blocked in nearly 3 s. After 14 seconds,
the network traffic stabilizes returning to its “normal” load.

Information 2019, 10, x 14 of 17 

 

 
Figure 16. Scenario III—Hosts 2 and 3 Rate During a DDoS Attack Based on Large Size Packets. 

Through the switch’s flow rule table (Figure 17), we can verify that the SDN controller 
successfully mitigated the attack through the first rule of that table.  

 
Figure 17. Scenario III Test OpenFlow Switch’s Flow Table after DDoS Attack. 

The rule used in this test is in (3). In this case, Snort detects a DDoS attack if a packet that comes 
from the 10.0.0.0/8 network towards the server IP address has more than 800 bytes of data (dsize:>800).  

alerticmp 10.0.0.0/8 any→192.168.56.104 any (msg:”ryu block”; dsize: 
>800; sid:1000003) 

(3) 

Next is presented a graphical representation (Figure 18) of the system’s load during the detection 
and mitigation phases. During the initial 11 s, the network shows a normal status. Then, at 11 seconds, 
host 1 launched the DoS attack. This attack is mitigated and blocked in nearly 3 s. After 14 seconds, 
the network traffic stabilizes returning to its “normal” load.  

 
Figure 18. Scenario III—DDoS Detection and Mitigation. Figure 18. Scenario III—DDoS Detection and Mitigation.

Table 6 displays the obtained results according to the DDoS mitigation time, the average Round
Trip Time (RTT), and the percentage of the packet loss. The results of the average RTT and the percentage
of packet loss were retrieved from the host 2 ping command. The DDoS mitigation time was retrieved
from the Wireshark I/O graph.

Table 6. Scenario III—Performance Results.

# Tests DDoS Mitigation Time (s) Average RTT (ms) Packet Loss (%)

1 3 0.674 0
2 2 0.480 0
3 2 0.430 0
4 2 0.449 0
5 2 0.547 0

Average 2.2 0.516 0



Information 2019, 10, 106 15 of 17

5. Conclusions

In this article, we have presented a security system based on the SDN paradigm at the client
side to ensure in a centralized way the “normal operation” of a domestic or business networking
scenario. Our proposal detects DDoS-based cyber-attack scenarios and limits them at their origin at
the client side, this way mitigating the negative consequences of the widespread effect of that attack
for potential victims.

For the sake of this manuscript, all the conducted attacks used the UDP protocol in different
simple scenarios: a DDoS attack, DDoS attack with IP spoofing, and a DDoS with IP packet size
manipulation. The system was able to detect all of them with an average DDoS mitigation time of
3.07 s, an average RTT of 0.541 milliseconds, and without any noticeable packets loss (Table 7). These
results suggest that the design and implementation of a security system based on the SDN paradigm,
at the client side, can help the mitigation of DDoS attacks while maintaining the normal operation
of a network. A relevant learned lesson from the current work is the fact that it is very important to
reduce the amount of control events originated by the IDS module and destined to the SDN controller.
Otherwise, the SDN controller becomes very congested, taking too much time to discover and mitigate
a DDoS attack.

Table 7. Comparison among the Results obtained from Our Evaluation Scenarios.

Scenario DDoS Mitigation Time (s) AVG RTT (ms) Packet Loss (%)

Normal Usage - 0.798 0
Scenario I 4.80 0.596 0
Scenario II 2.20 0.511 0
Scenario III 2.20 0.516 0

Average 3.07 0.541 0

The current proposal was developed considering scalability and adaptability to other types of
DDoS-based cyber-attacks, with room for improvement, and we consider that adding the capability to
“forget” ex-malicious devices is an important feature. This means that a device must not be permanently
“blocked” after the occurrence of a DDoS attack was enabled in some degree by that device. We also
think that machine learning techniques [29,30] can complement and enhance our rule-based detection
mechanism, giving it the capability of detecting new and sophisticated cyber-attacks. Aligned with [31],
we also think that the best and effective approach to battle against DDoS attacks is to build a defense
mechanism as close as possible to the attack source that generates rogue traffic. This defense mechanism
requires collaboration among various service providers to validate the source addresses of packets and
deploy other filtering features based on the analysis of flows. This analysis can be performed via a
federation of SDN controllers, one for each service provider.

Author Contributions: P.M. has contributed with the design, implementation, and evaluation of the current
research proposal. J.M. and C.S. have contributed with work supervision and the final proofreading of the
current manuscript.

Funding: The work of J. Moura was supported by Instituto de Telecomunicações, Lisbon, under Grant
UID/EEA/50008/2019.

Acknowledgments: Jose Moura acknowledges the support given by Instituto de Telecomunicações, Lisbon.
Carlos Serrão acknowledges the support given by Information Sciences, Technologies and Architecture Research
Center (ISTAR-IUL).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Internet World Stats World Internet Users Statistics and 2018 World Population Stats. Available online:
https://www.internetworldstats.com/stats.htm (accessed on 6 March 2019).

https://www.internetworldstats.com/stats.htm


Information 2019, 10, 106 16 of 17

2. Nordrum, A. Popular Internet of Things Forecast of 50 Billion Devices by 2020 Is Outdated. Available
online: https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-
billion-devices-by-2020-is-outdated (accessed on 6 March 2019).

3. Cisco Cisco Visual Networking Index: Forecast and Trends, 2017–2022. Available online: https://www.cisco.com/
c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
(accessed on 6 March 2019).

4. Newman, L.H. What We Know About Friday’s Massive East Coast Internet Outage. Available online:
https://www.wired.com/2016/10/internet-outage-ddos-dns-dyn/ (accessed on 6 March 2019).

5. Kreutz, D.; Ramos, F.M.V.; Veríssimo, P.E.; Rothenberg, C.E.; Azodolmolky, S.; Uhlig, S. Software-Defined
Networking: A Comprehensive Survey. Proc. IEEE 2015, 103, 14–76. [CrossRef]

6. Shin, S.; Yegneswaran, V.; Porras, P.; Gu, G. AVANT-GUARD: Scalable and Vigilant Switch Flow Management
in Software-Defined Networks. In Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security - CCS ’13, Berlin, Germany, 4–8 November 2013; pp. 413–424.

7. Piedrahita, A.; Rueda, S.; Mattos, D.; Duarte, O. FlowFence: A Denial of Service Defense System for Software
Defined Networking. J. Infect. Dis. 2016, 167, 759–762.

8. Ombase, P.M.; Scholar, P.G.; Bagade, S.T.; Kulkarni, N.P.; Mhaisgawali, A. V DoS Attack Mitigation
Using Rule Based and Anomaly Based Techniques in Software Defined Networking. In Proceedings
of the 2017 International Conference on Inventive Computing and Informatics (ICICI), Coimbatore, India,
23–24 November 2017; pp. 469–475.

9. You, X.; Feng, Y.; Sakurai, K. Packet_In message based DDoS attack detection in SDN network using
OpenFlow. In Proceedings of the 2017 5th International Symposium on Computing and Networking,
Aomori, Japan, 19–22 November 2017; Volume 2018, pp. 522–528.

10. Kia, M. Early Detection and Mitigation of DDoS Attacks In Software Defined Networks. Master’s Thesis,
Ryerson University, Toronto, ON, Canada, 2015.

11. Mousavi, S.M.; St-Hilaire, M. Early Detection of DDoS Attacks against SDN Controllers. In Proceedings of the
2015 International Conference on Computing, Networking and Communications (ICNC 2015), Garden Grove,
CA, USA, 16–19 February 2015; pp. 77–81.

12. Xing, T.; Huang, D.; Xu, L.; Chung, C.; Khatkar, P. Snort-flow: A OpenFlow-based Intrusion Prevention
System in Cloud Environment. In Proceedings of the 2013 Second GENI Research and Educational
Experiment Workshop, Salt Lake City, UT, USA, 20–22 March 2013; pp. 89–92.

13. Sahay, R.; Blanc, G.; Zhang, Z. Towards Autonomic DDoS Mitigation using Software Defined Networking.
In Proceedings of the SENT 2015: NDSS Workshop on Security of Emerging Networking Technologies,
San Diego, CA, USA, 8 February 2015; pp. 1–7.

14. Chowdhary, A.; Pisharody, S.; Alshamrani, A.; Huang, D. Dynamic Game based Security framework in
SDN-enabled Cloud Networking Environments. In Proceedings of the ACM International Workshop on
Security in Software Defined Networks & Network Function Virtualization - SDN-NFVSec ’17, Scottsdale,
AZ, USA, 24 March 2017; pp. 53–58.

15. Jevtic, S.; Lotfalizadeh, H.; Kim, D.S. Toward Network-based DDoS Detection in Software-defined
Networks. In Proceedings of the 12th International Conference on Ubiquitous Information Management and
Communication - IMCOM ’18, Langkawi, Malaysia, 5–7 January 2018; pp. 1–8.

16. Suh, J.; Choi, H.; Yoon, W.; You, T.; Kwon, T.T.; Choi, Y. Implementation of Content-Oriented Networking
Architecture (CONA): A Focus on DDoS Countermeasure. In Proceedings of the 1st European NetFPGA
Developers Workshop, Cambridge, UK, 9–10 September 2010; pp. 1–5.

17. Braga, R.; Mota, E.; Passito, A. Lightweight DDoS Flooding Attack Detection Using NOX/OpenFlow.
In Proceedings of the IEEE Local Computer Network Conference, Denver, CO, USA, 10–14 October 2010;
pp. 408–415.

18. Huong, T.T.; Thanh, N.H. Software Defined Networking-based One-Packet DDoS Mitigation Architecture.
In Proceedings of the 11th International Conference on Ubiquitous Information Management and
Communication - IMCOM ’17, Beppu, Japan, 5–7 January 2017; pp. 1–7.

19. Liu, J.; Lai, Y.; Zhang, S. FL-GUARD: A Detection and Defense System for DDoS Attack in SDN.
In Proceedings of the 2017 International Conference on Cryptography, Security and Privacy, Wuhan, China,
17–19 March 2017; pp. 107–111.

https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated
https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.wired.com/2016/10/internet-outage-ddos-dns-dyn/
http://dx.doi.org/10.1109/JPROC.2014.2371999


Information 2019, 10, 106 17 of 17

20. Lu, Y.; Wang, M. An Easy Defense Mechanism Against Botnet-based DDoS Flooding Attack Originated in
SDN Environment Using sFlow. In Proceedings of the 11th International Conference on Future Internet
Technologies, Nanjing, China, 15–17 June 2016; pp. 14–20.

21. Ahmed, M.; Naser Mahmood, A.; Hu, J. A survey of network anomaly detection techniques. J. Netw.
Comput. Appl. 2016, 60, 19–31. [CrossRef]

22. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. 2009, 41, 1–58.
[CrossRef]

23. Kaur, P.; Kumar, M.; Bhandari, A. A review of detection approaches for distributed denial of service attacks.
Syst. Sci. Control Eng. 2017, 5, 301–320. [CrossRef]

24. Fernandez-Buglioni, E. Security Patterns in Practice: Designing Secure Architectures Using Software Patterns,
1st ed.; Wiley Publishing: Hoboken, NJ, USA, 2013; ISBN 9781119998945.

25. Ryu Project Team Ryu SDN Framework. Available online: https://osrg.github.io/ryu/ (accessed on
6 March 2019).

26. Cisco Snort—Network Intrusion Detection & Prevention System. Available online: https://www.snort.org/
(accessed on 6 March 2019).

27. Mininet Team Mininet: An Instant Virtual Network on your Laptop (or other PC). Available online:
http://mininet.org/ (accessed on 6 March 2019).

28. Bhandari, A.; Sangal, A.L.; Kumar, K. Characterizing flash events and distributed denial-of-service attacks:
An empirical investigation. Secur. Commun. Netw. 2016, 9, 2222–2239. [CrossRef]

29. Tsai, C.F.; Hsu, Y.F.; Lin, C.Y.; Lin, W.Y. Intrusion detection by machine learning: A review. Expert Syst. Appl.
2009, 36, 11994–12000. [CrossRef]

30. Mishra, P.; Varadharajan, V.; Tupakula, U.; Pilli, E.S. A Detailed Investigation and Analysis of using Machine
Learning Techniques for Intrusion Detection. IEEE Commun. Surv. Tutor. 2018, 1–46. [CrossRef]

31. Behal, S.; Kumar, K.; Sachdeva, M. D-FACE: An anomaly based distributed approach for early detection of
DDoS attacks and flash events. J. Netw. Comput. Appl. 2018, 111, 49–63. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jnca.2015.11.016
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1080/21642583.2017.1331768
https://osrg.github.io/ryu/
https://www.snort.org/
http://mininet.org/
http://dx.doi.org/10.1002/sec.1472
http://dx.doi.org/10.1016/j.eswa.2009.05.029
http://dx.doi.org/10.1109/COMST.2018.2847722
http://dx.doi.org/10.1016/j.jnca.2018.03.024
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Design and Deployment of Our Flow-Based Proposal Thwarting DDoS Attacks 
	System Design 
	System Deployment 

	Results 
	Tests’ Description 
	Results Presentation and Discussion 
	Scenario I 
	Scenario II 
	Scenario III 


	Conclusions 
	References

