
  information

Article

Automatic Acquisition of Annotated Training
Corpora for Test-Code Generation

Magdalena Kacmajor 1,* and John D. Kelleher 2

1 Innovation Exchange, IBM Ireland, Dublin 4, Ireland
2 ADAPT Centre & ICE Research Institute, Technological University Dublin, Dublin 2, D08 X622, Ireland;

john.d.kelleher@dit.ie
* Correspondence: magdalena.kacmajor@ie.ibm.com

Received: 21 January 2019; Accepted: 13 February 2019; Published: 17 February 2019

Abstract: Open software repositories make large amounts of source code publicly available.
Potentially, this source code could be used as training data to develop new, machine learning-based
programming tools. For many applications, however, raw code scraped from online repositories
does not constitute an adequate training dataset. Building on the recent and rapid improvements
in machine translation (MT), one possibly very interesting application is code generation from
natural language descriptions. One of the bottlenecks in developing these MT-inspired systems is the
acquisition of parallel text-code corpora required for training code-generative models. This paper
addresses the problem of automatically synthetizing parallel text-code corpora in the software testing
domain. Our approach is based on the observation that self-documentation through descriptive
method names is widely adopted in test automation, in particular for unit testing. Therefore, we
propose synthesizing parallel corpora comprised of parsed test function names serving as code
descriptions, aligned with the corresponding function bodies. We present the results of applying one
of the state-of-the-art MT methods on such a generated dataset. Our experiments show that a neural
MT model trained on our dataset can generate syntactically correct and semantically relevant short
Java functions from quasi-natural language descriptions of functionality.

Keywords: test automation; code generation; neural machine translation; naturalness of software;
statistical semantics

1. Introduction

As digitization spreads into all areas of business and social life, the pressure on software
development organizations is growing. The sheer amount of code being created, and the increasing
complexity of software systems, fuels the need for new methods and tools to support the software
development process.

A widely adopted framework addressing the challenges of the modern software delivery lifecycle
is the DevOps model [1], which is founded on the principles of continuous integration, continuous
delivery, and continuous testing. Both the wisdom of the crowd and academic evidence [2] speak
for the efficiency of DevOps practice, but adopting DevOps brings its own challenges, including a
significant increase in the volume and frequency of testing. In fact, on a large-scale project it is not
feasible to implement DevOps without test automation—and writing automated test cases is time-
and resource-consuming. Not surprisingly, automated test case generation methods are being actively
studied. In general, to generate unit test cases, existing approaches use information extracted from
other software artifacts, such as code under test, specification models, or execution logs [3].

State-of-the-art test generation tools can significantly improve test coverage; however, it has
been shown that their fault detection potential is problematic: many faulty code portions are never
executed, or are executed in such a way that defects are not detected [4]. These tools stem from the
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tradition of research on code analysis and code generation that is concerned with formal semantics
and structural information about the code. Such research takes advantage of the formality, consistency,
and unequivocalness of programming languages—that is, the properties that distinguish source code
from natural languages. A more recent research trend switches the focus to statistical semantics. This
exciting alternative can be now fully explored thanks to the much-increased availability of source-code
resources stored in online open source repositories. It has been argued that large source-code corpora
exhibit similar statistical properties to those of natural language corpora [5], and indeed, statistical
language models developed for Natural Language Processing (NLP) have proved to be efficient when
applied to programming languages [6].

However, even billions of lines of code scraped from online repositories are not sufficient to
satisfy the training requirements for some types of tasks. Many applications—such as code generation
from natural language descriptions, code search by natural language queries, or automated code
documentation—require joint processing of natural languages and programming languages. This
means that the source-code corpora used for training these systems need to be appropriately annotated
with natural language descriptions. The main challenge here is the acquisition of fine-grained natural
language annotations that accurately and consistently describe the semantics of code.

As a concrete example, statistical translation models used in NLP require training on parallel
corpora—also called bi-texts—in which many sentences written in a source language are aligned
with their translations in a target language. A schematic example of a parallel corpus with aligned
sentences in natural languages is presented in Figure 1a. To apply statistical translation models to
source code—that is, to train a model capable of mapping textual sequences to sequences of source
code—it is necessary to obtain a text-code parallel corpus in which a large number of code units are
aligned with their descriptions in natural language (Figure 1b).

Figure 1. Schematic examples of parallel corpora: (a) for NLP translation (source English
sentences aligned with target Vietnamese sentences); (b) for joint processing of natural and
programming languages.

Aligned corpora for statistical machine translation (MT) of two natural languages (bi-text
datasets) can be gathered from existing collections of translated texts. However, obtaining a parallel
corpus for a natural language coupled with a programming language (a text-code dataset) is much
less straightforward.

The question of what should be the nature and level of detail of the natural language descriptions
provided in such a corpus does not have a definite answer and requires more investigation.



Information 2019, 10, 66 3 of 16

Nonetheless, it seems reasonable to assume that the practical value of a text-code corpora depends on
the following properties:

1. Size, and the potential to scale in size in the future, is of particular importance for deep learning
models which require large amounts of training data.

2. Acquisition cost, in terms of human effort and the complexity of the procedure.
3. Level of noise in the acquired data.
4. Granularity of the natural language descriptions.

Several recent studies have proposed more or less sophisticated methods of obtaining text-code
corpora (see Section 2). The proposed methods vary in terms of the properties listed above, but
regardless their practical value, none of them are applicable to the testing domain. The main
contribution of this paper is a novel method of automatically synthetizing large text-code datasets
containing textual descriptions of single testing tasks, each matched with the code implementing that
task. Moreover, in this paper we demonstrate that machine learning models trained on our datasets can
generate complete, compilable, and semantically relevant automated test cases based on quasi-natural
language descriptions of testing tasks. These results were obtained using a neural MT model [7]
designed for learning from bi-text corpora, in which the degree of equivalence between source and
target languages is very high. We find that this off-the-shelf neural MT architecture performs well on
our code-text corpora, which suggests that the quasi-natural language descriptions obtained using our
approach are precise and consistent enough to allow direct translation to code.

There are two aspects of the potential implications of the presented work. First, from the
perspective of the testing community, we present an efficient, inexpensive, and scalable method
for annotating test code with textual descriptions. The availability of such annotated datasets can
accelerate the application of the latest advances in machine learning to the testing domain. Second,
from the perspective of research on applying statistical models to source code, our datasets may
provide better insight into the desired characteristics of text and code sequences in a training corpus.
Understanding what type of annotations works well or what is the optimal translation unit for the
source code may be valuable for researchers concerned with synthesizing text-code datasets.

The remainder of this article is organized as follows. Section 2 provides an overview of existing
solutions for text-code corpora acquisition. In Section 3 we provide the rationale of our approach and
explains how it works. Section 4 describes in detail the procedure of synthesizing training corpora
used in our experiments. Section 5 presents the experimental setup and the results of training a neural
MT model on a text-code dataset generated using our method. In Section 6 we discuss the results, and
Section 7 concludes the paper.

2. Related Work

In this section, we do not attempt to show the full range of techniques of matching natural
language descriptions to code that have been proposed throughout the literature. Rather, our aim is to
investigate which approaches can yield datasets that meet the training needs of statistical text-code
language models. Thus, the focus of this review is on studies which are explicitly concerned with
applying language models to source code, and which provide some evidence for the performance of
text-code language models trained on the proposed datasets.

The performance of the many of the models covered in this review, and indeed the models we
present later in the paper, are evaluated using BLEU [8]. BLEU is a de facto standard measure for MT.
BLEU compares machine output with human-authored ground-truth translation, and scores how close
they are to each other, on a scale from 0 to 100, with 100 indicating a hypothetically perfect translation.
In the context of source-code generation from text input, BLEU is calculated by comparing the output
of the model to the source-code ground truth from the corpus.

Perhaps the most straightforward solution to creating a dataset of aligned text and code is
reported in [9], where a software engineer was hired to manually annotate 18,000 Python statements



Information 2019, 10, 66 4 of 16

with pseudo-code. This approach is neither scalable nor cheap, but the study provides interesting
insights. The dataset was used to train a phrase-based and a tree-to-string SMT models to generate
pseudo-code from source code. The tree-to-string model outperformed the phrase-based model by
a large margin (BLEU score of 54 compared to 25), suggesting that correct code-to-text mapping
necessitates parsing program structure, and even line-by-line, noise-less descriptions are not sufficient
to support a plain phrase-based translation model.

For the work reported in [10] two text-code datasets, one containing Java and the other Python
code, were created. In both datasets the code units were aligned with descriptions that combine
structured and unstructured text. These datasets were used to train a neural model which generated
code from a mix of natural language and structured inputs. The model achieved an impressive
performance of 65.6 BLEU scores. Furthermore, the authors trained two neural translation models
as baselines, one augmented with their structured attention mechanism. The augmented translation
model outperformed the plain translation model on both datasets (BLEU scores of 50 and 44 compared
to 34 and 29).

The remaining papers included in this review use a Big Data approach. This research follows
two main directions: one toward exploiting Big Code (primarily GitHub (https://github.com)),
and the other toward mining programming-related Q&A websites, primarily StackOverflow (https:
//stackoverflow.com).

The Big Code route involves scraping API documentation (Javadoc, Python docstrings) from
online source-code repositories, and using it as natural language description of code fragments. The
research reported in [11] created a massive parallel corpus of over 7.5 million API sequences annotated
with excerpts from Javadoc. These API sequences are not raw code sequence, they are rather parsed
representations of general API usage. Consequently, a neural MT model trained on this corpus would
not generate code, instead given some description of required functionality it would produce hints
on the APIs that can be used. This model was augmented with information on API importance, and
achieved BLEU score of 54.

Another corpus exploiting API documentation [12] consists of over 150,000 Python function
bodies annotated with docstrings. The authors used a back-translation approach [13] to extend this
corpus with a synthetic dataset of 160,000 entries. The performance of a (non-augmented) neural
translation model trained on the extended corpus was low (BLEU score of 11).

The second route—assembling datasets from user queries matched to code fragments mined from
Q&A websites—has recently attracted a lot of attention. In [14], two training corpora were created from
C# snippets extracted from responses to StackOverflow and Dot Net Perls questions, and matched with
the titles of these questions. Furthermore, general-purpose engine queries that produced clicks to the
questions were added as alternative natural language descriptions. A bi-modal source-code language
model trained on the resulting dataset was evaluated in terms of retrieval capability. The model
had much better performance when retrieving natural language descriptions (with code snippets as
queries) compared with retrieving code snippets, with NL descriptions as queries (Mean Reciprocal
Rank of 0.44 as compared to 1.18).

Datasets collected from Q&A websites are large, and have the potential to grow as new questions
and answers are added to the websites, but the level of noise in the data is very high. Queries can have
irrelevant or very informal titles, and the code snippets are often incomplete and non-compilable. This
problem was partly addressed in [14], by applying simple heuristics, but other researchers deemed this
approach insufficient and proposed extracting quality datasets from noisy Q&A corpora by applying
machine learning models, trained on human-annotated seed datasets, as filters. For example, in one
study after collecting C# and SQL snippets produced in response to questions posted on StackOverflow
and paired with the titles of these questions, the authors manually annotated a small subset of data
and trained a semi-supervised classifier to filter out titles that were irrelevant to the corresponding
code snippet [15]. The resulting cleaned corpora (containing over 66,000 pairs for C# and 32,000 of

https://github.com
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SQL) were used to training a neural MT model for code summarization (that is, for generating text
from code, not code from text), which achieved BLEU scores of 20.5 (C#) and 18.4 (SQL).

Systematic mining of question-code datasets retrieved from Stack Overflow was the main focus
of two other studies. In [16], user queries matched with Python and SQL code snippets were subject to
a series of cleaning steps. First, a logistic regression classifier (with human-engineered features) was
trained to select questions of type "how-to-do-it", in which the user provides a scenario and asks how
to implement it. Next, a subset of over 5000 question-code pairs was manually annotated by hired
students who judged whether a snippet constitutes a standalone solution to the corresponding question.
A novel model, called the Bi-View Hierarchical Neural Network, was trained on the annotated data
and used to select over 147,500 Python and 119,500 SQL question-code pairs, to be included in the final
dataset (https://github.com/LittleYUYU/StackOverflow-Question-Code-Dataset).

Another complex method to mine high-quality aligned data from Stack Overflow was described
in [17]. First, the authors manually engineered a set of code structure features needed to determine the
syntactic validity of a code snippet. Second, a subset of collected StackOverflow posts was manually
annotated, using a carefully designed annotation procedure, to label specific elements in each post
(intent, context, snippet), and to filter out non "how-to-do-it" questions. Next, a neural translation
model was trained to learn "correspondence features"—that is, to learn the probability of the intent
given a snippet, and the probability of the snippet given an intent. Finally, the calculated probabilities
for each intent and snippet were fed to a logistic regression classifier as the correspondence features,
together with the manually engineered structural features. After training, the classifier was used
to create an automatically mined training corpus containing almost 600,000 intent-snippet pairs
(https://conala-corpus.github.io/). Given the small set of annotated data used for training the
correspondence features, the authors acknowledged existing threats to validity, and provided an
additional dataset of 3,000 examples manually curated by annotators. A baseline neural MT model
trained on 100,000 examples from the automatically mined corpus combined with the curated data
achieved BLEU score of 14.26. The performance of the model trained on curated data only was even
lower (BLEU score 10.58).

3. Text-Code Corpora Acquisition from Self-Documenting Code

In Section 2 we outlined two main approaches to the large-scale acquisition of annotated source
code: collecting developer-defined descriptions extracted from API documentation, and collecting
user-defined descriptions, extracted from users’ questions posted on Q&A websites and matched
with code snippets posted as answers. Neither of these approaches is applicable to the testing
domain. Javadoc or docstring only exist for the code that is a part of a public API, and this type of
documentation is not available for test automation code. Data collected from Q&A websites contains
code snippets that can help in solving concrete programming issues but not in writing specific test
cases. Only a small fraction of questions on Stack Overflow are related to testing, and dedicated
websites on software quality are far behind in terms of popularity (For example, Software Quality
Assurance & Testing website (https://sqa.stackexchange.com/) stores 8500 questions, as compared to
17,000,000 at Stack Overflow). Furthermore, the performance of machine learning models trained on
the existing large-scale text-code datasets it low.

In our approach we take advantage of a programming routine known as self-documenting
code. Although research on applying statistical language models to source code is relatively new,
software developers have long been aware that source code is written for two recipients: one is the
machine, and the other—a software developer who will be reviewing, extending, or maintaining
the code. The need to secure the interests of the second recipient has been embodied in Clean Code
paradigm [18]—a well-known set of best practices focused on making programming code readable and
easy to understand for humans. One of the key Clean Code principles is to create variable identifiers
and functions names that are meaningful and reveal programmer’s intent. To that end, the developer
uses multiple words to formulate an adequate description of a function, and then squeezes all the

https://github.com/LittleYUYU/StackOverflow-Question-Code-Dataset
https://conala-corpus.github.io/
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words into the function name, using some convention that helps the reader to recognize individual
words (such as camelCase in Java, or snake_case in Python). Code comments are discouraged, as they
carry high risk of being outdated and are often redundant; instead, it is recommended that the code
should be self-explanatory.

The method we propose is based on the observation that self-documentation through descriptive
method names is widely adopted in test automation, in particular unit testing. Figure 2 shows
real-life examples drawn from the spring-framework, an open source Java project stored on GitHub
(https://github.com/spring-projects/spring-framework). Each of these self-documenting test function
names is a concise summary of a specific testing task, written in a quasi-natural language, and observing
a consistent naming convention. The body of each function is the implementation of that task in a
programming language. Thus, a parallel text-code corpus can be formed from function names split
into individual words and aligned with function bodies.

Figure 2. Examples of long, descriptive function names from the spring-framework project.

4. Methodology

The text-code dataset creation method we propose exploits the self-documenting code and can,
in principle, be applied to test cases written in any high-level programming language, provided that
the code has been written with the consideration for readability. The generic language-independent
procedure can be summarized as follows:

1. Collect automated test cases from source-code repository. Depending on the use case, datasets
can be assembled from data within a single repository (for training custom, project- or
organization-specific models) or from multiple repositories (for training generic models).

2. For each collected test case:

(a) Split function identifiers into individual words, according to the adopted naming
convention.

(b) Tokenize the function body, preserving punctuation marks.
(c) Add the split function name to the corpus as a source sequence. Add the tokenized

function body to the corpus as the corresponding target sequence.

On a lower level, however, preprocessing details become language-specific. All the examples
presented in this article are based on code written in Java—the second most popular programming
language on GitHub (https://blog.github.com/2018-11-15-state-of-the-octoverse-top-programming-
languages/). Furthermore, all the test cases we used for dataset synthesis were created with Junit
(https://junit.org/)—an open source unit testing framework for Java.

In the experiments we use three datasets synthesized from open source code stored on GitHub.
Two of them (labeled sf and rx) were each extracted from a single large Java repository, and the

https://github.com/spring-projects/spring-framework
https://blog.github.com/2018-11-15-state-of-the-octoverse-top-programming-languages/
https://blog.github.com/2018-11-15-state-of-the-octoverse-top-programming-languages/
https://junit.org/
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third one (multi) was assembled from test code pulled from over 700 repositories. In the following
paragraphs we first describe how we acquired data from a single repository, and then describe the
procedure used to assemble the multi-repository corpus.

4.1. Processing Data from A Dingle Depository

To create the project-specific datasets, sf and rx, we chose two actively maintained GitHub
repositories: the spring-framework and RxJava (https://github.com/ReactiveX/RxJava). This choice
was guided by two criteria: the size of the repository and the popularity of the repository, as indicated
by the number of stars assigned by users and the number of created forks (repository copies created by
members of the GitHub community). We assume that the popularity of a repository is correlated with
the quality of code. Table 1 summarizes the properties of the two selected repositories.

Table 1. Properties of the repositories used for creating project-specific datasets, as of January 2019.

Repository Size (MB) Stars Forks

spring-framework 115 25,920 15,546
RxJava 72 37,178 5340

We crawl each repository to retrieve all test class files, identified as those containing the @Test
annotation string. We process every test class using the JavaParser library (http://javaparser.org/) to
extract and parse the test functions. Each test function is an automated test case. A parsed test function
is represented as a JSON object whose properties comprise function name, function body, parent class
name, and some metadata for identification. Any inline comments are separated out from the function
body and rejected. The result of this step is a JSON array containing all parsed test functions from
the repository.

The next step is the actual synthesis of the corpus. From each JSON file, we take the class name
and the function name, which are both camel case strings, convert them into space-separated strings,
and prepend with the special tokens #class and #method, respectively. The quasi-natural language
description is created by concatenating the two resulting strings. The programming language sequence
is created by simply tokenizing the function body. We assume that tokens such as parentheses,
punctuation marks or mathematical symbols should be treated as individual words, and parse the
code by surrounding each such character with white-spaces.

Figure 3 shows schematically how the quasi-natural language sentence and the corresponding
programming language sequence are derived from a single unit test case.

https://github.com/ReactiveX/RxJava
http://javaparser.org/
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Figure 3. Extracting a text-code sequence pair from a test case.

When adding sequence pairs to the corpus, we apply two filters:

1. Duplicates filter. Any repeating sequence pairs are skipped, although we allow repeating code
sequences, as long as they have different natural language descriptions.

2. Length filter. Any sequence pair with a programming language sequence beyond a predefined
length (see Table 2) is rejected. This filter has dual purpose. First, it removes code sequences
whose size drastically deviates from the average. For example, before applying the length filter,
sequences of the length up to 300 tokens comprised over 97% of test cases extracted from RxJava
repository. The sizes of the remaining 3% ranged from 300 to more than 1000. Second, it mitigates
the disproportion between the size of the quasi-natural language sequences and programming
language sequences.

4.2. Collecting Data from Multiple Repositories

The data used to create the multi-repository corpus was collected using the github3 (https:
//pypi.org/project/github3.py/) library—a Python wrapper for the GitHub API. The search query
included two parameters: language:java and stars:>1000. We were not concerned with the size of
individual repositories. The query returned almost 2000 repositories. Over 700 of them contained Junit
test cases which we used for dataset creation.

The repositories were processed one by one according to the procedure described in Section 4.1.
In addition to applying the duplicate and length filters to each individual repository, we also checked
for and removed any duplicates across the repositories. We also applied some simple heuristics to
exclude functions with meaningless names, such as test1(), test2() etc.

Table 2 lists the metadata for the three datasets used in the experiments. The source-code
vocabulary sizes are very large. This is not surprising, given that each programming API brings in new
source-code tokens. For the rx and sf corpora we kept the full PL vocabularies. For the multi-repository
dataset, we limited the PL vocabulary size by discarding all tokens that occurred less than n times in
the corpus. In the dataset, words excluded from the vocabulary were mapped to a special unknown
token. We created two versions of the multi-repository dataset, one with n = 5 and the other with
n = 10.

https://pypi.org/project/github3.py/
https://pypi.org/project/github3.py/
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Table 2. Properties of datasets used in the experiments described in Section 5. NL refers to natural
language and PL—to programming language.

rx sf multi-min5 multi-min10

Corpus size 10,069 13,792 297,728 297,728
Trainset size 8055 11,033 267,689 267,689
Testset size 2014 2759 30,039 30,039
Vocabulary size (NL) 1067 2679 18,805 18,805
Vocabulary size (PL) 3032 18,422 70,417 * 31,738 *
Sequence length limit 300 200 150 150
Avg. sequence length (NL) 9 11 11 11
Avg sequence length (PL) 94 76 45 45

* The size after rare tokens have been mapped to the unknown token.

5. Experiments

The purpose of the experiments reported in this section is to investigate whether test code
annotated with descriptions extracted from meaningful function names provides good quality data for
training statistical language models. To do this, we use the corpora described in Section 4 to train a
well-known neural translation model to generate test code from quasi-natural language descriptions.

Neural translation models are an example of end-to-end learning: these models take a source
language sentence as an input, encode it into a dense vector (inter-lingual) representation, and decode
this representation to generate the translation target language sentence. The model used in our study
belongs to the class of sequence-to-sequence models [19], and is a TensorFlow implementation of the
attention-based architecture proposed in [7] (https://github.com/tensorflow/nmt/).

We trained three models, one on each of the datasets. In the preliminary phase we performed
trial runs to establish a set of reasonable hyperparameters, and then kept them constant throughout
the experiments. We used 2-layered LSTMs for both the encoder and the decoder, with the Bahdanau
attention mechanism[20]. For the optimizer we used Adam with a starting learning rate of 0.001.
Regarding regularization, we set dropout probability to 0.2, as recommended for LSTMs [21].

Each model was evaluated on a test set that was randomly sampled from the dataset the model
was trained on. These test sets were sampled prior to training and were held-out from the training
process. In case of the multi-repository corpus, the test set is the concatenation of test sets sampled
from each contributing repository. The results are presented in Table 3.

Table 3. BLEU scores from training on three datasets.

Training Corpus BLEU

rx 82.44
sf 58.00

multi-min5 48.85
multi-min10 50.50

BLEU scores on code generation are not directly comparable with scores on natural language
translation due the differences in the length of the translated strings and the inherent differences in the
(natural vs. programming) language structures. Moreover, it is well known in the MT community that
BLEU scores are not necessarily a true reflection of translation quality. These caveats aside, however,
the results from our experiments are promising and indicate that our approach of generating test case
source code from parsed class and function names is feasible (BLEU score obtained on multi-min10
is somewhat higher than the score obtained on multi-min5, which may seem surprising, given that
in the context of natural language translations, the higher number of unknown words has been
shown to have a negative impact on performance [20,22]. However, since the aim of our experiments
was to confirm the usefulness of the parallel corpora built from self-documenting code (rather than

https://github.com/tensorflow/nmt/
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the evaluation of a specific machine learning model), we put limited effort into hyperparameters
optimization, and it is possible that a more extensive search of the hyperparameter space would
provide slightly different results. Investigating the impact of the vocabulary size in the context of
programming language would be useful, but remains out the scope of this paper). In the following
section we present a qualitative, example-based analysis of the performance of our models with a
view to better understanding and contextualizing the results of training an NMT model on the three
datasets extracted from self-documenting code.

6. Discussion

Acknowledging the limitations of BLEU metrics as a tool for evaluating the quality of generated
code, we carefully reviewed the outputs of our models and analyzed them in the context of the
examples available in the training corpora. In this section, we discuss the findings from this qualitative
analysis of the three datasets.

6.1. Dataset rx

The unusually high performance of the model trained on the rx dataset becomes less surprising
after a closer look into the RxJava project test code. RxJava features several base classes exhibiting
standardized behaviors that can be—and are—tested by analogous test functions. For instance, a large
body of analogous test code exists for the base classes Observable and Flowable. Examples of highly
equivalent functions testing these two classes are shown in Figure 4. Each test function is presented in
the parsed format, as a text-code pair. The parts forming textual descriptions are marked in italics. The
differences between equivalent function versions (a, b) are highlighted in bold.

The replacement patterns emphasized in Figure 4 (Observable vs. Flowable, PublishSubject vs.
PublishProcessor, TestObserver vs. TestSubscriber, BackpressureStrategy and blockingGet vs.
the absence of these patterns) are highly repeatable throughout the corpus, making the learning task
much easier. In fact, the model was able to fully generate the unseen long function body shown in
3a, based on the NL description (#class flowable delay subscription other test #method test complete triggers
subscription) which was a part of our test set.

After completed training of the rx model, we reviewed all the code generated against NL
descriptions from the test set. Out of 2014 examples in the test set, 965 (47.9%) generated sequences
that fully matched unseen ground-truth source code. Clearly, the repeatable patterns occurring in
analogous test functions strongly contributed to this result, but the model was also able to exploit
other regularities in the training data.

In the case of short code sequences, it is relatively easy to track back at least some of the pieces of
information used by the model to generate test functions. Table 4 presents the analysis of four correctly
predicted test functions. The top test-code pair (bold font) in each section of the table is pulled from the
test set. The remaining text-code pairs (plain font) are the pulled from the trainset. For the rx dataset,
we selected a function (rxe) that—in contrast to the patterns depicted in Figure 4—did not have an
analogous counterpart in the trainset. Training examples (rxt) reveal how the model learned the code
sequence representing the string timeout in the description.
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Figure 4. Examples of functions written to validate analogous behavior of Observable (1a, 2a, 3a) and
Flowable (1b, 2b, 3b).
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Table 4. Examples of correctly predicted unseen functions, together with seen instances that provided necessary information. Each row in the table contains the
following data: Lbl (label)—created by concatenating the dataset label (rx, sf, m for multi) with a suffix indicating whether the text-code pair comes from the test set
(suffix e) or the trainset (suffix t). ; Text—the quasi-natural description (input sequence); Code—the test code (output sequence). Text-code pairs coming from the test
set (rxe, sfe, me) are additionally highlighted in bold.

Lbl Text Code

rxe #c completable await test #m blocking get assertNull ( Completable . complete ( ) . blockingGet ( ) ) ;
rxt #c completable await test #m blocking get timeout assertNull ( Completable . complete ( ) . blockingGet ( 1 , TimeUnit . SECONDS ) ) ;
rxt #c completable await test #m blocking get error TestException ex = new TestException ( ) ; assertSame ( ex , Completable . error ( ex ) . blockingGet ( ) ) ;
rxt #c completable await test #m blocking get error timeout TestException ex = new TestException ( ) ; assertSame ( ex , Completable . error ( ex ) . blockingGet ( 1 , TimeUnit . SECONDS ) ) ;

sfe #c evaluation tests #m test rel operator ge 01 evaluate ( " 3 > = 6 " , " false " , Boolean . class ) ;
sft #c evaluation tests #m test rel operator gt 01 evaluate ( " 3 > 6 " , " false " , Boolean . class ) ;
sft #c evaluation tests #m test rel operator lt 01 evaluate ( " 3 < 6 " , " true " , Boolean . class ) ;
sft #c evaluation tests #m test rel operator le 01 evaluate ( " 3 < = 6 " , " true " , Boolean . class ) ;

me #c traverser test #m for graph depth first pre order single root Iterable < Character > result = Traverser . forGraph ( SINGLE_ROOT ) . depthFirstPreOrder ( ’a’ ) ; assertEqualCharNodes ( result , " a " ) ;
mt #c traverser test #m for graph breadth first single root Iterable < Character > result = Traverser . forGraph ( SINGLE_ROOT ) . breadthFirst ( ’a’ ) ; assertEqualCharNodes ( result , " a " ) ;
mt #c traverser test #m for graph depth first pre order two trees Iterable < Character > result = Traverser . forGraph ( TWO_TREES ) . depthFirstPreOrder ( ’a’ ) ; assertEqualCharNodes ( result , " ab " ) ;
mt #c traverser test #m for graph depth first post order two trees Iterable < Character > result = Traverser . forGraph ( TWO_TREES ) . depthFirstPostOrder ( ’a’ ) ; assertEqualCharNodes ( result , " ba " ) ;
mt #c traverser test #m for graph breadth first two trees Iterable < Character > result = Traverser . forGraph ( TWO_TREES ) . breadthFirst ( ’a’ ) ; assertEqualCharNodes ( result , " ab " ) ;

me #c thread dump servlet test #m returns 200 ok assertThat ( response . getStatus ( ) ) . isEqualTo ( 200 ) ;
mt #c thread dump servlet test #m returns text plain assertThat ( response . get ( HttpHeader . CONTENT_TYPE ) ) . isEqualTo ( " text / plain " ) ;
mt #c ping servlet test #m returns 200 ok assertThat ( response . getStatus ( ) ) . isEqualTo ( 200 ) ;
mt #c ping servlet test #m returns text plain assertThat ( response . get ( HttpHeader . CONTENT_TYPE ) ) . isEqualTo ( " text / plain ; charset = ISO - 8859 - 1 " ) ;
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6.2. Dataset sf

The phenomenon of analogous functions is not observed in the test code pulled from
spring-framework, which probably explains why the NMT model trained on the sf dataset achieved
less spectacular performance than the one trained on the rx dataset. Nevertheless, the BLEU score
of 58 obtained by the sf model indicates that consistent naming conventions are useful for learning
mappings between textual descriptions and code sequences. As we did previously with the rx dataset,
we analyzed the examples generated by the model from the descriptions in the test set. Table 4
shows an interesting example of a generated function (sfe), in which the model was able to correctly
predict mathematical symbols corresponding to the string ge (greater-than-or-equal-to) based on the seen
examples gt, lt, le (greater-than, less-than and less-than-or-equal-to).

The total number of model predictions that fully matched the ground-truth was 224 out of
2759 examples in the test set (8%).

6.3. Dataset Multi

The BLEU score obtained by the model trained on multi-repository dataset was significantly lower
that than the score of the sf model, but the percentage of fully matched predictions was actually slightly
higher (9.7%, or 2,908 out of 30,039). On analyzing these fully matched outputs of the model trained on
the multi-repository dataset, we did not find evidence that the model learned to use information across
projects originating from different repositories. For example, the correct predictions produced for the
two functions from the multi-repository test set shown in Table 4 (labeled me) were produced based on
examples originating from the same project as the generated sequence (i.e., the same parent project).
However, it seems that generating a correct code sequence does not require a large parent project. The
parent projects of the two examples in Table 4 are google/guava (https://github.com/google/guava)
and dropwizard/metrics (https://github.com/dropwizard/metrics), represented in the trainset by
288 and 355 examples, respectively.

Although the model trained on the multi dataset performed worse than the project-specific
models, it is worth remembering that the vanilla neural translation models trained on the parallel
corpora extracted from API documentation [12] or Stack Overflow queries [17] achieved BLEU scores
of 11 and 14, respectively (It is not possible to make direct comparisons with the results obtained using
models dedicated for code processing task (exploiting structural/syntactical information about the
code, building Abstract Syntax Tree representations etc.). The comparisons of the potential of training
corpora only make sense for experiments that used a similar ML model. From the studies discussed in
Section 2, four papers report the results of training a pure NMT model. However, the results reported
in [11,15] do not refer to code generation task (the first paper focuses on generating parsed API usage
examples, and the second is concerned with code summarization (generating text from code))). The
relatively high score of the model trained on data assembled from 700 GitHub repositories seems to
confirm that the principle of self-documenting code is popular among test automation developers and
can be relied upon as a source of training data.

7. Conclusions and Future Work

In this paper, we have presented a method that exploits the availability of source code in open
software repositories to automatically construct an aligned text-code dataset. This method leverages
self-documenting code—the software engineering practice of using meaningful class and function
names to describe the functionality of program modules. Furthermore, we have demonstrated how
datasets constructed in this way can be used to train (MT-inspired) text to source-code generation
systems. Moreover, we have shown that it is feasible to use this machine translation-based code
generation approach for automatic test case generation.

A key differentiation between our approach and the methods discussed in Section 2 is that the
textual descriptions in our parallel corpora are not expressed in true natural language. In NLP, a lack

https://github.com/google/guava
https://github.com/dropwizard/metrics
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of the naturalness is often considered a weakness, but in the context of the software testing domain, the
quasi-natural language nature of the text in our generated datasets does not affect usability, because
this language has been devised by the software developer community. This form of communication
has a lot in common with Controlled Natural Languages [23]: it uses simplified syntax but preserves
most of the natural properties of its base language and can be intuitively understood. As elaborated
on in Section 6, this compliance by software developers with naming conventions results in consistent
repeatable patterns within the generated datasets which make the learning task feasible. Furthermore,
unlike previous attempts to leverage developer-defined descriptions of code [11,12], our approach
can be applied to generating code that is not exposed as a public API and therefore lacks inline
documentation. Admittedly, escaping one limitation (the restriction to code sourced from public APIs)
comes at the cost of another limitation (the restriction to self-documenting code only).

We have demonstrated the feasibility of our approach within the software testing domain.
Specifically, our experiments have been on the generation of unit test cases, which can be described
in a single quasi-natural language sentence and which have relatively short code bodies. As a result,
one open question that remains is whether our approach can be generalized to other (potentially more
complex) code domains. This is a question we will address in future work. However, even with this
potential limitation the current results are very worthwhile because the demand for automated tests
in the modern software development cycle is very high, and we believe it is important to fill the gap
in the availability of training data for developing test automation tools, even if the approach is not
universal. The fact that existing neural translation models trained on this type of data can achieve
satisfactory performance is evidence of the high quality of the text-code parallel corpora synthesized
from class and function names. Indeed, we believe that the performance of these initial systems is at a
level that permits the immediate application of our approach in the area of software engineering.

That said, the evaluation of the true value of the generated code requires far more effort. As
pointed out in Section 5, a BLEU score is an approximate indicator of the quality of translation of
natural languages. We have not identified any empirical studies investigating the applicability of
BLEU to source code, and therefore the results reported in this and other papers need to be treated
with caution.

A more reliable evaluation would involve retrieving feedback from human users. Our current
efforts are focused on developing a Test Recommendation Engine trained on the corpora extracted from
self-documenting code. The Engine, which is a part of a Horizon 2020 project (https://elastest.eu/),
will be released publicly, and we have plans for the collaboration with several industry test teams to
gather their feedback.

We envisage two use cases benefiting from automated test generation. The first one involves
training a project-specific model, similar to the ones trained on the rx and sf datasets. The tools built
using such a specialized model are likely to produce accurate test cases for the new code written as
developers add or modify features in an already mature project. The second use case involves a generic
model trained on multiple repositories. In this case, the predictions are likely to be less accurate (and
so require some editing) but the model would still be of value for test teams working on new projects
with a minimal codebase.
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Abbreviations

The following abbreviations are used in this manuscript:

CNL Controlled Natural Language
DevOps Development and Operations
ML Machine Learning
MT Machine Translation
NL Natural Language
NLP Natural Language Processing
NMT Neural Machine Translation
PL Programming Language
SMT Statistical Machine Translation
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