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Abstract: Human agents in technical customer support provide users with instructional answers to
solve a task that would otherwise require a lot of time, money, energy, physical costs. Developing a
dialogue system in this domain is challenging due to the broad variety of user questions. Moreover,
user questions are noisy (for example, spelling mistakes), redundant and have various natural
language expressions. In this work, we introduce a conversational system, MOLI (the name of our
dialogue system), to solve customer questions by providing instructional answers from a knowledge
base. Our approach combines models for question type and intent category classification with
slot filling and a back-end knowledge base for filtering and ranking answers, and uses a dialog
framework to actively query the user for missing information. For answer-ranking we find that
sequential matching networks and neural multi-perspective sentence similarity networks clearly
outperform baseline models, achieving a 43% error reduction. The end-to-end P@1(Precision at top 1)
of MOLI was 0.69 and the customers’ satisfaction was 0.73.

Keywords: question and answer; dialog systems; semantic matching

1. Introduction

For many companies, customers can seek customer support from multiple channels such as web
page, Facebook or APP. Besides, according to the research of China Information Industry Network
(CNII), customer service and support is a sizable and growing market globally, as well as in China.
In response to tremendous demand in our company and market we develop our smart customer
service MOLI for mobile.

“My Wi-Fi is not working anymore!”—most mobile device users probably have faced this or a
similar questions in the past. Solving such questions is the task of customer support agents (CSAs).
For frequent questions and user intents, for which solutions often exist in the form of user guides
and question-answer knowledge base (QA-KB), this is a repetitive and time consuming process.
Automating such conversations would significantly reduce the time CSAs have to invest in solving
common questions, which they could then spend on more complex or previously unseen customer
problems [1].

Recent advances in dialog systems have led to successful applications in domains such as
restaurant [2] and flight bookings [3], providing a convenient way for users to interact with backend
services and knowledge bases in natural language, via speech or text-based input. Developing a dialog
system for technical customer support presents additional challenges due to the broad variety of topics
and tasks that need to be handled. The task is made even more challenging by the fact that the dialogs
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are often noisy, contain grammatical errors, and incomplete user turns. They also refer to concepts and
entities not recognized by standard NER tools (e.g., devices, components). Due to the non-technical
background of most customers, problem descriptions can be ambiguous, too colloquial with respect to
the more formalized, technical QA knowledge base texts, and possibly miss important information
that is necessary to identify a unique and correct solution. CSAs therefore often query customers for
contextual information, such as device model and mobile carrier, in order to identify the exact issue
and to select a good answer.

With the work described in this paper, we aim to automatize this task of matching instructional
answers from a QA-KB to user queries described by users in online support chats. We describe an
approach to conversational question answering in the little-explored domain of technical customer
support. Our approach selects the best answer from a QA-KB in a dialog-oriented fashion, using intent
classification to narrow down answer candidates and in particular to pro-actively query the user for
missing information.

2. Related Work

Existing work on dialog systems in the customer service domain has focused on dialog
modeling [4] for answering Ubuntu OS-related questions, and single-turn question answering in the
insurance domain [5]. Both studies show that it is in principle possible to handle longer conversations
in an unsupervised fashion and answer complex questions with the help of a noisy training set and
an unstructured knowledge source. Lowe et al. [4] use a large corpus of support conversations in
the operating system domain to train an end-to-end dialog system for answering customer questions.
Their results suggest that end-to-end trained systems can achieve good performance but perform
poorly on dialogs that require specific domain knowledge which the model possibly never observed.

In contrast, in our work we adopt a classical classification approach followed by semantically
matching a user question to a set of results from a QA-KB, in order to cope with the limited amount
of training data. The work of Feng et al. [5] focuses on answer matching and selection for a
spoken question answering system. The authors show that a standard CNN (Convolutional Neural
Network)-based approach with a large number of filters can achieve good performance on this task,
but it is limited to single-turn question-response conversations.

Most previous works on sentence similarity modeling focus on feature engineering. Several
types of features have been proved useful, including: (1) string-based, including n-gram features [6]
and features used in machine translation evaluation [7]; (2) knowledge-based, using lexical resources
(e.x. WordNet) in Fern and Stevenson’ work [8]; (3) syntax-based, such as, modeling divergence of
dependency relation between two sentences in Das and Smith’ work [9]; (4) corpus-based, using
distributional models such as using latent semantic analysis to catch the features [10]. Recent work
has been changed from hand-crafted features to modeling with distributed representations under
neural network architectures. Collobert and Weston [11] used convolutional neural networks to be
trained jointly for multiple tasks in NLP (Natural Language Processing) with the same shared weights.
Kalchbrenner et al. [12] utilized a dynamic k-max pooling to better model inputs of varying sizes
in a convolutional neural network to model sentences. Kim [13] proposed several improvements to
the convolutional architecture of Collobert and Weston, including the use of fixed word vectors and
varying sizes for convolution windows. Hu et al. [14] used convolutional neural net works to combine
sentence modeling in a layer-by-layer composition method. A variety of other models have been
proposed for similarity tasks (Weston et al. [15], Huang et al. [16], Andrew et al. [17]). Tai et al. [18]
proposed a tree-based LSTM (Long Short-Term Memory).

In our approach we follow the architecture proposed by He et al. [19] to handle the ambiguity and
variability of linguistic expression when modeling sentence semantic similarity. Their work proposes
a multi-perspective model for comparing sentences. The authors first use a CNN model to extract
features at multiple levels of granularity and then compute multiple similarity metrics to measure
sentence similarity. Wu et al. [20] propose a sequential matching network (SMN) which matches
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two sentences in the context on multiple granularity, and distills important matching information
from each pair with convolution and pooling operations followed by a recurrent network to model
sentence relationships.

In contrast to standard QA tasks such as extractive QA [21] and opensequential matching
network-domain answer selection [22], the task we address focuses on identifying instructional
answers that match the user’s question and its context, and hence cannot simply be gleaned from a text
corpus. Although question answering and dialog systems recently received a lot of attention, work
combining both is still sparse.

3. Conversational Question Answering

3.1. Problem Formalization

The goal of our approach was to identify the answer ai from a corpus of N QA pairs
QA = {(q1, a1), . . . , (qn, an)} that best matched the user’s question as expressed by a sequence
of user turns T = t1, . . . , tT . qi is a representative question such as “How to setup email” which
prototypically stands for other questions that can be answered by ai. As Figure 1 illustrates, QA pairs
as well as user turns are expressed as free text.

For each pair (qi, ai), there exists meta data, recorded in the form of properties pi,1, . . . , pi,m.
Properties describe the context to which a given QA pair applies, such as a specific device name and
operating system version. They typically take a single value from a limited set of possible values.

At each turn tk during the conversation our system estimates the utility ui,k ∈ IR≥0 of answer
ai given the current context C =< t1, . . . , tk, Pk > where Pk is a list of relevant properties that have
already been identified (filled ‘slots’).

Figure 1. Example chat about an “email account setup”.

3.2. Dialog System Overview

Figure 2 gives an overview of the overall architecture of the dialog system. Customers can
interact with the system either by entering free text or by selecting one of a set of predefined choices
suggested by the system. Choices can be of different types—frequently asked questions at the
start of a conversation, or, for instance, product names if the system queried for the customer’s
device in the previous turn. Upon receiving a user turn tk, the natural language understanding
(NLU) component’s task was to transform tk into a structured representation. It first performed
sentence segmentation and tokenization of the input using the Stanford CoreNLP toolkit [23], and
then determined the question type, namely, how-to or others. In addition, the NLU component
performed intent classification to identify user intent that represents a similar question set. The intent
was used for narrowing down candidate standard QA pairs from QA-KB. Then the slot filling (SF)
component is used for identifying entities such as product names and attributes, which are linked to
concepts in a product knowledge graph (KG). SF is based on a combination of template and sequence
classification approaches. After question type classification,intent classification and slot filling, the
system determined the truly concerned specific question of user. Since SF component is based on
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combination of template and sequence classification approaches, the model with high accuracy but
low recall. We add a semantic matching component to improve recall without decreasing accuracy.

The main task of the dialog manager (DM) was to maintain the dialogue context (semantic frame),
which encoded all available structured information, and decided on the next system action. If the
semantic frame was not complete, that is, it was lacking a slot value such as product information,
the DM can re-ask, confirm, or clarify to update the dialogue context and keep the semantic frame
unambiguous and complete. If a product name was not detected, the DM may also query the customer
database for the most recent product purchased by this customer. Given the question type, the intent
category and the values of already filled slots, the DM retrieved the list of potential QA pairs by
querying the QA-KB. It then either asked the customer for more information to fill empty slots (which
are specified by the properties of the QA pairs) to narrow down this list, or it runs the semantic
matching component to rank the remaining QA pairs The DM can also ask for confirmation or
disambiguation of a slot filler extracted by the NLU component. DM action choices were passed
through a template text-based natural language generation component (NLG) or were converted into
option choices represented by buttons in the user interface. At any time during the conversation, the
system or the user may choose to refer the conversation to a human support agent.

Figure 2. Dialog system architecture.

4. The Proposed Model

4.1. Question Type Classification

Question type classification is the entrance of NLU, which is important for the performance of the
whole system. Here, we define n-gram information as a local semantic feature and long dependency
relationship between words or phrases as a global structure feature. Most existing question type
classification models either learn little structure information or just rely on pre-defined structures,
leading to degradation of performance and generalization capability. To address this issue, we propose
a sandwich neural network (SNN) to learn semantic and structure representations automatically.

SNN contains four parts: first LSTM layer, CNN and pooling layer, second LSTM layer and
concatenation and loss layer. The first LSTM layer was inspired by DSCNN [24] to adjust the word
representation which takes the context into account. CNN and pooling was used to learn local n-gram
semantic representation. The second LSTM layer was inspired by C-LSTM [25] to use the filter maps
after convolution to represent the high-level phrase representation and feed it into following LSTM to
learn long-dependency structure representation. The last concatenation and loss layer was used to
concatenate these two representations as a new one, to compute loss through corss-entorpy. Figure 3
shows the architecture of our model, where CNN is in the middle of two LSTM layers like a sandwich.
Then, we will describe SNN in detail.
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Figure 3. Dialog system architecture.

4.1.1. First LSTM Layer

We let our model’s input be a sentence of length s : [w1, w2, ..., ws], c be the whole number of
word embedding versions and x(j)

i is the ith word’s embeddings of the jth version. The common word
embedding versions are Word2vec and Glove.

Our model’s first layer consisted of LSTM networks which processed different versions of word
embeddings. For every version of word embeddings, there was an according LSTM network where
the input xt ∈ Rd is the d-dimensional word embedding for wt. The LSTM layer will produce a hidden
state representation ht ∈ Rd at each time step. The hidden state representations will be set as the
output of LSTM layers:

h(i) = [h(i)
1 , h(i)

2 , ..., h(i)
t , ..., h(i)

s ] (1)

for i = 1, 2, ..., c.

4.1.2. CNN Layer

The second layer was a CNN. To utilize multiple kinds of word embeddings, we applied a filter
F ∈ Rc×d×l , where l is the size of convolution window. The ith version of word embedding produce
the hidden state sequence h(i), which forms one channel of the feature map. Then these feature maps
are stacked c-channel feature maps X ∈ Rc×d×s.

Afterwards, filter F convolved with the window vectors (l-gram) at each position to generate a
feature map c ∈ Rs−l+1; ck is the element of the feature map c for window vector Xk:k+l−1 at position k
and it is produced as follows:

ck = f (∑
i,j,r

(F
⊙

Xk:k+l−1)i,j,r), (2)

where
⊙

denotes element-wise multiplication.
The n feature maps generated from n filters can be rearranged through column vector

concatenation method to form a new representation,

W = [c1; c2; ...; cn] (3)

Each row Wj of W ∈ R(s−l+1)×n is the feature map generated from n filters for the window vector
at position j. The new successive higher-level representations were then fed into the last LSTM layer.

Here, a max-over-time pooling layer was added after the convolution neural network. The pooling
result of the feature map c is :

p = max(c1, c2, ..., cs−l+1) (4)

These pooling results are used as our local semantic representation se ∈ Rn:

se = [p1, p2, ..., pn] (5)
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4.1.3. Second LSTM Layer

We used the same number of filters n to denote the dimension in this LSTM layer for easy and fair
fusion in the latter, and use the last hidden unit of LSTM as global structure representation st ∈ Rn.

4.1.4. Concatenation and Loss Layer

Thus, we got the local semantic representation se and global structure representation st. Then we
concatenated se and st to get the sentence representation and compute loss through cross entropy.

4.2. Intent Category Classification

The correct intent can reduce the number of candidate QA pairs significantly. Currently, the data
set contains 60 intents such as “Bluetooth”, “Screen Unlock”, “Google Account”, etc.

The intent category classifier estimates the probability p(I|tk) where I represents intent.
Our baseline approaches are GBDT (Gradient Boosting Decision Tree) and a linear SVM (Support
Vector Machine). For feature extraction, at first the tk was tokenized, followed by stop-word removal
and transformation into a bag-of-words representation. The features were term frequency-reverse
document frequency (TF-IDF) weighted unigram and bigram features. We also implemented a
bidirectional LSTM model(BiLSTM). In this model, each wi ∈ tk was represented by an embedding ei
∈ Rd that we obtain from pre-trained distributed word representations E = [e1, . . . , eW]. The BiLSTM
output was passed to a fully-connected layer followed by a ReLU (Rectified Linear Unit) non-linearity
and softmax normalization, s.t. p(I|tk) was computed as follows:

SM(ReLU(FC(BiLSTM(E)))(tk) (6)

4.3. Semantic Matching

We assume that the QA pair with the highest semantic similarity to the question expressed in
turn tk (and previous turns) will be of the highest utility to the user. After question type and intent
category classification we obtain an initial set of candidates, QAinit, by retrieving all QA pairs from
the knowledge base that are relevant to the question type and intent category. Following a common
information retrieval approach, we then used a pairwise scoring function S(qi, ai, C) to sort QAinit by
utility, where (qi, ai) ∈ QAinit.

TF-IDF

TF-IDF means term frequency-inverse document frequency. Our first baseline computes S with a
TF-IDF weighted bag-of-words representation of qi, ai and tk to estimate the semantic relatedness by
cosine similarity cos(vi, vk) between the feature vectors of the QA pair, vi, and the user turn, vk.

WMD

The second baseline leverages the semantic information of distributed word representations [26].
To this end, we replace the tokens in qi, ai and tk with their respective embeddings and then compute
the word mover distance [27] between the embeddings.

SMN

In addition to the baselines we use a sequential matching network (SMN) [20], which
treats semantic matching as a classification task. The SMN first represents qi, ai and tk by their
respective sequence of word embeddings Ei and Ek before encoding both separately with a recurrent
network, a gated recurrent unit (GRU) [28] in this case. A word-word similarity matrix Mw and
a sequence-sequence similarity matrix Ms is constructed from Ei and Ek, and important matching
information is distilled into a matching vector vm via a convolutional layer followed by max-pooling.
vm is further projected using a fully connected layer followed by a softmax.
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MPCNN

In this section, we present innovative solutions that incorporate multi-info and context information
of user questions into multi-perspective CNN(MPCNN) to fulfill question paraphrase identification.
The architecture of model is shown in Figure 4. Our model has two same subnetworks that processing
tk and qiai in parallel after getting context by GRU.

Figure 4. Multi-perspective sentence similarity network with gated recurrent unit (GRU).

(1) Multi-info

To the data, tk is quite long but qi in our QA-KB is short and contains less information. Besides,
the ai is quite long and contains some information that related to tk. In this work, we concat qi and ai
of QA-KB then to compute S(qiai, tk). User queries are always concerned with a specific product but
some related standard questions for different products may be the same in the QA-KB. For example in
Figure 1 “moto g3” is a mobile name. For a same question, if the product of the question is different,
it will influence the matching result. We replace these specific mobiles by the same word “Mobile”
directly. In this paper, we use the product-KB and CRF (Conditional Random Field) algorithm to
recognize the mobile from tk. The left part of Figure 5 indicates the structure of the product-KB. In
product-KB, every mobile has its surface names which are mined from the chat log.

Product-KB hardly contains all mobiles and their surface names so we use CRF to recognize the
mobile names from the input user question as a supplement. There are two level features used in
CRF, char level ngrames and word level ngrams. The maximum char level ngram is 6 and word level
ngram is 3. By using the multi-info of product-KB and answer information, the precision of semantic
matching is improved.

Figure 5. Structure of the product-knowledge base (KB) and question-answer (QA)-KB.
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(2) Context Multi-Perspective CNN

After getting the multi-info, the input of our neural model are tk and qiai. Given a user query tk
and a response candidate qiai, the model looks up an embedding table and represents tk and qiai as
tk = [eu,1,eu,2,...,eu,L] and qiai = [es,1,es,2,...,es,L] respectively, where eu,j and es,j ∈ Rd are the embeddings
of the j-th word of tk and qiai respectively. L is the max length of two input sequences. Before feed
into multi-perspective CNN, tk is transformed to hidden vectors conMQu by GRU. Suppose that
conMtk = [hu,1, hu,1, . . . , hu,L] are the hidden vectors of tk, then hu,i is defined by

zi = σ(Wzeu,i + Uzhu,i−1) (7)

ri = σ(Wreu,i + Urhu,i−1) (8)

hu,i = tanh(Wheu,i + Uh(ri � hu,i−1)) (9)

hu,i = zi � hu,i + (1− zi)� hu,i−1, (10)

where hu,0 = 0, zi and ri are an update gate and a reset gate respectively, σ(.) is a sigmoid function, and
Wz, Wr, Wh, Uz, Ur, Uh are parameters.

Because qiai is not a sequential sentence the model only gets context information of tk and learns
long-term dependencies by GRU. conMtk and qiai are then processed by the same neural networks.
The paper applies to both word level convolutional filters and embedding level convolutional filters.
Word level filters operate over sliding windows while considering the full dimensionality of the
word embeddings, like typical temporal convolutional filters. The embedding level filters focus on
information at a finer granularity and operate over sliding windows of each dimension of the word
embeddings. Embedding level filters can find and extract information from individual dimensions,
while word level filters can discover broader patterns of contextual information. Both kinds of filters
are allowed to extract more information for richer our model.

For every output vector of convolutional filter, the model converts it to a scalar by pooling layer.
Pooling helps a convolutional model retain the most prominent and prevalent features, which is
helpful for robustness our model. Max pooling is a widely used pooling layer, which applies max
operation over the input vector and returns the maximum value. In addition to using max pooling,
our model also uses min pooling and mean pooling.

4.4. Dialogue Manager

For the conversation, we adopted the method based on finite state machine (FSM) to manage
it. We set up eight intermediate states for conversation besides “start” and “close” states, such as:
“Init”, “SlotFull”, “SlotNotFull”, “SlotClarify”, “IntentVerify”, “DeliverAnswer”, “WaitUserInput” and
“ErrorHandling” as shown in the Figure 6. We explain the meaning of each state separately as shown
in Table 1. Besides, in order to clearly see the jump logic between states, we use arrow lines to indicate
the next state to jump , as shown in Figure 6.
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Figure 6. Finite state machine for task-oriented dialog.

Table 1. Definition of states.

No. State Name Definition

1 Start Refers to “start” state of the state machine.
2 Init It means initialization state.
3 Slotfull It means all necessary slots are filled and verified completely.
4 SlotNotFull It means not all necessary slots are filled or verified completely.
5 SlotClarify It means that some necessary slots need verify by user or knowledge base.
6 IntentVerify It means some intent from users need verify.
7 DeliverAnswer It means that in current state our FSM is delivering answer to our users.
8 WaitUserInput In this state our FSM accepts users’ input.
9 ErrorHandling The state is used for dealing with errors happening in the state jumping process.
10 End It refers to terminate the task.

5. Experiments and Discussion

In this section, we evaluate our approaches for question type classification, question intent
category classification, semantic matching as well as end-to-end performance of MOLI. Next, we will
introduce the dataset, QA-KB, product-KB and experiment results separately.

5.1. Data Set, QA-KB and Product-KB

The chat transcript data set mainly consists of first contact transcripts, in which the customer’s
question or intent is explicitly stated. Each transcript includes the full text of the chat, speaker ids for
each message, a product id, optionally question type and an intent category assigned by the customer
service agent.

From this corpus, we extracted a dataset of 80,216 user turns, which are manually labeled with
question type information by the CSAs. Table 2 shows the distribution over question types contained
in the dataset. Out of the 30,593 how-to questions, 6808 have an intent category assigned, for which
the distribution over the top 30 categories (out of 60) is shown in Figure 7.

Table 2. Question type statistics.

Question Type Num Percentage(%)

How To 30,953 38.6
Other 49,263 61.4
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Figure 7. Distribution of intent categories (top 30) for user question.

The KB stores the QA pairs and its relevant products. Figure 5 indicates the structure of our
KB. The left part is the parameters of mobile product and the right part is QA pairs. In the current
version, KB includes 20 mobile products, 242 standard QA pairs. Our KB in total includes more than
150,000 triples.

5.2. Question Type Classification

In this section, we firstly split the data set into 80/20 training and test sets, respectively. In the
paper, we use 300 dimensional GloVe word embeddings [29]. Hyper-parameter selection was done on
the training set via five-fold cross validation and results averaged over multiple runs are reported on
the test set and Table 3 shows the evaluation results. As we see, SNN outperforms the baseline models
prominently. For example, in the sentence “I want to get support on the steps of factory model setting”,
the structure “support on ... steps” contributes a lot to the classification. Any part of the structure
(“support” or “steps”) may make mistakes.

Table 3. Question type classification results.

Model Precision Recall F1

C-LSTM 0.92 0.90 0.91
DSCNN 0.93 0.91 0.92

SNN 0.96 0.94 0.95

5.3. Intent Category Classification

In this section, we also firstly split the dataset into 80/20 train and test sets, respectively.
Hyper-parameter selection is done on the training set via 5-fold cross validation and results averaged
over multiple runs are reported on the test set. For baseline model BiLSTM we use 300 dimensional
GloVe word embeddings [29]. Table 4 shows the evaluation results on the dataset. The baseline model
SVM, even outperforming the BiLSTM model.

Table 4. Intent category classification results for user question.

Model Precision Recall F1

GBDT 0.67 0.68 0.67
BiLSTM 0.68 0.70 0.69

SVM 0.74 0.76 0.75
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From the specific every category results of SVM in Table 5 we find that some categories
(e.g., “Google account and transfer from previous device”) achieve a disproportional lower
performance. For example, “Google account” is often confused with "reset as a Google account" is
generally a main topic when trying to reset a device (e.g., “Android smartphone”). It is also noteworthy
that “subsidy unlock”, “bootloader unlock” and “screen lock” are frequently confused. This is best
illustrated by the example “Hi i need pin for unlock red to my moto g”, which has the true category
“Subsidy Unlock” but is categorized as “screen lock”. Without knowledge about the mobile phone and
contracts domain it is very difficult to understand that the customer is referring to a “pin” (subsidy
unlock code) for “red” (mobile service provider) and not the actual PIN code for unlocking the phone.
This example also symbolizes a common problem in smart customer support, where users unfamiliar
with the domain are not able to describe their information need in the domain-specific terminology.

Table 5. Intent category classification results for user question, top 10 categories.

Model Precision Recall F1

Subsidy unlock 0.83 0.93 0.88
Screen lock 0.84 0.92 0.88

Storage 0.79 0.85 0.82
Transfer file w. PC 0.77 0.91 0.83

Lost phone 0.87 0.91 0.89
Calls 0.79 0.87 0.83

Google account 0.64 0.72 0.68
Update 0.77 0.92 0.84

Bootloader unlock 0.93 0.67 0.78
Transfer p. device 0.67 0.74 0.70

5.4. Semantic Matching

For all models except TF-IDF, we use 300 dimensional GloVe word embeddings [29]. To obtain
negative samples, for each tk, we randomly selected five standard queries with the same intent and
five standard queries with different intents. To alleviate the impact of unbalanced training data,
we oversampled positive samples. As the standard questions qi of most QA pairs (qi, ai) are usually
less than 10 tokens, we also evaluate the impact on model performance when adding the answer ai as
additional context (up to 500 characters) to qi.

Table 6 shows the P@1 of each model on our data. We see that the MPCNN and MPCNN_GRU
(MPCNN with a Gated Recurrent Unit) outperform the unsupervised baseline approaches, with a
43% error reduction achieved with the MPCNN_GRU model. Intuitively it makes sense to provide
the models with additional context that can be used to learn a better representation of semantic
similarity. The SMN’s P@1 are much lower than MPCNN models, even only slightly higher than these
unsupervised models.

Table 6. Semantic matching results for user question.

Model Without Answer With Answer

TF-IDF 0.62 0.60
WMD 0.60 0.58
SMN 0.62 0.68

MPCNN 0.72 0.84
MPCNN_GRU 0.72 0.85

5.5. The Importance of Intent Classification for Semantic Matching

Question intent classification is an important step to narrow down candidate answers. In this
section, we compare with baseline models to highlight the effectiveness of intent classification.
The baseline models used the same network as MPCNN and MPCNN_GRU, without intent
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classification so the models were matching with all QA pairs directly. Table 7 shows that the precision
of semantic matching with intent outperformed baseline models.

Table 7. Semantic matching results on baseline for user question.

Without Intent With Intent

MPCNN 0.63 0.84
MPCNN_GRU 0.65 0.85

5.6. End-to-End Performance of MOLI

In this section, we display the end-to-end performance of MOLI and compare MOLI with baseline
system to highlight the effectiveness of related component. In detail, we list the baseline performance,
and then we list the performance with question type classification, intent category recognition,
semantic matching improved respectively in Sections 5.1–5.3. The detailed methods are SNN, SVM,
MPCNN_GRU respectively, so we name the baseline models baseline_QTSNN , baseline_ICSVM,
baseline_SMMPCNN_GRU . At last, we show the performance with all the above components improved
together. Besides, in order to prove the effectiveness of semantic matching, we designed the MOLI-SM
model, which removed the semantic matching component based on the MOLI. Table 8 shows the P@1
and feedback score of each system. The feedback score is calculated by user’s action. At the end of a
session in the system, there is a feedback mechanism where you can grade the recommend answer.
There were five level scores that the user could choose. If the score was four or five then we think the
answer was useful for the user. In the table, the results show that our improvements were useful.

Table 8. End-to-end performance.

P@1 feedback Score

baseline 0.45 0.49
baseline_QTSNN 0.48 0.52
baseline_ICSVM 0.50 0.55
baseline_SMMPCNN_GRU 0.51 0.56
MOLI-SM 0.64 0.67
MOLI 0.69 0.73

6. Conclusions

In this paper, we describe our smart customer system MOLI in detail with many innovative NLP
techniques. We presented a first approach for conversational question answering in the complex and
little-explored domain of technical customer support. Our approach matches a user’s question with
the most relevant answer from a knowledge base. It does so in a conversational manner, by asking for,
and clarifying required information if necessary. Our approach incorporates several separate models
to determine an answer. Most notably, it performs question type and intent classification for a dataset
with 60 intent categories, slot filling, and semantic answer matching. We observe that while supervised
models, both neural and standard ones such as decision trees and SVMs, perform reasonably well on
the individual tasks, there is still room for improvement. As many previous authors have shown in
other domains, such models can benefit from joint training and end-to-end task modeling.

Our experiments were conducted with a dataset of noisy, real-world chat transcripts, which we
plan to make available to the community in the near future. Future research directions include
end-to-end, joint modeling of the question type and intent classification, slot filling and semantic
matching subtasks, as well as updating the dialogue manager to account for nested, non-linear
conversations, and maintaining multiple dialog hypotheses.
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