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Abstract: Three-way decision is a class of effective ways and heuristics commonly used in human
problem solving and information processing. As an application of three-way decision in clustering,
three-way clustering uses core region and fringe region to represent a cluster. The identified elements
are assigned into the core region and the uncertain elements are assigned into the fringe region in
order to reduce decision risk. In this paper, we propose a three-way clustering algorithm based
on the ideas of cluster ensemble and three-way decision. In the proposed method, we use hard
clustering methods to produce different clustering results and labels matching to align all clustering
results to a given order. The intersection of the clusters with the same labels are regarded as the core
region. The difference between the union and the intersection of the clusters with the same labels
are regarded as the fringe region of the specific cluster. Therefore, a three-way clustering is naturally
formed. The results on UCI data sets show that such a strategy is effective in improving the structure
of clustering results.
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1. Introduction

As a new idea of artificial intelligence in recent years, granular computing is a relatively modern
theory in simulating human beings thinking and problem solving [1–3]. One of the fundamental tasks
of granular computing is to explore an efficient information granulation method, in order to build
multilevel granular structures [4]. Among the many approaches of information granulation [5–8],
cluster analysis is perhaps one of the most widely used ones [9]. The fundamental objective of
clustering is to discover the underlying structure of a data set. In general, the structure means that
similar samples are assigned to the same cluster while dissimilar samples are assigned to different
clusters. The lack of prior knowledge makes clustering analysis remain a very challenging problem.
Research on clustering algorithm has received much attention and a number of clustering methods
have been developed over the past decades.

The various methods for clustering can be divided into two categories: hard clustering and soft
clustering. Hard clustering methods, such as c-means [10] and spectral clustering [11], are based on an
assumption that a cluster is represented by a set with a crisp boundary. That is, a data point is either in
or not in a specific cluster. The requirement of a sharp boundary leads to easy analytical results, but
may not adequately show the fact that a cluster may not have a well-defined boundary. Furthermore,
it is not the best way to divide the uncertain objects into one cluster.

Information 2019, 10, 59; doi:10.3390/info10020059 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0002-1290-6112
http://dx.doi.org/10.3390/info10020059
http://www.mdpi.com/journal/information


Information 2019, 10, 59 2 of 13

In order to relax the constraint of hard clustering methods, many soft clustering methods were
proposed for different application backgrounds. Fuzzy sets are a well known generalization of crisp
sets, which were first introduced by Zadeh [12]. Incorporating fuzzy sets into c-means clustering,
Bezdek [13] proposed fuzzy c-means (FCM), which assumes that a cluster is represented by a fuzzy
set that models a gradually changing boundary. Another effective tool for uncertain data analysis is
rough set theory [14], which uses a pair of exact concepts, called the lower and upper approximations,
to approximate a rough (imprecise) concept. Based on the rough set theory, Lingras and West [15]
introduced rough c-means (RCM) clustering, which describes each cluster not only by a center, but
also with a pair of lower and upper bounds. Incorporating membership in the RCM framework,
Mitra et al. [16] put forward a rough-fuzzy c-means (RFCM) clustering method. Shadowed set,
proposed by Pedrycz [17], provides an alternate mechanism for handling uncertainty. As a conceptual
and algorithmic bridge between rough sets and fuzzy sets, shadowed set has been successfully used
for clustering analysis, resulting in shadowed c-means (SCM) [18]. A brief classification of existing
clustering methods can be shown in Figure 1.

Clustering 
method 

Hard 
clustering

Soft 
clustering

Representative method
C-means algorithm;
K-medoids algorithm;
Spectral clustering;

Representative method
Fuzzy C-Means;
Rough C-Means;
Rough-Fuzzy C-Means;
Shadowed C-Means;

Figure 1. Classification diagram of existing clustering methods.

Although there are a lot of clustering methods, the performances of many clustering algorithms
are critically dependent on the characteristics of the data set and the input parameters. Improper input
parameters may lead to clusters that deviate from those in the data set. It has been accepted that
a single clustering algorithm cannot handle all types of data distribution effectively. In order to
solve this problem, Strehl and Ghosh [19] proposed cluster ensemble algorithm, which combines
multiple clusterings of a set of objects into one clustering result without accessing the original features
of the objects. It has been shown that cluster ensemble is useful in many applications, such as
knowledge-reuse [20], multi-view clustering [21], distributed computing [22] and in improving the
quality and robustness of clustering results [23–26].

Three-way decision as a separate filed of study for problem solving was proposed by Yao [27–30],
which is an extension of the commonly used binary-decision model. The approach of three-way
decisions divides the universe into the Positive, Negative and Boundary regions, which denote the
regions of acceptance, rejection and non-commitment for ternary classifications, respectively. For the
objects that partially satisfy the classification criteria, it is difficult to directly identify them without
uncertainty. Instead of making a binary decision, we use thresholds on the degrees of satisfiability to
make one of three decisions: accept, reject, or non-commitment. The third option may also be referred
to as a deferment decision that requires further judgments. Three-way decisions have been proved
to build on solid cognitive foundations and are a class of effective ways commonly used in human
problem solving and information processing [31]. Many soft computing models for leaning uncertain
concepts, such as interval sets, rough sets, fuzzy sets and shadowed sets, have the tri-partitioning
properties and can be reinvestigated within the framework of three-way decision [30].

Hard clustering methods do not address satisfactorily the uncertain relationships between an
element and a cluster. It is more reasonable in some applications that there may be three types of
relationships between an element and a cluster, namely, belong-to fully, belong-to partially (i.e., also
not belong-to partially), and not belong-to fully. In most of the existing studies, a cluster is represented
by a single set and the set naturally divides the space into two regions. Objects belong to the cluster if
they are in the set, otherwise they do not. Here, only two relationships are considered and we refer
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to these clustering methods based on such two-way decisions as hard clustering methods. In order
to address the three types of relationships between a cluster and an object, three-way clustering has
been proposed and studied [32–34]. Three-way clustering uses two regions to represent a cluster,
i.e., core region (Co) and fringe region (Fr) rather than one set. The core region is an area where the
elements are highly concentrated of a cluster and fringe region is an area where the elements are
loosely concentrated. There may be common elements in the fringe region among different clusters.

This paper aims at presenting a three-way clustering method based on the results of hard
clustering. The idea comes from cluster ensemble and three-way decision. Because different algorithms
or different parameters for a hard algorithm may lead to different clustering results. It is hard to judge
which structure best matches the real distribution without supervised information. Therefore, we
integrate multiple clustering results and lead to a three way clustering algorithm. In the proposed
algorithm, hard clustering methods are used to produce different clustering results and label matching
is used to align each clustering result to a given order. Different from the other three-way clustering
algorithms, which use evaluation functions to decide the core region and fringe region, we regard the
intersection of the clusters with same order as the core region. The difference between the union and
the intersection of the clusters with the same order are regarded as the fringe region of the specific
cluster. Therefore, a three-way explanation of the cluster is naturally formed.

The present paper is based on, but substantially expands, our preliminary study reported in a
conference paper [35]. The study is organized into five sections. We start with brief preliminaries of
the background knowledge in Section 2. In Section 3, we present the process of three-way ensemble
clustering by two main steps. Experimental results are reported in Section 4. We conclude the paper
and point out some future research problems in Section 5.

2. Preliminaries

In this section we briefly introduce some work related to this paper. These include three-way
clustering and cluster ensemble.

2.1. Three-Way Clustering

Hard clustering algorithms usually represent a cluster by a single set based on a two-way decision
strategy, which does not address satisfactorily the uncertain relationship between an element and a
cluster. In fact, it is more reasonable in some applications that there are three types of relationships
between an object and a cluster, namely, belong-to definitely, not belong-to definitely, and uncertain.
It is more appropriate to use three regions to represent a cluster than using one set. Inspired by the
theory of three-way decisions, Yu [33,34] had proposed a framework of three-way cluster analysis
which describes a cluster by a pair of sets or three sets. The use of three regions to represent a
cluster is more appropriate than the use of a set, which also directly leads to a three-way decision
based interpretation of clustering. Rough clustering assumes that an object must belong to one lower
approximation or intersection of two upper approximations [36]. It seems to be more realistic for
three-way clustering to assume that an object can belong to one core region at most or one fringe region
at least.

We introduce some basic knowledge about three-way clustering. Assume that C = {C1, · · · , Ck}
is a family clusters of universe V = {v1, · · · , vn}. A hard clustering requires that Ci satisfies the
following properties:

(i) Ci 6= φ, i = 1, · · · , k,

(ii)
k⋃

i=1

Ci = V,

(iii) Ci
⋂

Cj = φ, i 6= j.
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Property (i) states that each cluster cannot be empty. Properties (ii) and (iii) state that every v ∈ V
belongs to only one cluster. In this case, C is a partition of the universe. Different from the general crisp
representation of a cluster, three-way clustering uses a pair of sets to represent a three-way cluster
Ci, i.e.,

Ci = (Co(Ci), Fr(Ci)),

where Co(Ci) ⊂ V and Fr(Ci) ⊂ V. Let Tr(Ci) = V − (Co(Ci) ∪ Fr(Ci)). The three sets, Co(Ci), Fr(Ci)

and Tr(Ci) naturally form the Core Region, Fringe Region, and Trivial Region, respectively, of a cluster.
That is:

CoreRegion(Ci) = Co(Ci),

FringeRegion(Ci) = Fr(Ci),

TrivialRegion(Ci) = V − (Co(Ci) ∪ Fr(Ci)).

CoreRegion(Ci) is the set of the objects which belong to the cluster Ci definitely; FringeRegion(Ci)

is the set of the objects which might belong to Ci and TrivialRegion(Ci), is the set of the objects which
does not belong to Ci definitely. These subsets have the following properties.

Tr(Ci) ∪Co(Ci) ∪ Fr(Ci) = V,

Co(Ci) ∩ Fr(Ci) = φ,

Co(Ci) ∩ Tr(Ci) = φ,

Fr(Ci) ∩ Tr(Ci) = φ.

If Fr(Ci) = φ, the representation of Ci turns into Ci = Co(Ci). It is a set and Tr(Ci) = U −Co(Ci).
This is a representation of two-way decision. The representation of a cluster by a single set is a special
case of three-way cluster in which the fringe regions are the empty set.

For different applications, we can adopt different requirements on Co(Ci) and Fr(Ci). In this
paper, we use the following properties:

(I) Co(Ci) 6= φ, i = 1, · · · , k,

(II)
k⋃

i=1

(Co(Ci) ∪ Fr(Ci)) = V,

(III) Co(Ci) ∩Co(Cj) = φ, i 6= j.

Property (I) demands that each cluster cannot be empty. Property (II) states that it is possible that
an element v ∈ V belongs to more than one cluster. Property (III) requires that the core regions of
clusters are pairwise disjoint. Based on the above discussion, we have the following family of clusters
to represent the result of three-way clustering:

C = {(Co(C1), Fr(C1)), (Co(C2), Fr(C2)), · · · , (Co(Ck), Fr(Ck))}.

Note that the properties of C can be obtained from properties (I)-(III).

2.2. Cluster Ensemble

Cluster ensemble is a framework for combining multiple clusterings of a set of objects without
accessing the original features of the objects. This problem was first proposed in a knowledge
reuse framework by Strehl and Ghosh [19], who applied it for improving clustering quality and
for distributed clustering. The problem of clustering ensemble can be considered as the optimization
problem where, given a set of objects V and m clusterings C1, · · · ,Cm on V, compute a new clustering
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C that minimizes the total number of disagreements with all the given clusterings. The procedure can
be described by Figure 2.

Universe 

Clustering algorithm 1

Clustering algorithm 2

Clustering algorithm 3

...

Clustering algorithm m

Clustering results 1

Clustering results m

...

Clustering results 3

Clustering results 2

Ensemble 
results

Consensus 
functions

Figure 2. Procedure diagram of cluster ensemble.

There are two problems during the process of clustering ensemble: (1) how to generate a number
of different clustering results; (2) how to design a valid consensus function to integrate the clustering
results, and get a data partition which can reflect the structure of the data set. For the first problem,
we can use different clustering methods or the same clustering methods with different parameters
to generate different clustering results. So the pivotal problem of cluster ensemble is construction of
consensus function. Many different methods, such as voting method, hypergraph division, probability
accumulation and so on, were developed to construct consensus function since the framework of
cluster ensemble was proposed. However, most of the existing methods are focused on integrating hard
clusterings into hard clustering or integrating soft clusterings into soft clustering. There are relatively
few studies on integration of hard clustering into soft clustering. Based on the hard clustering results,
we present a three-way clustering method using the ideas of cluster ensemble and three-way decision.

3. Three-Way Ensemble Clustering

By following ideas of cluster ensemble and three-way decision, we present a three-way ensemble
clustering algorithm. In this section, we assume that the universal has been divided into k disjoint sets
m times by existing hard clustering algorithms. We discuss how to design a valid consensus function
to obtain a three-way clustering based on the hard clustering results.

We begin our discussion by introducing some notations. We suppose that V = {v1, · · · , vn} is
a set of n objects and Ci, (i = 1, · · ·m), denotes i−th clustering of V, where Ci = {Ci1, · · · , Cik} is a
hard clustering results of V, that is,

⋃k
i=1 Ci = V and Ci

⋂
Cj = φ (i 6= j). The k sets Ci1, · · · , Cik are

clusters of C. Although we have obtained the clustering results of V, Ci cannot be directly used for the
conclusion of the next stage due to the lack of priori category information. As an example, we consider
the data set V = (v1, v2, v3, v4, v5, v6) and let C1,C2 and C3 be three clusterings of V which are shown
in Table 1. Although the objects are expressed in different orders, they represent the same clustering
result. In order to combine the clustering results, the cluster labels must be matched to establish the
correspondence between each one.

Table 1. Different representations of the same clustering results.

C1 C2 C3

v1 1 2 3
v2 1 2 3
v3 2 3 2
v4 2 3 2
v5 3 1 1
v6 3 1 1
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In general, the number of identical objects covered by the corresponding cluster labels should be
the largest. The cluster labels can be registered based on this heuristic. Assume C1 and C2 are two
hard clustering results of V. Each divides the data set into k clusters denoted by {C11, · · · , C1k} and
{C21, · · · , C2k}, respectively. First, the numbers of identical objects covered by each pair of cluster
labels C1i and C2j in the two clusters are recorded in the overlap matrix of k× k. Then select the cluster
label that covers the largest number of identical objects to establish the correspondence and remove the
result from the overlap matrix. Repeat the above process until all the cluster labels have established
the corresponding relationship.

When there are m(m > 2) clustering results, we can randomly select one as the matching criterion
and match the other clustering results with the selected results. The matching algorithm only needs
to check the m − 1 clustering results and and store the overlap matrix with the storage space of
(m− 1)× k2. The whole matching process is fast and efficient.

After all clustering labels match, all objects of V can be divided into three types for a given label j
based on the results of labels matching:

Type I = {v | ∀i = 1, · · · , m, v ∈ Cij},
Type II = {v | ∃i 6= p, i, p = 1, · · · , m, v ∈ Cij ∧ v /∈ Cpj},

Type III = {v | ∀i = 1, · · · , m, v /∈ Cij}.

From the above classifications, it can be seen that the objects in Type I are assigned to j−th cluster
in all clustering results. The objects of Type II are assigned to j−th cluster in part of clustering results.
The objects in Type III have no intersection with j−th in each clustering result. Based on the ideas
of three-way decision and three-way clustering, the elements in Type I are clearly attributable to the
j−th cluster and should be assigned to core region of j−th cluster. The elements in Type II should be
assigned to fringe region of j−th cluster and all the elements in Type III should be assigned to trivial
region of j−th cluster. From the above discussion, we get the following strategy to obtain a three-way
clustering by cluster ensemble.

Co(Cj) = {v | ∀i = 1, · · · , m, v ∈ Cij} =
m⋂

i=1

Cij,

Fr(Cj) = {v | ∃i 6= p, i, p = 1, · · · , m, v ∈ Cij ∧ v /∈ Cpj} =
m⋃

i=1

Cij −
m⋂

i=1

Cij.

The above clustering method is called a three-way ensemble clustering. The procedure of
three-way ensemble clustering consists mainly of three steps.

1. Obtain a group of hard clustering results Ci, (i = 1, · · ·m) by using existing methods.
2. Randomly select one clustering result in step 1 as the matching criterion and match the other

clustering results with the selected results
3. Compute the intersection of the clusters with the same labels and the difference between the

union and the intersection of the clusters with the same labels.

The above procedure can be depicted by Figure 3. Finally, we present Algorithm 1, which
describes the proposed three-way ensemble clustering based on hard clustering results. In Algorithm 1,
we choose the first clustering results C1 as matching criterion and match the other clustering results
with C1 during label matching.
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Figure 3. Procedure diagram of three-way ensemble re-clustering.

Algorithm 1 Three-way ensemble clustering

1: Input: m hard clustering results C1, · · · ,Cm
2: Output: Three-way ensemble re-clustering result

C = {(Co(C1), Fr(C1)), (Co(C2), Fr(C2)), · · · , (Co(Ck), Fr(Ck))}
3: for each Ci in {Ci}, i = 2, · · · , m do

4: for j = 1 to k, p = 1 to k do

5: overlap (j, p)=Count (Cij, C1p);

//overlap is a k× k matrix;

//Count (Cij, C1p) counts the number of same elements of Cij and C1p
6: end for
7: Γ = φ
8: while Γ 6= {Ci1, Ci2, · · · , Cik} do

9: (u, v)=argmax(overlap(j, p)) //(u, v) is the biggest element
10: Ciu = Civ //align Ciu to C1v
11: Delete overlap(u, ∗)
12: Delete overlap(∗, v)
13: Γ = Γ ∪ {Ciu}
14: end while
15: end for
16: for j = 1 to k do

17: Calculate Co(Cj) =
m⋂

i=1
Cij

18: Calculate Fr(Cj) =
m⋃

i=1
Cij −

⋂m
i=1 Cij

19: end for
20: return C = {(Co(C1), Fr(C1)), (Co(C2), Fr(C2)), · · · , (Co(Ck), Fr(Ck))}

4. Experimental Illustration

4.1. Evaluation Measures

The evaluation of clustering, also referred to as cluster validity, is a crucial process to assess the
performance of the learning method in identifying relevant groups. A good measure of cluster quality
will help in allowing the comparison of several clustering methods and the analysis of whether one
method is superior to another one. The following quantitative indices are often used to evaluate the
performance of clustering algorithms.

1. Davies-Bouldin index [37,38] (DB hereafter).

DB =
1
c

c

∑
i=1

max
j 6=i

{
S(Ci) + S(Cj)

d(xi, xj)

}
(1)

where S(Ci) and d(xi, xj) are the intra-cluster distance and the inter-cluster separation, respectively.
S(Ci) is defined as follows:

S(Ci) =
∑v∈Ci

‖ v− xi ‖
| Ci |

. (2)
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As a function of the ratio of the within cluster scatter to the between cluster separation, a lower
value will mean that the clustering is better.

2. Average Silhouette index [39] (AS hereafter).

AS =
1
n

n

∑
i=1

Si, (3)

where n is the total number of objects in the set and Si is the silhouette of object vi, which defined as,

Si =
bi − ai

max{ai, bi}
, (4)

ai is the average distance between xi and all other objects in its own cluster, and bi is the minimum of
the average distance between xi and objects in other clusters.

The silhouette of each object shows which objects lie well within their cluster, and which
ones are merely somewhere in between clusters. The average silhouette provides an evaluation
of clustering validity. The range of the average silhouette index is [−1, 1]. A higher value means a
better clustering result.

3. Accuracy (ACC hereafter).

ACC =
k

∑
c=1

nj
c

n
. (5)

where nj
c is the number of common objects in the c−th cluster and its matched class j after obtaining a

one-to-one match between clusters and classes. The partition with highest ACC is taken to be optimal.
The value is equal to 1 only when the clustering result is same as the ground truth.

Most of the above indices are used to evaluate the efficiency of two-way clustering. In three-way
clustering, a cluster is represented by core region and fringe region rather than one set. In order to
apply the above indicators to three-way clustering, we use all core regions to form a non-overlap
clustering result. Simultaneously, we use the unions of core region and fringe region to form an overlap
clustering result. We compute the above indices with two clustering results respectively. A better
three-way clustering result should have a lower DB value, a lower ACC value and a higher AS value
on core region.

4.2. Efficiency of Proposed Algorithms Based on c-Means

To illustrate the effectiveness of Algorithm 1, eight UCI [40] data sets are employed in this
subsection. The details of these data sets are shown in Table 2.

Table 2. A description of USPS data sets in the experiments.

ID Data Sets Samples Attributes Classes

1 Bank 1372 4 2
2 Congress 435 16 2
3 Hill 1212 100 2
4 WDBC 569 30 2
5 Wine 178 13 3
6 Seeds 310 6 2
7 Forest 523 27 4
8 Sonar 2008 60 2

In the first set of experiments, we use c-means algorithm on each data set to obtain hard clustering
results and repeat 10 times with different initial centroids. For the sake of a clear presentation, the
average performances and the best performances of DBI, AS and ACC in 10 times runs are reported
in Tables 3 and 4. Base on the results of c-means, we use the proposed three-way ensemble clustering
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algorithm to obtain the core regions and fringe regions. In order to identify the quality of three-way
ensemble clustering, we use all core regions to form a non-overlap clustering result, which is called
core region clustering result. Simultaneously, we use the unions of core regions and fringe regions
to form an overlap clustering result, which is called union region clustering result. We compute the
above indices for the two clustering results, respectively. The results are presented in Tables 5 and 6.

Table 3. Best performances of c-means in 10 times runs.

Data Set DB AS ACC

Bank 1.1913 0.3308 0.5752
Congress 1.4850 0.2799 0.8671

Hill 0.4080 0.8716 0.5091
WDBC 1.1363 0.3845 0.9279
Wine 1.3147 0.3002 0.9522
Seeds 0.8771 0.4221 0.8867
Forest 1.2814 0.2502 0.7822
Sonar 2.0922 0.1751 0.5418

Table 4. Average performances of c-means in 10 times runs.

Data Set DB AS ACC

Bank 1.1911 0.3311 0.5758
Congress 1.4709 0.2800 0.8713

Hill 0.4080 0.8716 0.5091
WDBC 1.1363 0.3845 0.9279
Wine 1.3086 0.3013 0.9719
Seeds 0.8759 0.4221 0.8905
Forest 1.2775 0.2517 0.7916
Sonar 1.9807 0.2087 0.5625

Table 5. Performances of three-way ensemble clustering on core region clustering result by
using c-means.

Data Set DB AS ACC

Bank 1.1850 0.3334 0.5722
Congress 1.3890 0.2988 0.8529

Hill 0.4080 0.8716 0.5091
WDBC 1.1363 0.3845 0.9279
Wine 1.2430 0.3250 0.9213
Seeds 0.8727 0.4251 0.8857
Forest 1.2706 0.2578 0.7725
Sonar 1.5122 0.2733 0.3558

Table 6. Performances of three-way ensemble clustering on union region clustering result by
using c-means.

Data Set DB AS ACC

Bank 1.1975 0.3299 0.5765
Congress 1.5785 0.2701 0.8851

Hill 0.4080 0.8716 0.5091
WDBC 1.1363 0.3845 0.9279
Wine 1.3925 0.2856 0.9721
Seeds 0.8805 0.4210 0.8906
Forest 1.2994 0.2465 0.7917
Sonar 3.5083 0.0845 0.7308
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With a deep investigation of Tables 3–6, we can find that the performances on Hill and WDBC
are the same. This is because the clustering results of c-means in 10 times runs are the same. All the
objects are assigned to core regions and the fringe regions are empty according to three-way ensemble
clustering strategy. On the other data sets, three-way ensemble clustering performs the lowest DB
values on core region clustering result. The improvement can be attributed to the fact that core region
clustering result helps to increase the degree of separation between clusters since objects in fringe
regions have been successfully marked out. Conversely, DB values of three-way ensemble clustering
on union region clustering result are higher because the inclusions of objects in fringe regions decrease
the degree of separation between clusters. The same is true for AS. As for ACC, the performances on
union region clustering result are the highest since the number of common objects in the union of core
region and fringe region and its matched class are obviously higher than the original cluster.

4.3. Efficiency of Proposed Algorithms Based on Spectral Clustering

Spectral clustering [41] is another hard clustering method based on graph theory. One of the
spectral clustering algorithms is NJW algorithm [42], which uses the following Gaussian kernel
function to compute similarity function.

wij = exp(−
d2(vi, vj)

2σ2 ),

where σ is a scale parameter and d(vi, vj) is the Euclidean distance. In the second set of experiments,
we use NJW algorithm to obtain hard clustering results. The experiments are repeated 60 times
with σ changed from 0.7 to 1.3, each time increased by 0.01. The average performances and the best
performances of DBI, AS and ACC in 60 times runs are reported in Tables 7 and 8. Similarly, the
performances of three-way ensemble clustering based on spectral clustering results are computed,
which are presented in Tables 9 and 10.

Table 7. Average performances of spectral clustering in 60 times runs.

Data Set DB AS ACC

Bank 1.2002 0.3238 0.6144
Congress 1.4819 0.2794 0.8633

Hill 0.4882 0.8534 0.5145
WDBC 1.1753 0.3629 0.9262
Wine 1.3069 0.3011 0.9664
Seeds 0.8751 0.4159 0.9267
Forest 1.3597 0.2209 0.7677
Sonar 2.1188 0.1578 0.5563

Table 8. Best performances of spectral clustering in 60 times runs.

Data Set DB AS ACC

Bank 1.2002 0.3238 0.6144
Congress 1.4730 0.2794 0.8736

Hill 0.4110 0.8710 0.5206
WDBC 1.1743 0.3639 0.9279
Wine 1.3069 0.3011 0.9719
Seeds 0.8723 0.4188 0.9333
Forest 1.3176 0.2356 0.7916
Sonar 2.1165 0.1584 0.5625
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Table 9. Performances of three-way ensemble clustering on core region clustering result by using
spectral clustering.

Data Set DB AS ACC

Bank 1.2002 0.3238 0.6144
Congress 1.4207 0.2921 0.8552

Hill 0.3665 0.9187 0.4835
WDBC 1.1726 0.3644 0.9262
Wine 1.3002 0.3041 0.9663
Seeds 0.8406 0.4381 0.9048
Forest 0.9456 0.1446 0.4398
Sonar 2.0345 0.1687 0.5240

Table 10. Performances of three-way ensemble clustering on union region clustering result by using
spectral clustering.

Data Set DB AS ACC

Bank 1.2002 0.3238 0.6144
Congress 1.5402 0.2732 0.8782

Hill 0.6126 0.8310 0.5462
WDBC 1.1771 0.3625 0.9279
Wine 1.3178 0.2997 0.9719
Seeds 0.9121 0.4096 0.9381
Forest 2.1507 0.0506 0.8222
Sonar 2.2176 0.1500 0.5625

From Tables 7–10, it is not difficult to observe that three-way ensemble clustering performs the
lowest DB values and the highest AS values on core region clustering result. The best ACC values are
obtained on union region clustering result of three-way ensemble clustering. The relation is true with
the results of c-means. This conclusion means that the exclusions of objects in fringe regions increase
the degree of separation, while the inclusions of objects in fringe regions increase the accuracy of the
clustering result.

5. Concluding Remarks

In this paper, we developed a three-way ensemble clustering method by employing the ideas
of three-way decisions and cluster ensemble. Hard clustering methods are used to produce different
clustering results and cluster labels matching is used to align each clustering result to a given
order. The intersection of the clusters with the same labels are regarded as the core region and
the difference between the union and the intersection of the clusters with the same labels are regarded
as the fringe region of a specific cluster. Based on the above strategy, a three-way explanation
of the cluster is naturally formed and experimental results demonstrate that the new algorithm
can significantly improve the structure of classification results by comparing with the traditional
clustering algorithm. The present study is the first step for the research of three-way clustering.
The following two problems will be an interesting topic to be addressed for further research. First,
in the proposed three-way algorithm, the number of clusters is given in advance. However, how to
determine the number of clusters needs further attention. Second, multi-granulation is a recent topic
in granular computing which can be used for the constructing approximations with respect to multiple
granulations. Our proposed algorithm is based on a single granulation. How to develop three-way
clustering based on multigranulations needs further attention.
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