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Abstract: Incorporating obstacle information into maneuvering target-tracking algorithms may 
lead to a better performance when the target when the target maneuver is caused by avoiding 
collision with obstacles. In this paper, we propose a fuzzy-logic-based method incorporating new 
obstacle information into the interacting multiple-model (IMM) algorithm (FOIA-MM). We use 
convex polygons to describe the obstacles and then extract the distance from and the field angle of 
these obstacle convex polygons to the predicted target position as obstacle information. This 
information is fed to two fuzzy logic inference systems; one system outputs the model weights to 
their probabilities, the other yields the expected sojourn time of the models for the transition 
probability matrix assignment. Finally, simulation experiments and an Unmanned Aerial 
Vehicle experiment are carried out to demonstrate the efficiency and effectiveness of the 
proposed algorithm. 

Keywords: target tracking; multiple model estimation; obstacle information; fuzzy inference 
 

1. Introduction 

The Multiple-Model (MM) algorithm is an effective approach to maneuvering target tracking in 
many real-world applications [1], that works by regarding the maneuvering as the transition to 
motion modes and describes them by a finite number of kinematic models. The MM algorithm can 
be categorized into three generations: autonomous, cooperative, and variable-structured. For the 
first generation, all model filters in a fixed-structure model set work independently without 
interacting with each other. Its representative is the Static Multiple Model (SMM) algorithm 
pioneered by Magill [2]. The second generation reinitializes each filter with a weighted sum of the 
updated estimates from every model in the set and merges their results. Its popularization and 
further development have been spearheaded by the interacting MM (IMM) algorithm, which was 
proposed by Bar-Shalom and Blom [3]. The performance of the IMM algorithm suffers when there 
are too many motion models that overlap and compete with each other [4–6]. To solve this problem, 
X. Rong Li proposed the third-generation MM algorithm, i.e., the variable-structure multiple-model 
(VSMM) algorithm [7]. The model set within this model can be adaptively adjusted according to the 
changes in the motion mode of the target [8–10]. 

The target motion mode may change to avoid obstacles. For example, an automated guided 
vehicle (AGV) will change the way forward to bypass buildings and objects on the ground; a general 
aviation aircraft will change direction to avoid no-fly zones, bad meteorological zones along a route, 
etc. For the type of maneuvering that is performed in order to avoid all obstacles, existing research 
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shows that a combination of the obstacle information and the MM algorithm can achieve a better 
tracking performance [11–13]. 

According to the description of the obstacles, incorporating the available obstacle information 
into the MM algorithms can be divided into two categories: implicit and explicit. In the implicit 
category, instead of obstacles, a permitted range of motion is given. For example, road information is 
used to adjust the model set in References [13–15], in which areas that are off of the road are 
considered to be obstacles. In addition to model set adjustment, a modification of the model 
probability (MP) and the model transition probability matrix (TPM) are presented in references [16] 
and [17], where guard conditions on waypoints that must be flown over, are used to alter the update 
of the MP and/or the TPM. In the explicit category, the range of obstacles is given directly. For 
example, circular obstacles are presented in the state-dependent variations of the interacting 
multiple-model (SD-IMM) algorithm by Rastgoufard [11]. The SD-IMM algorithm uses the distances 
between the target position and the obstacles as auxiliary information to modify the MP in the 
updating step and the TPM in the mixing step of the IMM algorithm. Its performance is always 
clearly better than that of the traditional version [12]. 

Using circles to describe obstacles is attractive because of its simplicity in computing, but it may 
mistake non-obstacle areas as obstacle areas. Furthermore, the SD-IMM algorithm gives the same 
adjustment value for the same distance between a target and obstacle circles with different radiuses. 
However, for obstacles with different sizes, evasive maneuvering should be different, since the 
target may require slighter maneuvers to bypass small obstacle circles than it does to bypass large 
obstacle circles. 

To solve the problems mentioned above, we use polygons to describe the obstacles and 
introduce a new piece of obstacle information, i.e., the field angle. Fuzzy inference systems are 
applied to simplify the complex relationship between the obstacle information and the update of the 
MP and TPM; thus, a fuzzy-logic-based, obstacle information-aided multiple-model (FOIA-MM) 
algorithm is presented.  

The rest of this paper is structured as follows: a brief introduction to the stochastic model and 
the improvement of the SD-IMM algorithm is presented in Section 2. In Section 3, the obstacle 
information description is given first, followed by the method to adjust MP and TPM, through their 
utilization. In Section 4, the performance of the proposed algorithm is compared with that of the 
SD-IMM algorithm by simulation and is illustrated by a UAV experiment, the results of which show 
that the proposed algorithm is effective and efficient. Finally, the conclusions are presented in 
Section 5. 

2. Outline of the SD-IMM algorithm 

This section presents the stochastic model and the improvement of the SD-IMM algorithm. 

2.1. Stochastic Model 

In the SD-IMM algorithm, the maneuvering target is typically modeled through “hybrid 
systems”, which means the target state is a continuous process, while its motion modes are 
described as a finite model set. Assuming that there are r models matching the motion mode 
currently in effect, 𝑀 = {𝑚 , 𝑚 , 𝑚 , … 𝑚 }, the dynamics equation and the measurement equation 
are, respectively, defined by: 

( ) ( )i i i i
k+1 k k k k kx = F m x + w m  (1) 

( ) ( )i i i i
k k k k k kz = H m x + v m  (2) 

where 𝒙 denotes an n-dimensional state vector, and z denotes an m-dimensional measurement 
vector; 𝑭 (∙)  and 𝑯 (∙)  are the state transition function and the measurement function, 
respectively; 𝑖 ∈ {1,2, ⋯ , 𝑟},  𝑚  is the i-th adopted model at time k. The random variables 𝒘  
and 𝒗  represent the process noise and the measurement noise, respectively. They are mutually 
independent zero-mean Gaussian white noise with covariance cov 𝒘 = 𝑸  and cov 𝒗 = 𝑹 . 
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The transition between different models is typically regarded to as Markov chain. The model 
transition probability 𝑝  is given by: 

1( | )i j
ji k kp P m m −=  (3) 

where 𝑚  is the j-th adopted model at time k-1. 

2.2. Improvement in the SD-IMM Algorithm 

The SD-IMM algorithm improves the IMM algorithm by applying the state-dependent obstacle 
information to adjust the MP and TPM. Suppose that there are P circular obstacles, each with the 
radius 𝑟  and the center (𝑥 , 𝑦 ), 𝑙 ∈ {1,2,∙∙∙, 𝑃}; 𝑑 (𝒙), the distance between the position of the state x 
and the i-th obstacle, can be calculated as: 

2 2
l l l ld x x y y r= − + − −( ) ( ) ( )x  (4) 

where (x, y) is the position of the elements in x. 
The influence level of the l-th obstacle circle on the state x is defined as: 

1
1 ld

S l
e β−=

+ ( ( ))( , ) xx  (5) 

where 𝛽 is the shape of the parameter. Thus, the obstacle information, 𝑆(𝒙), can be obtained by: 

1 l p
S S l

≤ ≤
=( ) min ( , )x x  (6) 

Unlike the traditional IMM, the SD-IMM algorithm adjusts the update of MP 𝜇  and TPM=[𝑝 , ] 
as follows: 

1
1

1

i i i
k k k ki i i

k k k kj j j
k k k k

j

s
s S

s
μ

μ
μ

−
−

−

Λ
= =

Λ
|

|
|

ˆ, (x )  (7) 

1 1
1 1

1 1

ji
ji k k k ji ji

ji k k k k kji
ji k k k

j

p s
p s S

p s
− −

− −
− −

= =


, |
, | |

, |

ˆ, (x )  (8) 

where Λ  is the likelihood of model 𝑚 ; 𝐱 |  is the predicted state of model 𝑚 ; 𝐱 |  is the 
updated state of model 𝑚 . This adjustment incorporates the obstacle information into the IMM 
algorithm and thus makes the SD-IMM algorithm achieve a better tracking performance [12]. 

3. FOIA-MM Algorithm 

Although the SD-IMM algorithm outperforms the traditional IMM algorithm in the obstacle 
scene, it has two main shortages: one is the mistake of viewing the non-obstacle areas as obstacle 
areas by using circles to describe them. As shown in Figure 1, the shaded parts are non-obstacle 
areas that are mistaken as obstacle areas. The crosses represent the true positions of the target, while 
the small circles show the estimates made by the SD-IMM algorithm. It shows that the SD-IMM 
algorithm makes several wrong estimates for taking a triangular obstacle as a circular obstacle. This 
shortage may lead to large errors in the estimation or to unnecessary maneuvers in the navigation. 
The other shortage is the insufficiency of utilizing only the distance between a target and obstacle 
circles in order to adjust the MP and TPM. Since a target’s evasive maneuvering for avoiding small 
obstacles must be slighter than that for large obstacles, the target needs a big turn rate to bypass a 
large circular obstacle and a little turn rate to bypass a small circular obstacle. As shown in Figure 2, 
Target (1) takes a greater turn rate than Target (2) (𝛽(1) > (𝛽(2)) to bypass obstacles of different sizes 
when they are at the same distance from the obstacles. The angles 𝛽(1) and 𝛽(2) are defined as the 
field angles, which are relative to Area (1) and Area (2). 
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Figure 1. State-dependent variations of the interacting multiple-model (SD-IMM) algorithm scenario, 
with estimates at the obstacle area (three error estimates). 

 
Figure 2. Target’s evasive maneuvering for different-size obstacles (D(1) = D(2),β(1)>β(2)). 

To overcome the above two shortages, we applied polygons to describe the obstacles and used a 
new metric, the field angle (the angular extent of the obstacle viewing at target position), which was 
designed to reflect the size of the obstacles. Both the distance and the field angle were used to adjust 
the MP and the TPM in the proposed algorithm. For targets at the same distance to obstacles with 
different sizes, the bigger the field angle, the stronger the target maneuvers, and vice versa. It is hard 
to express this qualitative relationship mathematically, so fuzzy inference was employed. The fuzzy 
inference has been successfully applied to target tracking problems and has achieved good 
performance [18,19]. On the basis of the improvements mentioned above, we propose the 
fuzzy-logic-based obstacle information-aided multiple-model (FOIA-MM) algorithm. 

 
Figure 3. The schematic block diagram of the fuzzy-logic-based obstacle information-aided 
multiple-model (FOIA-MM) algorithm. 
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Figure 3 shows the schematic block diagram of the proposed algorithm. First, the obstacle 
information, i.e., the distance 𝑆  and the field angle 𝐵𝒌, are calculated according to the predicted 
target position. Next, the obstacle information is fed into two fuzzy logic inference systems: one 
system outputs the model weights to their probabilities, the other yields the expected sojourn time of 
the models for the assignment of TPM. At last, the target state estimation is obtained through MM 
filtering. More details can be found in the following section. 

3.1. Obstacle Information Descriptions 

In practical applications, many obstacles have various shapes. However, in order to avoid a too 
large computational load, the FOIA-MM algorithm simplifies the shape of the obstacle into a 
polygonal shape. A concave polygon will produce abrupt changes in practical applications, which 
will greatly affect the tracking performance and even reduce the tracking performance. If it is a 
concave polygon, it must first be filled as a convex polygon. The convex polygon used in this 
algorithm is enough to cover the shape of obstacles. To simplify, for obstacles with a non-linear 
shape, this study used a convex polygon, which can best cover their shape. The FOIA-MM algorithm 
will declare all polygons as convex polygons. 

Suppose there are P obstacle convex polygons in the motion scene. The predicted target 
position is 𝐱 | . The distance D(j) from 𝐱 |  to the j-th obstacle Area(j) is calculated as follows: 

| 1( )
( ) inf || ||k kArea j
D j −∈

= −
y

x y  (9) 
Where ‖ ‖ is the Euclidean norm. The field angle, 𝛽(𝑗), relative to D(j), is half the sum of the angular 
extent of all the sides of Area(j) viewing at x | , 𝛽(𝑗) = ∑ 𝛽  (𝛽  is the angular extent of the i-th 
side of Area(j)). The following rules can be obtained according to geometric knowledge. An example 
of the scene is shown in Figure 4. It has three obstacle areas; the dark point T is x | . 𝛽(3)is the 
biggest field angle between x |  and the three obstacle areas. 

| 1

| 1

( ) ,  is inside the obstacle area
( ) , is outside the obtascle area

k k

k k

j
j

β π
β π

−

−

=
 <  

x
x

 (10) 

 
Figure 4. Distance between x_(k|k-1) and obstacle convex polygons (D(3) < (D(1), D (2))); field angle 
between 𝐱 | and obstacle convex polygons (𝛽(3) > ( 𝛽(1), 𝛽(2))). 

As the target moves far away from the obstacle area, 𝛽(𝑗) approaches zero. Based on the 
distance D(j) and the field angle 𝛽(𝑗), the obstacle information 𝐵  and 𝑆  can be calculated as 
follows: 

k kB j S D jβ= =( *) ( *)  (11) 
where 
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1
arg min ( )

j P
j D j

≤ ≤
∗ =  (12) 

An example of the scene is shown in Figure 4. It has three obstacle areas; the dark point T is 𝐱 | . D(3) is the shortest distance between 𝐱 |  and three obstacle areas. Therefore, the obstacle 
information is 𝑆 = D(3) and 𝐵 = 𝛽(3). 

3.2. MP Update 

Suppose 𝐽  is the weight of model 𝑚 , which reflects the influence of the obstacles on the MP. 
The weighted model probability of 𝜇  is [11]: 

1
1

1
C

r
i i i j
k k k ji k

j
J pμ μ −

=

= Λ   (13) 

where C is a normalizing factor, and 𝜇  is the model probability at the time k-1.  
The relationship between 𝐽  and the obstacle information (𝑆 , 𝐵 ) is not easy to quantify, so 𝐽  

is acquired by using fuzzy inference in the proposed algorithm. The fuzzy inference system has two 
inputs, 𝑆  and 𝐵 , and one output, 𝐽 . The universe of discourse of 𝑆  is mapped into three fuzzy 
sets: near (NE), medium (ME), and far (FA), as shown in Figure 5. That of 𝐵  is also divided into 
three fuzzy sets: small positive (SP), medium positive (MP), and large positive (LP), as shown in 
Figure 6. The universe of discourse of 𝐽  is partitioned into five fuzzy sets, labeled in the linguistic 
terms of zero (ZE), low (LOW), medium (ME), high (HI), and very high (VH), as shown in Figure 7. 

 
Figure 5. Membership functions of fuzzy sets in distance 𝑆  (v is the current target velocity). 

 
Figure 6. Membership functions of fuzzy sets in field angle 𝐵 . 
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Figure 7. Membership functions of fuzzy sets in weight 𝐽 . 

The fuzzy inference rules for 𝐽  are described as follows. When 𝐱 |  is near the obstacle 
areas, 𝑆  is small and 𝐽  should be small. When 𝐱 |  is not near the obstacle areas, if 𝑆  
increases, 𝐽  should increase. If 𝐵  increases, which means that no matter how big an obstacle is, 
target tends to require higher maneuvers to avoid hitting the target, then 𝐽  should decrease. 

3.3. TPM Update 

The performance of the MM algorithm is related to the choice of the TPM [20], which is easily 
affected by the obstacle areas. Let 𝜏  be the expected sojourn time of the i-th model. The diagonal 
elements 𝑝  of the TPM are given by [21]: 

{ }1 2, ,

1

,

i
ii ki

k

SIp SI

i r

τ
τ

= −

∈

≥



 (14) 

where SI is the sampling interval. After 𝑝  has been determined, the off-diagonal elements 𝑝  of 
the TPM are given by: 

{ }

1
1

, 1,2, ,

ii
ji

i

p
p

j r
r

∈

−
=

−


 (15) 

The expected sojourn time, 𝜏 , of a model is the amount of time the model is expected not to 
change. It is apparently affected by obstacles or by (𝑆 , 𝐵 ). When 𝐱 |  is near the obstacle areas,  𝑆  is small, and 𝜏  should be small. When the target moves away from the obstacle areas, if 𝑆  
increases, 𝜏  should also increase. If 𝐵  increases, which means that no matter how big an obstacle 
is, target tends to require higher maneuvers to avoid hitting the target, then 𝜏  should decrease. 

According to the relationship between 𝜏  and (𝑆 , 𝐵 ) stated above, 𝜏  is acquired by using 
fuzzy inference in the proposed algorithm. For both 𝑆  and 𝐵 , the universe of discourse is mapped 
into three fuzzy sets, as shown in Figure 5 and Figure 6, respectively. The acquired 𝜏  is partitioned 
into five fuzzy sets, labeled in the linguistic terms of very short (VS), short (SH), medium (ME), long 
(LO), and very long (VL), as shown in Figure 8. 
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Figure 8. Membership functions of fuzzy sets in 𝜏  (expected sojourn time of the i-th model). 

3.4. The Iterative Process of the FOIA-MM Algorithm 

The FOIA-MM algorithm combines the obstacle information into the MM algorithm. The 
iterative process of the FOIA-MM algorithm is given in Table 1. Filters in it are Kalman filters. 

Table 1. The iterative process of the FOIA-MM algorithm. 
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k k k k k k k k k kμ− − − − − − − − − −= + − −P P x x x x  

2. Kalman filtering 
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− − − −= =x x M Z F x  
Predicted covariance: | 1 1 1 1 1( )i i i i T i
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4. Experimental Results and Analysis 
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In this section, simulation experiments were carried out to compare the performances of the 
FOIA-MM algorithm and the SD-IMM algorithm. A UAV experiment was also carried out to 
demonstrate the effectiveness of the proposed algorithm in real applications. 

4.1. Simulation Scenario 

The position and velocity were chosen as state elements in the target-tracking simulation. That 
is: 

[ , , , ]x x y y=  x  (16) 
where 𝑥, 𝑦 are the target coordinates, and 𝑥, 𝑦 are the velocities. The scenario was designed as 
shown in Figure 9. Three obstacles are labeled Area (1), Area (2), and Area (3). The thick black line 
indicates the boundary of the obstacle areas, while the thin black line shows the true target 
trajectory. Area (3) is relatively small with regard to Area (1) and Area (2). Position (1) and Position (2) 
have the same distance from the nearest obstacle Area (2) and Area (3). Position (1) has a larger field 
angle than Position (2), which leads to a larger turning maneuver to avoid hitting the obstacle. The 
initial state of the target is given by 𝒙𝟎= (180m, 0m/s, 49m, 30m/s). The target trajectory has nine 
phases, as shown in Table 2. These three obstacles were simplified into six circular obstacle areas in 
the SD-IMM algorithm, as shown in Figure 10, each with radius 𝑟  and center (𝑥 , 𝑦 ), 𝑙 ∈ {1,2, ⋯ ,6}. 
In this paper, the FOIA-MM algorithm simplified the obstacle into a convex polygon, and the 
SD-IMM algorithm simplified the obstacle into a circle. If an obstacle is covered with multiple 
circles, the number of circles needed is relatively large, which will greatly increase the 
computational complexity of the multiple-model algorithm with heavy computational load, and the 
real-time performance of the algorithm is difficult to be guaranteed. The target trajectory crossed 
over the circular obstacle areas several times. In the SD-IMM algorithm, when the target state 
estimation falls into the circular obstacle area, the weight of a model reaches the minimum. 

 
Figure 9. The target's true trajectory and motion scenario. 

Table 2. Motion models and durations of the target’s trajectory. 

Model CV CT 7 ° 𝑠 CV CT 7 ° 𝑠 CT 5 ° 𝑠 
Time（s） 1~22 23~27 28~46 47~60 61~67 

Model CT 7 ° 𝑠 CV CT 3 ° 𝑠 CV  
Time（s） 68~75 76~85 86~95 96~110  
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Figure 10. Scenario of the SD-IMM algorithm. 

The initial model set of the proposed algorithm and the SD-IMM algorithm consists of five 
models: a constant-velocity (CV) model and four coordinated-turn (CT) models with disparate turn 
rates: ω = 3 ° 𝑠 , ω = 5 ° 𝑠 , ω = 7 ° 𝑠 , ω = 5 ° 𝑠. The initial values of MP were [0.2, 0.2, 0.2, 
0.2, 0.2]. The dynamics matrix of the CT model is expressed by: 
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The initial values of TPM were 
0.9 0.025 0.025 0.025 0.025
0.05 0.8 0.05 0.05 0.05
0.05 0.05 0.8 0.05 0.05
0.05 0.05 0.05 0.8 0.05
0.05 0.05 0.05 0.05 0.8

 
 
 
 
 
 
  

 (18) 

The measurements included the zero-mean Gaussian noises with standard deviations of σ =30𝑚 and  σ = 40𝑚 in the simulation trajectory. Table 3 and Table 4 are the fuzzy rules used in the 
simulation. 

Table 3. Fuzzy rules for 𝑆 , 𝐵  and 𝐽 . 𝑱𝒌𝒊 𝑺𝒌
 𝑩𝒌 

 VN ME FA 
ZE ZE LOW HI MP ZE ME HI 
LP ZE LOW LOW 

Table 4. Fuzzy rules for 𝑆 , 𝐵  and 𝜏 . 𝝉𝒌𝒊  𝑺𝒌 

𝑩𝒌 

 VN ME FA 
ZE VS ME VL MP VS LO VL 
LP VS VS SH 
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4.2. Performance Comparison 

To evaluate the performance of the FOIA-MM algorithm, the root-mean-square error (RMSE) in 
the position and velocity was used. The results are the average of 50 Monte Carlo simulations. Figure 
11 and Figure 12 show the RMSE in position and velocity estimation, with measurement noise 
standard deviations of σ = 30 and σ = 40𝑚, respectively. Meanwhile, Figure 11 and Figure 12 
also show the distribution of the distance between the target’s true positions and the obstacle areas. 
They demonstrate that most RMSE of the estimation of the SD-IMM algorithm were larger than 
those of the proposed algorithm, especially when the target was close to the edge of the obstacle 
areas. When the measurement noise level was bigger, the performance of the proposed algorithm 
was better than that of the SD-IMM algorithm. The MP at Position (1) and Position (2) are shown in 
Table 5. The real-motion model at Position (1) is 𝐶𝑇 7 ° 𝑠, and that at Position (2) is 𝐶𝑇 3 ° 𝑠. As 
shown in Table 5, the FOIA-MM algorithm gave a more correct probability of the real models than 
the SD-IMM algorithm. This validated the effect of the field angle. In addition, as shown in Table 6, 
the proposed algorithm decreased the extent of the wrong estimation compared with the SD-IMM 
algorithm through statistical analysis. This result is the sum of 50 tests. 

Computational complexity is an important index that measures whether an algorithm has 
real-time processing capability, which is especially important in tracking systems with high 
real-time requirements. In the field of tracking, many algorithms with high tracking accuracy are 
limited because of their high computational complexity. In this paper, the parameters of the 
simulation platform are: CPU Intel i3 2.0 GHz, 4 GB of memory, and operating environment 
MATLAB R2009b, which can perform 100 Monte Carlo simulations. The average CPU running time 
of FOIA-MM algorithm and SD-IMM algorithm was 0.234 seconds and 0.181 seconds, respectively. 
Because fuzzy inference requires a certain amount of time, the FOIA-MM algorithm ran longer than 
the SD-IMM algorithm. 

Table 5. Model probabilities of Position (1) and Position (2). 

 Model CV 𝐶𝑇 3 ° 𝑠 𝐶𝑇 5 ° 𝑠 𝐶𝑇 5 ° 𝑠 𝑪𝑻 𝟕 ° 𝒔 
Position (1) FOIA-MM 0.09 0.13 0.11 0.04 0.63 

 SD-IMM 0.14 0.16 0.20 0.14 0.36 
 Model CV 𝑪𝑻 𝟑 ° 𝒔 𝐶𝑇 5 ° 𝑠 𝐶𝑇 5 ° 𝑠 𝐶𝑇 7 ° 𝑠 

Position (2) FOIA-MM 0.15 0.60 0.16 0.05 0.04 
 SD-IMM 0.21 0.25 0.24 0.10 0.20 

The dark columns are real-model and the estimated-model probabilities by FOIA-MM and SD-IM. 
The table shows that FOIA-MM gave higher correct model probabilities than SD-IMM. 

Table 6. Number of positions located in the obstacle areas. 

 Measured Estimated Improvement 
FOIA-MM 655 5 99.24% 
SD-IMM 655 490 25.2% 
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Figure 11. Root-mean-square error (RMSE) of position (m) and velocity (m/s); ( σ = 30𝑚), distance 
between the true position and the obstacle areas. 

 
Figure 12. RMSE of position (m) and velocity (m/s); ( σ = 40𝑚), distance between the true position 
and the obstacle areas. 

4.3. Field Experiment and Results Analysis 

In this experiment, the performance of the FOIA-MM algorithm was verified for tracking a 
UAV in a real scenario, as shown in Figure 13. The thick black line indicates the boundary of two 
high-rise buildings. The black asterisks indicate measurements collected by the GPS sensor during 
the flight of the UAV. The thin black line shows the FOIA-MM algorithm filtering results. About 10% 
measurements fell in the obstacle areas due to the GPS system measurement error. They were wrong 
measurements. Figure 13 shows that the FOIA-MM algorithm could successfully track the UAV and 
filter out all the wrong measurements. 
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Figure 13. The filtering results of the UAV experiment. 

5. Conclusion 

In this paper, we presented the FOIA-MM algorithm for incorporating the obstacle information 
to the multiple model algorithm. We used convex polygons to describe obstacles to avoid mistaking 
non-obstacle areas as obstacle areas. For obstacles with different sizes, evasive maneuvering is 
different. We introduced a new term, the field angle, in the obstacle information, which can be 
considered as a relative distance between the target and the obstacles. The proposed algorithm 
regards the distance and the field angle as the obstacle information and analyses this relationship by 
mapping them to a set of fuzzy rules, which will modify the TPM and the MP for the state estimate. 
The effectiveness is evaluated by simulation experiments and a UAV experiment. These experiments 
have shown that the proposed algorithm has a good performance when compared to the SD-IMM 
algorithm. The fuzzy rules used in this paper can improve the performance currently achieved 
through their adjustment. Fuzzy rules are difficult to adjust, and erroneous rules will hamper 
improving the tracking performance. How to determine appropriate fuzzy inference rules is a 
critical problem for future works. The proposed algorithm can be extended to solve robot 
localization problems, drone tracking and localization, and other practical application problems. 
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