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Abstract: Entity linking (also called entity disambiguation) aims to map the mentions in a given
document to their corresponding entities in a target knowledge base. In order to build a high-quality
entity linking system, efforts are made in three parts: Encoding of the entity, encoding of the mention
context, and modeling the coherence among mentions. For the encoding of entity, we use long
short term memory (LSTM) and a convolutional neural network (CNN) to encode the entity context
and entity description, respectively. Then, we design a function to combine all the different entity
information aspects, in order to generate unified, dense entity embeddings. For the encoding of
mention context, unlike standard attention mechanisms which can only capture important individual
words, we introduce a novel, attention mechanism-based LSTM model, which can effectively capture
the important text spans around a given mention with a conditional random field (CRF) layer.
In addition, we take the coherence among mentions into consideration with a Forward-Backward
Algorithm, which is less time-consuming than previous methods. Our experimental results show
that our model obtains a competitive, or even better, performance than state-of-the-art models across
different datasets.

Keywords: entity linking; LSTM; CNN; CRF; Forward-Backward Algorithm

1. Introduction

Given a query consisting of mentions (name strings) and their background document, entity
linking involves linking the mentions to their corresponding entities from a reference knowledge base,
such as Wikipedia [1]. It is a fundamental task in the field of natural language processing, which can
facilitate many other tasks, such as semantic search, question answering, relation extraction, and text
understanding [2].

The challenge of entity linking comes from polysemous mentions and various forms of entities.
For example: The mention “Jordan” could refer to the basketball player “Michael Jordan” or the actor
“Michael B Jordan”, and the entity “Michael Jordan” could be named as “His Airness” or “MJ”.
All the existing state-of-the-art methods regard entity linking as a ranking problem. They try to find
the most semantically matched entity for every given mention as its predicted entity [1,3–5]. The key
difference among these methods is how to encode the entity and mention contexts.

In a knowledge base (e.g., Wikipedia), one can obtain certain kinds of information about an entity,
such as the entity context and entity description, as shown in Figure 1. Generally, these information
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reflect different aspects of entity, and our experimental results show that the entity linking system
could obtain better performance with an entity embedding framework which can capture a larger
range of different entity information aspects.

Figure 1. In Wikipedia, each entity has a canonical page and this is the canonical page for the entity
“Michael Jordan”. The description for the entity “Michael Jordan” consists of the words in the blue
box. There are many hyperlinks in the page and the words around the hyperlink form the entity context
for the corresponding entity. For example, the context for the entity “North Carolina Tar Heels men’s
basketball” consists of the words in the orange box.

Some earlier methods [2,6] only take the entity description into consideration, with heuristic
methods like BOW or TF-IDF. However, Sun [1] argues that these methods are insufficient to
disentangle the underlying explanatory factors of the data and proposes a method which employs a
convolutional neural network (CNN) to encode the entity description. Some other methods [3,7–9]
try to encode the entity, based on the idea of word embedding, which only takes entity context
into consideration. However, all the methods above fail to capture different information aspects of
entity, which could result in a loss of information. Inspired by Nitish Gupta’s work [4], we design an
entity embedding framework which can capture different information aspects of entity. Other entity
information aspects may be lacking, like entity type, while the entity description and entity context are
common for most knowledge bases. So, in our work, we mainly investigate how to effectively encode
and combine entity description and entity context, to generate dense unified entity embeddings. It is
also worth noting that our entity embedding framework could be easily extended to the case in which
there are more entity aspects. We use long short term memory (LSTM) [10] and CNN [11] to encode the
entity context and entity description, respectively, and afterwards we design a function to encourage
the entity embedding’s similarity to all of the encoded representations (e.g., representation of entity
context and representation of entity description). Compared to previous methods, our approach can
capture different aspects of entity information, and our experimental results show that our global
model could obtain a better performance, with entity embeddings which can capture richer entity
information aspects.

The semantics of mention mainly come from the mention context and other mentions in the given
document. For mention context, most previous methods assume that all the words in the context have
the same importance [1,4,6,8,12]. Obviously, this should be investigated carefully. Some works [8,13]
try to introduce the standard attention mechanism to fix this problem. However, the standard attention
mechanism can be viewed as a process of performing soft selections of individual words independently;
it ignores the dependencies between words, and may make mistakes when complex expressions are
involved. Inspired by Wang’s work [14], we propose a novel conditional random field (CRF)-based
attention mechanism, which can effectively capture the important text spans for the mention with a
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CRF layer. The coherence among mentions could also be helpful in entity linking. For example, when
the mention “Jordan” and the mention “Bulls” both appear in a document. We can infer that the
mention “Jordan” refers to the entity “Michael Jordan” and the mention “Bulls” refers to the entity
“Chicago Bulls” with a high probability. In this paper, we use the Forward-Backward Algorithm to
calculate the coherence among mentions, which is less time-consuming than the graph-based methods
and probabilistic methods used in earlier entity linking systems [2,3].

The main contributions of this work are the following:

1. We present an entity embedding framework, which can effectively capture different
information aspects.

2. We are the first ones who use a CRF-based attention mechanism to capture the important text
spans in the mention context, to improve the performance of our linking system.

3. We take the coherence among mentions into consideration with the Forward-Backward algorithm,
which is less time consuming than those graph-based models used in previous work.

4. Based on the above three contributions, we build our global model. Our experimental results show
that our model can achieve a competitive, or better, performance than state-of-the-art models.

2. Related Work

There have been a lot of studies on entity linking but, in this section, we only focus on those prior
works which relate to our main contributions.

2.1. Encoding of Entity

Similar to the idea of word embedding [15], the main goal of entity embedding is to compress the
relevant information of an entity into a vector. In entity linking systems without entity embedding,
such as the method proposed in [2], the coherence between two entities is often calculated by counting
the number of the page they share, which is called a co-occurrence entity pair. However, this method
can suffer from sparsity issues and large memory footprints. In addition, there are often some new
entities, which need to be added into a knowledge base in practice, while all the co-occurrence entity
pairs need to be recounted under this framework when new entities are added. With the help of entity
embedding, new entities could be added in an incremental manner, just as with word embedding [15],
which is necessary in practice. To the best of our knowledge, Stefan Zwicklbauer [3] was the first one to
extend word embedding to entity embedding. Later, some works [8,13] followed Stefan Zwicklbauer’s
work. The framework proposed by Zwicklbauer only takes entity context into consideration. It ignores
the fact that the entity description is also an important semantic aspect, which may result in loss of
information. These days, some works [1,16] have been carried out to address the problem. However,
they fail to obtain unified entity embeddings, like in the framework proposed by Matthew [16],
which uses the CNN to encode the entity title and entity description, respectively, but both of the
encoded representations are independent when linking mentions to their corresponding entities.
What is special, in our model, is that we design a function to encourage the entity embedding to be
similar to all the encoded representations. Our model can capture different information aspects about
entities and generate unified dense entity embeddings. More importantly, entities could be added in
an incremental way in our method, which was often ignored in previous methods.

2.2. Encoding of Mention Context

There have been many approaches to encoding the mention context in the literature.
Z. Chen et al. [6,12] used some heuristic methods, such as bag of words (BOW) or TF-IDF , to encode
mention context. However, those heuristic methods capture the semantics of mention context in
a coarser way than deep learning methods. Yaming Sun et al. [1] used CNN and stack denoising
auto-encoders to encode the mention context. Some other deep learning models were also used
in entity linking to encode the mention context, such as LSTM and Doc2vec [15]. But, all the
methods above made the same assumption: That all the words in the context have the same
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importance, which should be investigated carefully. To fix this problem, some attention-based methods
were proposed, Octavian et al. [8,13,17] proposed a standard attention mechanism, based on LSTM,
which tried to capture the individual important words. However, the standard attention mechanism
was usually achieved by concatenating vectors and sending them to a multilayer perceptron (MLP),
and could be viewed as a process of performing soft selections of individual words independently. It
ignored the dependencies between words. Our model uses CRF to capture the dependencies and find
the important text spans, rather than individual words.

2.3. Modeling Coherence among Mentions

As we mentioned earlier, the coherence among mentions could also be helpful in entity linking,
especially when we can not disambiguate the mention only by its context. Han et al. [2,8,18] tried to use
a graph model to calculate the coherence among metions to improve the performance of entity linking.
Some probabilistic models were also used in entity linking, such as random walk [19]. However,
some researchers [13,20] argued later that all those graph and probabilistic models are time-consuming.
So, simplifying the methods of calculating the coherence among metions has become a research hotspot
for entity linking. Some researchers have tried to use heuristic algorithms to fix the problem, such as
the Hill-climbing Algorithm [20]. More recently, Phan et al. [13] indicated that assuming that all the
mentions in the same context should have similar topics is not suitable. Typically, only a few of the
mentions in the same context have a high coherence. Using this assumption disambiguates the two
mentions which have the highest confidence in an iterative way. Although the method simplifies the
calculation a lot, it is not robust enough. In our model, we use the Forward-Backward Algorithm to
calculate the topic information, which is robust and less time-consuming.

3. Definition

Formally, given a document D containing a set of words D = {w1, ..., wi, ...wt} (where wi denotes
the i-th word in the document), a set of mentions M = {m1, m2, ..., mn} (where mi denotes the i-th
mention in the document), and each mention has context C = {wm−s..., wm−1, wm, wm, wm+1, ...wm+s}
(where wm denotes a word which is a part of a mention and s is the window size of the mention context),
if K is a a target knowledge base, then entity linking is a task to find a N-tuple u = {e1, e2, ..., en},
ei ∈ Cmi ⊆ K (where Cmi is the candidate entity set for mi and ei is a candidate entity of Cmi ). The entity
candidate set is often used to improve the accuracy and efficiency of the entity linking algorithm
(see more details in Section 5.2). All the early methods can be formulated by Equation (1).

u∗ = arg max
∗
u

(
n

∑
i=1

ϕ(mi, ei) + ψ(u)) (1)

Here, ϕ(mi, ei), called the local score, reflects the likelihood mapping mi → ei, based on the
semantic similarity between the mention context and entity which can be computed independently.
The model which only takes the local score ϕ(mi, ei) into consideration is called the local model.
ψ(u) is called the co-occurrence score, and reflects the coherence among the mentions which was often
calculated by graph or probabilistic methods in the previous works. The model which makes use of
both ϕ(mi, ei) and ψ(u) is called the global model. Most of the state-of-the-art models try to find the
N-tuple u∗ by maximizing the confidence of each assignment ϕ(mi, ei), which can be determined by the
cosine similarity between the entity embedding of the entity ei and the mention context representation
of the mention mi, while enforcing the coherence among all the linked entities ψ(u). The coherence
between two entities are often calculated by the cosine similarity between embeddings of the two
entities. The key difference between these models is how to encode entity and mention context. In our
paper, we mainly focus on the representations of entities and mentions.
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4. Model

In this section, we first describe how to build the framework of entity embedding (Section 4.1).
Then, we show the details of the mention context encoder and our local model (Section 4.2). Last,
we address the global model, assuming the coherence among the mentions (Section 4.3). We show the
relations among the three parts in Figure 2.

Figure 2. Overview of the model. The input of the encoder for the mention context is the mention
context and the inputs for entity embedding are the entity description and the entity context. Firstly,
we get the representations of entity and mention context, through the entity embedding framework
(Section 4.1) and mention context encoder (Section 4.2), respectively. Then, we get the local scores
by computing the cosine similarity between the two representations (Section 4.2). Lastly, we take the
coherence among mentions into consideration with a Forward-Backward Algorithm, and gain the
global scores based on local scores (Section 4.3).

4.1. Framework of Entity Embedding

The semantics of entity may come from many different aspects such as entity description and
entity context. The key to an accurate entity embedding framework is the effective encoding and
combination of different information aspects. Inspired by the work of Gupta [4], we use LSTM and
CNN to encode the entity context and entity description, respectively. Then, we combine all the
different information aspects to get unified dense entity embeddings, based on the assumption that an
entity embedding should be similar to all its related encoded representations (e.g., the representations
of entity context and of entity description).

4.1.1. Encoder for Entity Context

As Figure 1 shows, the entity contexts are usually short and their word order can not be ignored.
LSTM is a model which could effectively capture the word order so, in this case, we employ LSTM as
our basic model. The processing is shown in Figure 3.

In more detail, given a hyperlink and its context C = {w1, ..., wm, ...w2s}, we split the context into
two parts by the anchor text wm, le f t = {w1, w2, ...wm}, right = {w2s, w2s−1, ..., wm}. The left-LSTM is
applied to the sequence le f t = {w1, w2, ...wm} with the output hl , while the right-LSTM is applied to
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the sequence right = {w2s, w2s−1, ..., wm} to produce hr. After that, we concatenate the vector hl and
the vector hr, and send it to a MLP layer to get the encoded entity context representation vc. Inspired
by the work proposed by Yamada [9], we design a function that enables entity embeddings to contain
the information of the entity context:

Ptext(e|vc) =
exp(vc · ve)

∑ck∈Cm exp(vc · vck )
. (2)

Figure 3. Encoding the entity context information with LSTM. The input of the model is word
embeddings of the words in the context, which may come from an annotated corpus (e.g., Wikipedia
hyperlinks in our case).

In this equation, e is the corresponding entity to the current mention and ve is the entity embedding
of the entity e. The entity embeddings ve are randomly initialized and will converge through the course
of training. Cm is the entity candidate set of the current mention, and vck is the entity embedding of a
candidate entity. Here, based on the assumption that the context-encoded representation should be
similar to its corresponding entity embedding and dissimilar to other entity embeddings, we maximize
the cosine similarity between vc and ve, and minimize the cosine similarity between vc and the
embeddings of the other entities in Cm.

4.1.2. Encoder for Entity Description

As Figure 1 shows, the description is usually long and noisy. In our model, we use CNN to encode
the entity description, which has proved efficient in handling the text-like entity description in Yoon
Kim’s work [21]. The framework is shown in Figure 4.

As Figure 4 shows, the input of the model is the word embeddings of the description. We feed
it into the CNN and get the encoded description representation vdesc. Similar to Equation (3),
we encourage vdesc to be similar to its corresponding entity embedding ve and dissimilar to other
candidate entity embeddings, and get the expression pdesc(e|vdesc).
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Figure 4. Encoding the description information with CNN. The input of this framework is the word
embedding of the entity description.

4.1.3. Combine Different Information Aspects

We design a function to encourage entity embeddings to be similar to all the encoded
representation and get a unified dense entity embedding.

{ve}, θ = arg max
ve ,θ

(Ptext(e|vc) + pdesc(e|vdesc)). (3)

Here, e is an entity of the target knowledge base K and {ve} are the trained entity embeddings
for all the entities in the knowledge base. θ are the training parameters of the model. vc is the
encoded representation of entity context and vdesc is the encoded description representation of the
entity e. Ptext(e|vc) denotes the similarity between the current entity embedding and its context
encoded representation (see Section 4.1.1). pdesc(e|vdesc) denotes the similarity between the current
entity embedding and its encoded description representation (see Section 4.1.2).

4.2. Attention-Based Local Model

We build our attention-based local model on the insight that only a few text spans are important for
disambiguation. Focusing on those text spans can help to reduce noise and improve the performance
of entity linking. This model tries to stimulate the processing of human beings by using a CRF layer.
Given a mention and its context, people try to find the relevant text spans around the mention to infer
its corresponding entity. The model is shown in Figure 5. Furthermore, we design two additional
regularizations to guide this model.
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Figure 5. Local model with a novel CRF-based attention mechanism. The inputs of this model are
the mention m, its context C, and the candidate entity embeddings for m. It should be noted that all
the entity embeddings for the knowledge base K need to be pretrained in Section 4.1. The coherence
among mentions is ignored in this section, and mentions are disambiguated independently.

In this section, we disambiguate the mention m by its context C = {w1, w2, ..., w2s}. Here, s is
the window size of the mention context. Sometimes, once we know the mention, we can nearly infer
its corresponding entity. To highlight the current mention words, we introduce a binary variable
it ∈ {0, 1}, which is called the mention indicator, to indicate whether the i-th is a part of the current
mention or not. As Equation (4) shows, the input V of the model is the concatenation of the word
embedding and mention indicator embedding.

V = [v1, v2, ..., v2s]. (4)

vt = [Wemb(wt), Wmask(it), t ∈ [1, 2s]], Wemb ∈ Rd×d1 , Wmask ∈ R2×d2 . (5)

Here, d is the size of the word dictionary, d1 denotes the dimension of word embedding, Wemb(wt)

denotes the mapping of a word onto a vector, d2 denotes the dimension of the mention indicator
embedding, and Wmask(it) denotes the mapping of a mention indicator onto a vector. V is sent to a
Bi-LSTM layer. For each unit of BiLSTM, we get two hidden vectors: The forward hidden vector

−→
ht for

forward transmission of information, and the backward hidden vector
←−
ht for backward transmission

of information. We concatenate the two vectors
−→
ht and

←−
ht as the final output of each unit of BiLSTM

layer, shown in Equation (6)
R = [r1, r2, ..., r2s]. (6)

rt = [
−→
ht ,
←−
ht ], t ∈ [1, 2s]. (7)

As Figure 5 shows, for every word in the given context, we introduce a binary variable z ∈ {0, 1}
to indicate whether the word is important or not. The importance state changes, along with the
mention context. For a certain mention context, we could use a path P = {z1, z2....z2s} to denote a
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possible importance state changing, where zi is the importance state corresponding to the i-th word
in the mention context. The space of the possible paths P grows exponentially, corresponding to
the number of given words. Formally, the importance distribution of the given mention context is
calculated by Equation (8)

Pr(P|R) = 1
Z(R) ∏

zi∈P
f (zi, R), (8)

Z(R) = ∑
P′

∏
zi′∈P′

f (zi′ , R), (9)

where Pr is formed by zi, f (zi, R) is the potential function of the path P, and Z(R) is a normalization
factor calculated by summing the potential functions of all the possible paths. In detail, f (zi, R) is
formed by two potentials on the vertices of Equations (11) and (12) for an undirected graphical model,
respectively.

∏
zi∈P

f (zi|R) =
2s

∏
i=1

f1(zi|R)
2s−1

∏
i=1

f2(zi, zi+1|R). (10)

f1(zi|R) = exp(Wv
zi
· ri + b). (11)

f2(zi, zi+1|R) = exp(We
zi ,z(i+1)). (12)

We know from Equations (10)–(12) that the importance of the current word is dependent on
the current word itself and its adjacent words. Here, Wv ∈ R2×2dh is the state characteristic matrix,
which maps context representation to the feature score of the importance state, and dh is the dimension
of rt. Further, We ∈ R2×2 is a transition matrix which denotes the transmission between every adjacent
word’s importance state. After we get the importance distribution of every word in the context, we get
the mention context encoded representation vtext by weighted summarization, which is shown in
Equation (13)

vtext = ∑
z

p(z)g(R, z), (13)

g(R, z) = ∑
i

1(zi = 1) · ri, (14)

where g(R, z) is a feature function, which is defined based on the selection of path P. However,
enumerating all the possible paths would be very time-consuming and so, in this paper, we simplify
the calculation by dynamic programming with a message passing model and Equation (13) can be
rewritten as Equation (15)

vtext =
2s

∑
i=1

(p(zi = 1)ri). (15)

As mentioned earlier, entity linking can be regarded as a ranking problem. The entity which
has the most similar semantics to the given mention will be picked as the mention’s predicted entity.
Here, we maximize the local score of the corresponding entity of the current mention and minimize
the local score of other entities in the candidate set of the mention. The local score is formulated in
Equation (16), and the optimal object of the local model is shown in Equation (17)

ϕ(m, e) = exp(vtext · ve). (16)

opt(m, e) =
ϕ(m, e)

∑ck∈Cm ϕ(m, ck)
. (17)

The key difference between our attention mechanism and the standard attention mechanism is
that our model can capture important text spans, rather than individual words in the given context;
which is more similar to human thought. Inspired by the framework proposed by Bailin Wang [14],
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we introduce two regularizations to improve the performance of our model, based on the assumptions
that only a few text spans are important for entity linking:

Ω1(z) = ∑
i

∑
i 6=j

max(0, We
ij −We

ii), and (18)

Ω2(z) =
n

∑
i

p(zi = 1). (19)

Ω1 is designed to discourage the importance state change between every two adjacent words,
which enforces our model to focus on the text spans rather than individual words. Ω2 is designed to
discourage the number of important spans, which also enforces our model to focus on the text span,
which is really important for entity linking.

4.3. Global Model

The assumption that all the mentions which appear in the same context share a similar topic is
often used to improve the performance of entity linking. This is unlike local models, which ignore the
coherence among mentions and disambiguate all the given mentions independently. In this section,
we address the coherence among mentions with a Forward-Backward Algorithm and disambiguate
all the mentions M = {m1, m2, ..., mn}, based on our local model at a given time. The document
D = {w1, ..., wi, ...wt} and all the mentions in the document M = {m1, m2, ..., mn} need to be provided
to our global model. The structure of our proposed global model is shown in Figure 6.

Figure 6. The framework of our global model, where each circle denotes a candidate entity. The global
score is defined by transmission score and local score. Here, the local score can be computed as in
Section 4.2, and we employ a Forward-Backward Algorithm to compute the transmission score which
denotes the coherence among mentions.

Our global model is defined by Equation (20)

score(e|mi) = ϕ(mi, e) + Mi−1,i(e) + Mi+1,i(e). (20)

To disambiguate all the given mentions, we need find the most semantic matched entity for
each mention, while all the chosen entities should have a high coherence. Here, ϕ(mi, e) denotes the
semantic matching rate between the entity e and the i-th mention mi, which can be calculated by our
local model (mentioned in Section 4.2). Mi−1,i(e), Mi+1,i(e) denotes the coherence between a candidate
entity e of mi and its adjacent entities. We calculate the coherence using dynamic programming with a
Forward-Backward Algorithm. More specifically, Mi−1,i(e) denotes the forward message passing and
Mi+1,i(e) denotes the backward message passing. The only difference between Mi−1,i(e) and Mi+1,i(e)
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is the direction of message transmission. Here, we only give the details of Mi−1,i(e), which can be
formulated by Equation (21). We can calculate Mi+1,i(e) in a similar way.

Mi−1,i(e) = max
e′∈Cmi−1

(ϕ(mi−1, e′) + φ(e′, e)), (21)

where Mi−1,i(e) denotes the message passing from the i− 1th mention to the entity e of the ith mention,
and e′ ∈ Cmi−1 denotes that e′ is a candidate entity for mi−1. Here, φ(mi−1, e′) denotes the semantic
matching rate between e′ and the context of mi−1. φ(e′, e) denotes the coherence between two entities,
which can be formulated by Equation (22)

φ(e′, e) = ve′ · A · ve, (22)

where A ∈ Rde×de is randomly initialized and needed to be trained, ve and ve′ are the corresponding
entity embeddings for the entities e and e′, and de is the dimension of the entity embedding.
Following the idea of the local model, the optimal function of our global model is designed as
in Equation (23). We encourage our ground-truth entity to have a higher global score than the other
candidate entities.

opt(e|mi) =
exp(score(e|mi))

∑ck∈Cm exp(score(eck |mi))
. (23)

Our final loss function, for the whole model, is shown in Equation (24)

L = −
n

∑
i=1

opt(e|mi) + λ1Ω1(z) + λ2Ω2(z), (24)

where λ1, λ2 denote the coefficient of each of the regularizers, and Ω1(z), Ω2(z) are as mentioned in
Section 4.2.

5. Experiments

In this section, we first give the benchmark datasets that we used. Next, we introduce how to
obtain the candidate sets for each mention, how to train the entity embedding, and how to train
our local model and global model, based on pre-trained entity embedding and word embedding.
Last, we show the performance of our entity linking system and the state-of-the-art models that we
compared our model to.

5.1. Datasets

Here, we give the details of the datasets involved in our experiments: AIDA-CoNLL [22] is one
of the biggest manually-annotated datasets for entity linking. It consists of three parts: AIDA-train
(a training set), AIDA-A (a validation set), and AIDA-B (a test set). WNED-CWEB are automatically
extracted from clue-web and cleaned by Barbosa [23]. ACE04 and AQUAINT are both cleaned and
updated by Guo and Barbosa [23,24]. The statistics of all the datasets are shown in Table 1.

Table 1. Statistics of all the related datasets.

Datasets Number Docs Number Mentions

AIDA-train 946 18,448
AIDA-A (valid) 216 4971
AIDA-B (test) 231 4485
WNED-CWEB 320 11,154

ACE04 36 257
AQUAINT 50 727
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5.2. Candidate Generation

To disambiguate the mentions provided, computing the semantic similarity between the current
mention and all the entities in the knowledge base is impractical. Generating an entity candidate set
for each mention is a very important step for both efficiency and accuracy of entity linking. We pick
the top 30 popular entities for each mention as its entity candidate set. The most common way of
estimating popularity is by using the Wikipedia-based frequencies of particular names in link anchor
texts referring to specific entities. In this paper, we build our hyper-link statistics from Wikipedia
(February 2014) and a large web corpus [25]. The statistics for each of the datasets is shown in Table 2.

Table 2. Statistics for candidate generation. Gold recall denotes the ratio of the mentions for which the
candidate entity set includes the ground truth entity.

Datasets Number Linkable Mentions Gold Recall

AIDA-train 18,143 0.98
AIDA-A (valid) 4665 0.97
AIDA-B (test) 4359 0.97
WNED-CWEB 233 0.90

ACE04 10,983 0.93
AQUAINT 694 0.96

The gold recall was calculated by ∑n
i emi∈Cmi

n , where emi is the ground truth entity of mi, Cmi is the
candidate entity set for mi, and n is the size of the dataset. From Table 2, we can see that dividing the
candidate set into a small number did unnecessary harm to the recall. Our model can obtain a better
efficiency in the case of less candidate entities.

5.3. Disambiguation Step

Our entity embedding framework was implemented in the Tensorflow framework. Once we had
the target knowledge base, we could train the entity embedding. It was an off-line work. Our global
model and local model were both implemented in the Pytorch framework. Only when the mentions
and contexts were provided, could we link the mentions to their corresponding entities through the
model; thus, it was an online work.

5.3.1. Hyper-Parameters Setting

Parameters for entity embedding model: We used Wikipedia (2014Feb) as our training data.
We used existing links in Wikipedia with anchors as mentions and links as true entities. The window
size of entity context was set as 5. As for description for each entity, we used the first 150 words in
its corresponding Wikipedia page as input. The hyper-parameters of our entity embedding model
are summarized in Table 3. We used different combinations of parameter settings to train our model,
and the parameters settings with which our model could obtain the best performance are given.

Table 3. Hyper-parameters for the entity embedding model. Here, we choose Adam as our optimizer,
with learning rate of 0.05.

Parameters Search Space Value

dim of ve,vdesc,vc {100,200,300} 200
dropout rate {0.2,0.3,0.4,0.5} 0.4

batch size {300,600,900,1200} 600

Hyper-parameters for local model and global model: The window size of the mention context
was set as 5. The hyper-parameters of our global model are summarized in Table 4.
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Table 4. Hyper-parameters for the global model. We use Adam for optimization, with learning rate
of 0.005.

Parameters Search Space Value

dim of d1 {200,300,400} 300
dim of d2 {10,20,30,40} 30

dim of hidden state in Bi-LSTM {50,100,150,200} 100
dropout rate {0.2,0.3,0.4,0.5} 0.4

λ1 [0,0.2] with step size 0.04 0.1
λ1 [0,0.2] with step size 0.04 0.04

5.3.2. Evaluation Matrix

Here, we design experiments to verify the validity of our main contributions. We give the result
of our final global model, compared to other advanced entity linking systems, to show that our model
could obtain a competitive, or even better, performance than other advanced entity linking system.
Our models are trained on AIDA-train, validated on AIDA-A, and tested on AIDA-B and the other
datasets, mentioned in Section 5.1.

Here we focus on six variations of our model: To explore the validity of our attention mechanism,
we designed three variations of our local model which disambiguate the given mentions independently,
only by each mention context with pretrained entity embedding, making use of both entity context
and entity description: (1) LSTM-MEAN: Local model without attention mechanism, the importance
scores of the words in the mention context were assumed to be the same. (2) LSTM-A: Local model
with CRF-based attention mechanism, using a CRF layer which captured the important text spans for
disambiguating the current mention. (3) LSTM-A-R: Based on the model LSTM-A, we introduced the
two regularizers, as mentioned in Section 4.2, to enforce the model to focus on the text spans (which is
really important for entity linking). To explore the validity of our entity embedding framework,
we designed another three variations of our global model, based on LSTM-A-R. The three global
models differed from the entity embedding framework they involved. (4) Global Model C: The entity
embedding framework in this model only made use of entity context. (5) Global Model D: The entity
embedding framework in this model only captured the information of entity description. (6) Global
Model CD: The entity embedding framework in this model took both entity description and entity
context into consideration. We explored the role of coherence among mentions in our linking system,
by comparing LSTM-A-R and Global Model CD.

We compared our model with the following existing advanced models: (1) Hoffart et al., 2011 [22]:
A supervised model, based on feature engineering, which was trained on CoNLL.
(2) Landau et al., 2016 [16]: A recent method which combined benefits of deep learning and
feature engineering. (3) Gupta et al., 2017 [4]: Trained only on Wikipedia without optimizing on a
special dataset, this model had a strong generalization ability.

Metrics: We use the F1:

precision =
num_true_positives

get_dataset_num_non_entity_candidats(dataset)
, (25)

recall =
num_true_positives

dataset_num_mentions
, (26)

F1 =
2 ∗ precision ∗ recall

precision + recall
. (27)

We assume that all the mentions are provided, and we do not predict NIL (unlinkable) mentions.
We only consider a linking to be correct when the first entity in the ranking result is equal to the
ground truth.
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Table 5 shows F1 scores of the existing model and several variations of our model on AIDA.
From the results of LSTM-MEAN, LSTM-A, and LSTM-A-R, we find that our linking system can
obtain a great improvement with the help of our attention mechanism, and the regularizers designed
in Section 4.2 could enforce our model’s focus on the text, an important factor in disambiguating the
given mention. From the results of the three variations of our global model, we can see that our global
model achieved a better performance with the entity embedding framework, which could capture
richer entity information aspects. By comparing LSTM-A-R and Global Model CD, we see that the
coherence among mentions can be used to further improve the system, by use of our algorithm.

Table 5. F1 scores of different models on CoNLL (%). The performance of the state-of-the-art models
are reported in [4] (Hoffart et al., Landau et al., Gupta et al.).

Models AIDA-B AIDA-A

Hoffart et al., 2011 [22] 81.8 -
Landau et al., 2016 [16] 85.5 86.9

Gupta et al., 2017 [4] 82.9 84.9
LSTM-MEAN 83.4 84.2

LSTM-A 83.8 89.7
LSTM-A-R 84.4 90.7

Global Model C 87.1 90.3
Global Model D 86.9 90.3

Global Model CD 87.6 91.1

We re-implemented some of the state-of-the-art models and tested on the other datasets.
The results are shown in Table 6.

Our model is trained only on AIDA-train without optimizing on a special dataset. The results show
that our model obtained better performance than the baselines across different datasets, which means
that our model has a strong generalization ability.

Table 6. Results on other datasets.

Models ACE04 AQUAINT WNED-CWEB

Hoffard et al., 2011 [22] 56 80 58.6
Ratinov et al., 2011 [26] 83 82 56.2

Fang et al., 2016 [27] 85.3 88.8 -
Global Model CD 86.6 87.3 73.1

5.4. Case Analysis

Here, we give our analysis of the results of our experiments.
In the Figure 7, the x-axis denotes the words in the context and the y-axis denotes the importance

score of each word. Here, the word “China” is the current mention, and its corresponding entity is
“China national football team”. From this case, we can see that the mention word “China” gains
the highest importance among all the words in the given context. Generally, we find the mention
words usually have a high importance score in almost all the cases. This is because the mention
words, themselves, are strongly related to its corresponding entity. You can almost infer the most
possible corresponding entity from the mention. Besides the mention words, our attention mechanism
could also capture some other text spans which are helpful in entity disambiguation. In this case,
according to the statistics, the two most possible entities for the mention “China” are “China (country)”
and “China national football team”. The attention mechanism captured the text spans, which are
helpful for distinguishing the two entities. Here, we find that the words “championship”, “their”,
and “them” gain the highest score, except for the mention word “China”. The words “their” and
“them” tend to refer to a group of people, rather than a country, and the word “championship” has a
close relation to sports. Focusing on those words, we could infer that the mention of “China”, in this
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case, refers to the entity “China national football team” with a higher probability than the entity
“China (country)”. We find that words about time often obtain a low importance score, such as “Friday”
in this case. Some other words, such as prepositions like “on” and conjunctions like “But” usually
have low importance scores as well. This is similar to the way that people think. People nearly do not
disambiguate the given mentions by these words.

Figure 7. The importance scores distribution of a case in AIDA.

From Table 5, we find that our model obtained a better performance on AIDA-A than AIDA-B.
This is because there are some cases of AIDA-B in which it is hard to disambiguate the given mention
only by its local context. For example, consider the context “0 0 2 1 3 Syria 1 0 0 1 1” and the
mention “Syria”. The ground truth of this case was the entity “Syria national football team”.
However, according to our statistics, the most possible entity for the mention “Syria” was the entity
“Syria(country)”. Unfortunately, the context of the mention “Syria” consisted of digital numbers,
and it is hard to tell whether the mention refers to a country or a football team by these digital numbers.
In cases like this, we may need some other information to infer the corresponding entity of the given
mention, such as coherence among mentions. There were 47 similar cases in AIDA-B. So, we can see,
with the help of coherence among mentions, our global model obtained a much better performance
than our local model in the test set AIDA-B. We also analyzed some other wrong cases. In those
cases, most of the mentions had a low frequency to map to the correct entity, according to statistics in
Wikipedia. Our model tended to link the mention to the entity which gained a high frequency in the
statistics.

6. Conclusions

In this paper, we focused on how to build a high-quality representation of mention and entity.
To encode entity semantics, we built a function to incorporate different aspects of information about
entities, in order to obtain dense unified embeddings. For the representation of mention, we introduced
a novel attention mechanism which could capture important text spans. In addition, we calculated
the topic information with a Forward-Backward Algorithm, which could be helpful to entity linking,
especially when we can not predict the correct entity only by its local context. There are still some
avenues for future work. Firstly, the semantics of entities could also come from their type and the
relations between entities. Taking all of them into consideration could yield a higher quality entity
embedding. Secondly, the assumption that all the mentions in a same context may share several topics
would be more suitable, and we believe it is worth further research.
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