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Abstract: Given a query shoeprint image, shoeprint retrieval aims to retrieve the most similar
shoeprints available from a large set of shoeprint images. Most of the existing approaches focus on
designing single low-level features to highlight the most similar aspects of shoeprints, but their
retrieval precision may vary dramatically with the quality and the content of the images. Therefore,
in this paper, we proposed a shoeprint retrieval method to enhance the retrieval precision from
two perspectives: (i) integrate the strengths of three kinds of low-level features to yield more
satisfactory retrieval results; and (ii) enhance the traditional distance-based similarity by leveraging
the information embedded in the neighboring shoeprints. The experiments were conducted on a
crime scene shoeprint image dataset, that is, the MUES-SR10KS2S dataset. The proposed method
achieved a competitive performance, and the cumulative match score for the proposed method
exceeded 92.5% in the top 2% of the dataset, which was composed of 10,096 crime scene shoeprints.

Keywords: shoeprint retrieval; hybrid features; neighboring images; Fourier-Mellin transform;
Gabor feature

1. Introduction

Shoeprint retrieval aims at retrieving the most similar shoeprints that were collected at different
crime scenes, to help investigators to reveal clues about a particular case. In past decades, large
numbers of crime scene shoeprint images were collected and recorded for analysis. When there was
a new case, investigators could manually compare shoeprints derived at the crime scene with those
collected from other crime scenes to reveal clues. It is really difficult and tedious to conduct this
work for a huge number of degraded shoeprints. Therefore, it is necessary to propose a more efficient
automatic shoeprint retrieval method.

In the past few years, many shoeprint image retrieval methods have been proposed, and they
have demonstrated a good performance in forensic investigations. Most of the existing approaches
focus on designing low-level features to highlight the most similar aspects of shoeprints. From
the perspective of methodology, most of these shoeprint retrieval methods fall into two categories:
(i) retrieval of shoeprints using holistic features [1–13]; and (ii) retrieval of shoeprints using local
features [14–29]. Although both kinds of methods are able to search for shoeprint images with visually
similar shoe patterns, their retrieval precision may vary dramatically among low quality crime scene
shoeprint images. The two main reasons are detailed as follows.

The first reason may be that the descriptive capability of the low-level feature has its own
deficiencies. Figure 1 shows the illustrative cases of a failure by either approach. Each pair of
shoeprints in Figure 1 does not have the same shoe patterns. The local features (e.g., the Gabor feature)
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cannot distinguish between the visual patterns in Figure 1a, while it accurately handles the visual
patterns in Figure 1b. On the other hand, the holistic features (e.g., the Fourier-Mellin feature) fail to
make distinctions in Figure 1b, while it successfully handles shoeprints in Figure 1a, because they
consider the overall layout of the images. Therefore, the complementary descriptive capability of the
local and holistic features naturally inspires us to integrate their strengths to yield more satisfactory
retrieval results.
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to yield more satisfactory retrieval results; and (ii) utilize the information contained in the 
neighboring images to improve the performance of the shoeprint retrieval method. 

The main contributions of the proposed method are as follows: 
(1) We propose a hybrid feature in a coarse to fine manner from holistic, region and local views. 

The proposed method integrates the strengths of three kinds of low-level features to yield more 
satisfactory retrieval results;  

(2) We propose a neighborhood-based similarity estimation (NSE) method, which utilizes the 
information contained in neighbors to improve the performance of a shoeprint retrieval method. The 

Figure 1. Illustrative cases of a failure by either approach. (a) Holistic features may yield more
satisfactory results than local features. (b) Local features may yield more satisfactory results than
holistic features.

The second reason may be that the shoeprints derived from crime scenes are usually misaligned,
incomplete and degraded shoeprints affected by debris, shadows and other artifacts. Thus,
it is difficult to retrieve crime scene shoeprints using pair-wise similarity computed from just two
images. Figure 2 shows an example where the similarity estimation can potentially benefit from the
neighbors. As shown in Figure 2, three samples A, B, and C are represented as filled circles, and the
distance between A and B is equal to the distance between A and C. The feature similarity between
A and B is equal to that between A and C, that is, S(A, B) = S(A, C). The neighbors of the three
samples are represented as circles. From the distribution of their neighbors in Figure 2, it is more
reasonable to intuitively let S(A, B) < S(A, C), because the neighbors around A and C are much more
similar than those around A and B. The descriptive capability of the neighbors inspires us to use the
neighborhoods to yield more satisfactory retrieval results.
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Figure 2. Example shows that the similarity estimation can benefit from neighbors.

Wang et al. [29] proposed a manifold ranking-based shoeprint retrieval method, which used
opinion scores of shoeprint examples labeled by forensic experts to achieve a good performance.
However, the method did not enhance the retrieval precision based on the two aspects stated above.
Therefore, in this paper, we propose a shoeprint retrieval method to enhance the retrieval precision
considering the following two aspects: (i) integrate the strengths of three kinds of low-level features to
yield more satisfactory retrieval results; and (ii) utilize the information contained in the neighboring
images to improve the performance of the shoeprint retrieval method.

The main contributions of the proposed method are as follows:
(1) We propose a hybrid feature in a coarse to fine manner from holistic, region and local views.

The proposed method integrates the strengths of three kinds of low-level features to yield more
satisfactory retrieval results;
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(2) We propose a neighborhood-based similarity estimation (NSE) method, which utilizes the
information contained in neighbors to improve the performance of a shoeprint retrieval method.
The greatest difference, compared to the other existing shoeprint retrieval methods, is that it not
only considers the relationship between every two shoeprints, but also the relationship between
their neighbors;

(3) We propose a generic manifold based reranking framework, which can narrow the well-known
gap between high-level semantic concepts and low-level features;

(4) The proposed method can work well for real crime scene shoeprint image retrieval.
The cumulative match score is more than 92.5% in the top 2% of the database, which was composed of
10,096 real crime scene shoeprint images. The evaluation shows our method consistently improves the
retrieval precision and compares favorably with the state-of-the-art.

The rest of the paper is organized as follows. Section 2 reviews related works on shoeprint
retrieval. Section 3 presents the proposed method. Section 4 provides the experimental results and the
analysis, followed by the conclusions in Section 5.

2. Related Works

According to the scope of representation, features roughly fall into two categories: holistic features
and local features.

Methods in the holistic features category usually take the whole image into consideration when
extracting features. Bouridane et al. [1] used a fractal-based feature to retrieve shoeprint images.
They can handle high quality shoeprint images; however, this method is sensitive to variations in
rotations and translations. The moment invariant features were used for shoeprint retrieval [2,3],
and they can work well for complete shoeprints; however, partial shoeprints are not considered.
Chazal et al. [4] and Gueham et al. [5,6] used the Fourier transform to analyze the frequency spectra of
shoeprint images, but the methods are sensitive to partial shoeprints. Cervelli et al. [7–9] utilized the
Fourier transform on the cropped shoeprint images to extract features in frequency domain. However,
these methods are sensitive to geometry transformations. Alizadeh et al. [10] retrieved shoeprints by
using a sparse representation method. They reported good performance, but their method is sensitive
to variations in rotation and translation. Richetelli et al. [11] implemented and tested some shoeprint
retrieval methods on a scene-like shoeprint database, that is, the phase-only correlation (POC) method,
Fourier-Mellin transformation and scale-invariant feature transform (SIFT) method. Results show that
the POC method has better performance than the Fourier-Mellin transformation and the SIFT method;
however, the performances of these methods may drop considerably when applied to degraded crime
scene shoeprints. Kong et al. [12,13] applied a convolutional neural network to extract multi-channel
features, and computed the similarity score using the normalized cross-correlation method. They have
achieved a good performance. However, their algorithm requires a large amount of computation.

Methods in the local feature category always divide shoeprint into different regions, and
then extract features from these regions. Patil et al. [14] convolved shoeprint images with Gabor
filters, and then divided the filtered images into non-overlapping blocks to extract local features for
shoeprint retrieval. The method shows good performance for partial shoeprints generated from full
shoeprints. Tang et al. [15,16] used an attributed relational graph (ARG) to represent the shoeprint.
In the graph, nodes represent fundamental shapes in shoes, such as lines, circles, ellipses, and so on.
They reported good performance on distortions and partial shoeprints. However, it is a challenge to
handle crime scene shoeprints with random breaks and extrusions, which cannot be represented by
above fundamental geometry shapes. Pavlouet et al. [17,18] applied the maximally stable extremal
regions (MSER) feature to represent shoeprints. However, the performance may drop a lot when
dealing with shoeprint images with noises and distortions. Kortylewsk et al. [19] presented a periodic
pattern-based shoeprint image retrieval method. The method firstly detects periodic patterns of
the shoeprint, and then evaluates the similarity through comparing the Fourier features of the
periodic patterns. The algorithm can deal with shoeprints with periodic patterns. However, it is
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a challenge to handle degraded shoeprint images. Local interest point based methods can work
well for clear shoeprints [20–25], but their performance may vary dramatically among crime scene
shoeprints. The possible reasons may be that the crime scene shoeprints are highly degraded and
randomly occluded, and there are many random extrusions, intrusions or breaks on the shoe patterns.
Nevertheless, the local interest point based methods cannot work well on distinguishing the useful
information from interferences. Kortylewski et al. [26,27] learned a compositional active basis model to
each reference shoeprint, which was used to evaluate against other query images at testing time. The
model can be learned well on high quality reference shoeprints. However, how to represent degraded
crime scene shoeprint images remains a problem. Wang et al. [28] divided a shoeprint into a top region
and a bottom region, and then extracted Wavelet-Fourier-Mellin transform-based features of the two
regions for shoeprint retrieval. The method performs well for its invariant features and matching
score estimation method. Wang et al. [29] proposed a manifold ranking shoeprint retrieval method
that considers not only the holistic and region features but also the relationship between every two
shoeprints. The method achieves a good performance on crime scene shoeprint images, but it neglects
the effect of local features and the contribution of the neighboring shoeprints.

3. Method

3.1. Notations and Formulations

Let D = {d1, d2, · · · , dN} ⊂ Rm
+ denote a set of N shoeprint images, and U = q ∪ D =

{u1,u2, . . . ,uN+1,uN+1} ⊂ Rm
+, in which q denotes the query shoeprint. We focus on finding a function

f : U→ R+ that assigns to each shoeprint ui ∈ U a ranking score fi ∈ R+, 0 ≤ fi ≤ 1 according to
their relevance to the query shoeprint image q. Let f = [f1, f2, · · · , fK], and K = |U| = N + 1.

Our motivation is to enhance the shoeprint retrieval precision from the following two perspectives:
(i) integrate the strengths of three kinds of low-level features to yield more satisfactory retrieval results;
and (ii) utilize the information contained in the neighboring images to improve the performance of
the shoeprint retrieval method. Therefore, we have two constraints on the ranking score: (i) closer
shoeprint images in multiple feature spaces should share similar ranking scores; and (ii) shoeprint
images with similar neighboring shoeprints should share similar ranking scores.

We construct the cost function by employing the above two constraints on f. The shoeprint
retrieval problem can be defined as an optimal solution of minimizing the following cost function.

f∗ = argmin
f

Q(f) = β1
K
∑

i=1

K
∑

j=1
Sij

(
1√
Aii

fi − 1√
Ajj

fj

)2
+ β2

K
∑

i=1

K
∑

j=1
Wij

(
1√
Bii

fi − 1√
Bjj

fj

)2
+ γ

K
∑

i=1
(fi − yi)

2 (1)

where β1, β2 and γ are the regularization parameters.
The first term weighted by β1 is the neighborhood correlation term. Shoeprint images with similar

neighbors should share similar ranking scores. Sij denotes the neighborhood based similarity between

ui and uj, and A is a diagonal matrix, in which Aii =
K
∑

j=1
Sij. Intuitively, similarity is usually defined

as the feature relevance between two images. But it is difficult to use low level features to describe
the shoeprints more clearly, because crime scene shoeprints are usually highly degraded and also
randomly partial. Moreover, the traditional image-to-image similarity measure is sensitive to noises.
One feasible way to deal with this problem is to use the neighborhoods to provide more information.
To this end, we propose a neighborhood-based similarity estimation (NSE) method which regards
the neighbors of the images as their features, the more similar neighbors the images have, the higher
similarity value they should share. Formally, for shoeprint images ui and uj, the neighborhood-based
similarity between the two images can be defined as follows:

Sij = aS

∑
um∈N(ui)

∑
un∈N(uj)

Wmn

|N(ui)|
∣∣N(uj

)∣∣ + aC

∣∣Nk
′(ui) ∩ Nk

′(uj
)∣∣∣∣Nk

′(ui) ∪ Nk
′(uj

)∣∣ (2)
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where aS and aC are the weighted parameters, and aS + aC = 1. Wmn denotes the hybrid feature
similarity between shoeprint image um and un. N(ui) = Nk(ui) ∪ ui, Nk(ui) denotes the k nearest
neighbors of ui, which is acquired based on the hybrid feature similarity Wij.|•| represents the
cardinality of a set. Nk

′(ui) denotes the k nearest neighbors of ui, and they are acquired based
on the region feature similarity Sr

(
ui, uj

)
that can be calculated according to Equations (7)–(19) in [28].

Here we defined Sij = 1 for ui = uj.
The second term weighted by β2 is the smoothness term. The shoeprint images nearby in the

feature space should share similar ranking scores. Wij denotes the hybrid feature similarity between

ui and uj, and B is a diagonal matrix, in which Bii =
K
∑

j=1
Wij.

The third term weighted by γ is the fitting term. y = [y1, y2, . . . , yK]
T is a vector, in which yi = 1,

if ui is the query, and yi = 0 otherwise.
Equation (1) can also be generalized as a multiple similarity measures manifold ranking frame

work, which can be formulated as follows:

[f∗, β∗] = argmin
f,β

Q(f) =
P
∑

p=1

K
∑

i=1

K
∑

j=1
βpW(p)

ij

 1√
C(p)

ii

fi − 1√
C(p)

jj

fj

2

+ γ
K
∑

i=1
(fi − yi)

2

subject to
P
∑

p=1
βp = 1, βp ≥ 0.

(3)

where W(p) denotes the adjacency matrix calculated using the pth similarity measure, P denotes the

number of similarity measures, and C(p) is a diagonal matrix, and C(p)
ii =

K
∑

j=1
W(p)

ij . βp represents the

pth regularization parameter. Let β = [β1, β2, . . . , βP].

3.2. Solution

We solve the optimal question in Equation (3) by constructing a Lagrange function. To get an
optimal regularization parameter β, we replace βp with β

q
p, where q > 1. Therefore, the Lagrange

function is defined as follows:

L(β, α) =
P

∑
p=1

K

∑
i=1

K

∑
j=1

β
q
pW(p)

ij

 1√
C(p)

ii

fi −
1√
C(p)

jj

fj


2

+ γ
K

∑
i=1

(fi − yi)
2 + α

(
P

∑
p=1

βp − 1

)
(4)

Letting ∂L(β,α)
∂βp

= 0, and ∂L(β,α)
∂α = 0, we can get

qβ
q−1
p

K

∑
i=1

K

∑
j=1

W(p)
ij

 1√
C(p)

ii

fi −
1√
C(p)

jj

fj


2

− α = 0 (5)

P

∑
p=1

βp − 1 = 0 (6)
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Then, βp can be acquired as follows:

βp =

1/
K
∑

i=1

K
∑

j=1
W(p)

ij

 1√
C(p)

ii

fi − 1√
C(p)

jj

fj

2


1/(q−1)

P
∑

p=1

1/
K
∑

i=1

K
∑

j=1
W(p)

ij

 1√
C(p)

ii

fi − 1√
C(p)

jj

fj

2


1/(q−1) (7)

Then, we update f by using the new βp. When βp is fixed, we can get

f∗ = argmin
f,β

Q(f) =
P

∑
p=1

K

∑
i=1

K

∑
j=1

β
q
pW(p)

ij

 1√
C(p)

ii

fi −
1√
C(p)

jj

fj


2

+ γ
K

∑
i=1

(fi − yi)
2 (8)

The matrix-vector formulation of the function is:

Q(f) =
P

∑
p=1

1
4

β
q
pfTL(p)f +

1
2

γ(f− y)T(f− y) (9)

where L(p) = I−
√

C(p)W(p)
√

C(p), which represents a symmetric normalized Laplacian matrix.
Differentiation Q(f) with respect to f yields(

P

∑
p=1

β
q
pL(p) + γI

)
f− γy = 0 (10)

The ranking score can be obtained as follows:

f∗ =

(
P

∑
p=1

β
q
pL(p) + γI

)−1

γy (11)

The algorithm is summarized in Algorithm 1.

Algorithm 1. Solution to the retrieval problem

Input: The affinity matrix W(p), the initial ranking score list y. Iteration number T, tuning parameter q.
Output: The final ranking score list f∗.
1: Set r = 0, set β(0) = [1/P, 1/P, . . . , 1/P], assign y to f(0).

2: Compute the degree matrix C(p) and the Laplacian matrix L(p) = I−
√

C(p)W(p)
√

C(p)

3: Update ranking score f(r) =

(
P
∑

p=1
β

q
pL(p) + γI

)−1

γy

4: Update β(r) using Equation (7).
5: Let r = r + 1. If r > T, quit iteration and output final ranking score list f∗ = f(T), otherwise go to 3.

3.3. The Affinity Matrix Computation Mothod

In [28], a Wavelet-Fourier-Mellin transform and Similarity Estimation (WFSE) based method
is proposed to compute the matching score. The WFSE method has been applied successfully in
forensic practice when retrieving crime scene shoeprint images, but it does not take into consideration
the local patterns of the shoeprint. Generally, our observation of objects usually is a continuously
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improving process from the whole to the parts and to the details. Inspired by this rule, we propose a
hybrid holistic, region and local features to compute the matching score, which follows the rules of our
observation to objects. We define the hybrid feature similarity as follows:

W(i, j) = brSr
(
ui, uj

)
+ bhSh

(
ui, uj

)
+ blSl

(
ui, uj

)
(12)

where br, bh and bl denote the weighted parameters, and br + bh + bl = 1.
For a shoeprint image ui, the extraction process for its hybrid holistic, region and local features

has following six main steps.
Step 1: Acquire and normalize the shoeprint image.
Step 1.1: Acquire the binarized shoeprint image. The shoeprint image is firstly split into a grid of

cells, and then a thresholding method (e.g. Otsu’s method) is applied to each cell to extract sub
shoeprints. Finally, morphological operations are utilized to eliminate small holes and smooth edges.

Step 1.2: Resolution and orientation normalization. The shoeprint images are rescaled to a
predefined resolution measured in dots per inch (DPI). And then we normalize the shoeprint image by
using the Shoeprint Contour Model (SPCM) proposed in [28].

Step 2: The normalized shoeprint image ui is divided into the top region and the bottom region,
and they are denoted as Stop(i) and Sbottom(i), respectively.

Step 3: The shoeprint image ui and its two regions Stop(i) and Sbottom(i) are decomposed at a
specified number of levels by using the Haar Wavelet. We can acquire one approximation and three
details. The coefficients can have the following forms:

FW(ui) =
{

F(ui)
W (l, h, v)

∣∣∣0 ≤ l ≤ L, h, v = 0, 1
}

FW
(
Stop(i)

)
=
{

F
(Stop(i))
W (l, h, v)

∣∣∣0 ≤ l ≤ L, h, v = 0, 1
}

FW(Sbottom(i)) =
{

F(Sbottom(i))
W (l, h, v)

∣∣∣0 ≤ l ≤ L, h, v = 0, 1
} (13)

where L is the maximum level. To avoid merging the useful neighbor patterns, L should be able to
meet the criterion: 2L−1 ≤ Dmin, where Dmin represents the minimum distance between two neighbor
patterns, which can be specified interactively.

Step 4: The Fourier-Mellin transform is applied on each wavelet coefficients to extract features.
Step 4.1: Calculate the Fourier magnitude of the pre-processed image by using the fast Fourier

transform (FFT);
Step 4.2: Use a band passed filter proposed in [30] to weaken the effect of the noises, such as small

holes, intrusions, extrusions and broken patterns;
Step 4.3: Perform the log-polar mapping of the filtered Fourier magnitude acquired in Step 4.2;
Step 4.4: Calculate the Fourier magnitude of the log-polar mapping calculated in Step 4.3 by using

the FFT;
Step 4.5: The filtered Fourier-Mellin domain coefficients of FW(ui) are used as holistic features

and those of FW
(
Stop(i)

)
and FW(Sbottom(i)) are used as region features. Here, we use FMW(ui),

FMW
(
Stop(i)

)
and FMW(Sbottom(i)) to denote the holistic and region features of the shoeprint ui.

Step 5: Construct Gabor filters. The Gabor filter in the spatial domain has the following form:

G(x, y) =
1

δxδy
exp

[
−π

(
x′2

δx2 +
y′2

δy2

)][
exp

(
i2π f x′

)
− exp

(
−π2

2

)]
(14)

where x′ = x sin θ + y cos θ, and x′ = x cos θ − y sin θ. We set the values of f , δx and
δy as 0.458, 3 and 3, respectively. Here, we construct Gabor filters in eight orientations
(0◦, 22.5◦, 45◦, 67.5◦, 90◦, 112.5◦, 135◦, 157.5◦) according to Equation (14).

Step 6: Extraction of local features. A shoeprint image is convolved with the Gabor filters in eight
orientations. Then each filtered shoeprint image is divided into non-overlapping blocks, and there



Information 2019, 10, 45 8 of 15

are 8 blocks in each row and 16 blocks in each column. The standard variance σθ(m, n) and the mean
Mθ(m, n) of the pixel intensities in each block across all filtered images are used as the local features.
The local feature of the shoeprint image ui is defined as follows:

GW(ui) = {σθ(m, n), Mθ(m, n)} (15)

where θ ∈ {θ1, θ2, . . . , θ8}, m = 1, 2, . . . , 8 and n = 1, 2, . . . , 16.
For two shoeprint images ui and uj, the holistic feature similarity Sh

(
ui, uj

)
between them is

computed as follows:

Sh
(
ui, uj

)
=

(
FMW(ui)− FMW(ui)

)(
FMW(uj)− FMW(uj)

)∣∣FMW(ui)− FMW(ui)
∣∣∣∣FMW(uj)− FMW(uj)

∣∣ (16)

The regional feature similarity Sr
(
ui, uj

)
between them is a weighted sum of correlation

coefficients of both FMW
(
Stop(i)

)
and FMW(Sbottom(i)). Please refer to Equations (7)–(19) in [28] for

details about how to set the weights adaptively. The local feature similarity Sl
(
ui, uj

)
between two

images is computed as follows:

Sl
(
ui, uj

)
=

(
GW(ui)−GW(ui)

)(
GW(uj)−GW(uj)

)∣∣GW(ui)−GW(ui)
∣∣∣∣GW(uj)−GW(uj)

∣∣ (17)

4. Experiments

4.1. Experiment Configuration

4.1.1. Dataset

The experiments were conducted on two shoeprint datasets. One is the MUES-SR10KS2S
dataset [28], and shoeprints in this dataset were collected from real crime scenes. The other is a
public available dataset, named the FID-300 dataset [26].

The MUES-SR10KS2S dataset contains one probe set and one gallery set. The gallery set consists of
72 probe images, 432 synthetic versions of the probe images and 9592 crime scene shoeprints.
Examples of crime scene shoeprint images in the dataset are shown in Figure 3. It can be seen
that shoeprint images with same patterns differ greatly, due to the varying imaging conditions.
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Figure 3. Examples of crime scene shoeprint images in the MUES-SR10KS2S dataset. (a) The probe 
shoeprint and its counterparts from real crime scenes in the gallery set. (b) Corresponding binarized 
versions of the probe shoeprint and its counterparts in the gallery set. 

The FID-300 dataset consists of 300 probe shoeprints and 1175 gallery shoeprints. The probe 
shoeprint images were collected from crime scenes by investigators. The gallery shoeprints were 
generated by using a gelatine lifter on the outsole of the reference shoe, and then by scanning the 
lifters. The gallery shoeprints are of very high quality. Examples of shoeprints in FID-300 dataset are 

Figure 3. Examples of crime scene shoeprint images in the MUES-SR10KS2S dataset. (a) The probe
shoeprint and its counterparts from real crime scenes in the gallery set. (b) Corresponding binarized
versions of the probe shoeprint and its counterparts in the gallery set.

The FID-300 dataset consists of 300 probe shoeprints and 1175 gallery shoeprints. The probe
shoeprint images were collected from crime scenes by investigators. The gallery shoeprints were
generated by using a gelatine lifter on the outsole of the reference shoe, and then by scanning the lifters.
The gallery shoeprints are of very high quality. Examples of shoeprints in FID-300 dataset are shown
in Figure 4. Figure 4a shows one group of probe shoeprints, and Figure 4b shows their corresponding
shoeprints in the gallery set.



Information 2019, 10, 45 9 of 15

Information 2018, 9, x FOR PEER REVIEW  9 of 15 

 

shown in Figure 4. Figure 4a shows one group of probe shoeprints, and Figure 4b shows their 
corresponding shoeprints in the gallery set. 

  
(a) (b) 

Figure 4. Examples of the probe shoeprints and their corresponding reference shoeprints in FID-300 
dataset. (a) The probe shoeprints from crime scenes. (b) Corresponding shoeprints of the probe 
shoeprints in the gallery set. 

4.1.2. Evaluation Metrics 

The cumulative match score used in [31] is applied to evaluate the performance of the method, 
and it is defined as follows: 

( ) =100 nRCMS n
P

 (18)

where P  and nR  denote the number of the probe images and the number of gallery images which 
match the probe images in the top n rank, respectively. 

4.2. Performance Evaluation 

4.2.1. Performance Evaluation of the Proposed Hybrid Features and the Proposed NSE Method 

To test the performance of the hybrid holistic, region and local features, we used four kinds of 
features to retrieve images in the dataset and evaluated the performance of these features according 
to their cumulative match score. We also compared the performance of the proposed NSE method 
with that of the features. The first kind of feature is the holistic feature, and its matching score was 
computed according to Equation (16). The second kind of feature is the region feature, in our method, 
the Wavelet-Fourier-Mellin feature proposed in [28] was used as the region feature, and its matching 
score was computed according to Equation (8) in [28]. The third kind of feature is the local feature, 
and its matching score was computed according to Equation (17). The fourth kind of feature is the 
proposed hybrid features, and the matching score was computed according to Equation (12). The 
results are listed in Table 1. For single features, region features have better performance than both 
holistic and local features. For the proposed hybrid feature, its cumulative match score is improved 
6.6% on average than that of [28] because of the strengths of three kinds of low-level features. The 
results also illustrate that the cumulative match score of the proposed NSE method is improved 10.4% 
on average than that of [28]. Figure 5 provides a visual illustration of the top 10 shoeprint images in 
the ranking lists of our method and the compared method. The results show that the proposed hybrid 
feature and NSE method outperform the work of [28] on the MUES-SR10KS2S database.  

Table 1. Comparison of the performance of our proposed method with the compared methods. 

Approaches The Cumulative Match Score of Top Percentage 

0.1% 0.2% 0.3% 0.4% 0.5% 1% 2% 

Holistic feature 11.9% 20.2% 25.2% 29.4% 31.9% 39.4% 49.0% 

Region feature [28] 45.2% 64.1% 69.4% 73.8% 75.8% 81.8% 87.5% 

Local feature 11.3% 17.1% 19.0% 20.2% 21.2% 26.8% 32.7% 

The proposed hybrid feature 53.2% 71.4% 77.6% 81.3% 83.1% 87.3% 89.9% 

Figure 4. Examples of the probe shoeprints and their corresponding reference shoeprints in FID-300
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4.1.2. Evaluation Metrics

The cumulative match score used in [31] is applied to evaluate the performance of the method,
and it is defined as follows:

CMS(n)= 100
Rn

|P| (18)

where |P| and Rn denote the number of the probe images and the number of gallery images which
match the probe images in the top n rank, respectively.

4.2. Performance Evaluation

4.2.1. Performance Evaluation of the Proposed Hybrid Features and the Proposed NSE Method

To test the performance of the hybrid holistic, region and local features, we used four kinds of
features to retrieve images in the dataset and evaluated the performance of these features according to
their cumulative match score. We also compared the performance of the proposed NSE method
with that of the features. The first kind of feature is the holistic feature, and its matching score was
computed according to Equation (16). The second kind of feature is the region feature, in our method,
the Wavelet-Fourier-Mellin feature proposed in [28] was used as the region feature, and its matching
score was computed according to Equation (8) in [28]. The third kind of feature is the local feature, and
its matching score was computed according to Equation (17). The fourth kind of feature is the proposed
hybrid features, and the matching score was computed according to Equation (12). The results are
listed in Table 1. For single features, region features have better performance than both holistic and
local features. For the proposed hybrid feature, its cumulative match score is improved 6.6% on
average than that of [28] because of the strengths of three kinds of low-level features. The results also
illustrate that the cumulative match score of the proposed NSE method is improved 10.4% on average
than that of [28]. Figure 5 provides a visual illustration of the top 10 shoeprint images in the ranking
lists of our method and the compared method. The results show that the proposed hybrid feature and
NSE method outperform the work of [28] on the MUES-SR10KS2S database.

Table 1. Comparison of the performance of our proposed method with the compared methods.

Approaches The Cumulative Match Score of Top Percentage

0.1% 0.2% 0.3% 0.4% 0.5% 1% 2%

Holistic feature 11.9% 20.2% 25.2% 29.4% 31.9% 39.4% 49.0%
Region feature [28] 45.2% 64.1% 69.4% 73.8% 75.8% 81.8% 87.5%

Local feature 11.3% 17.1% 19.0% 20.2% 21.2% 26.8% 32.7%
The proposed hybrid feature 53.2% 71.4% 77.6% 81.3% 83.1% 87.3% 89.9%
The proposed NSE method 53.8% 80.0% 84.1% 84.7% 86.1% 89.7% 92.3%



Information 2019, 10, 45 10 of 15

Information 2018, 9, x FOR PEER REVIEW  10 of 15 

 

The proposed NSE method 53.8% 80.0% 84.1% 84.7% 86.1% 89.7% 92.3% 

 

 

       

 
(a) 

 
(b) 

 
(c) 

Figure 5. Results of our method and the compared methods. The top 10 in the ranking list of our 
method and the compared methods are presented. Shoeprints encircled by the solid boxes are the 
query shoeprints, and those encircled by dotted boxes are their counterparts. (a) Wang et al. 2014 [28]. 
(b) The proposed hybrid feature. (c) The proposed neighborhood-based similarity estimation (NSE) 
method. 

4.2.2. Comparison with the Traditional Manifold Ranking Method 

Zhou et al. [32] provided a manifold based ranking (MR) algorithm, and the manifold 
regularization term of our proposed ranking cost function is based on their ideas. To evaluate the 
effectiveness of our method, we compared our method with the traditional manifold ranking method 
[32]. To ensure a fair comparison, the affinity matrixes used in both methods were the same ones 
calculated according to Equation (2). The cumulative match scores of the algorithms are listed in 
Table 2. The results show that the performance of our method is approximately 0.7% on average 
above that of Zhou et al. [32]. 

Table 2. Comparison with the traditional manifold ranking method. 

Approaches The Cumulative Match Score of Top Percentage 

0.1% 0.2% 0.3% 0.4% 0.5% 1% 2% 

Manifold ranking method [32] 52.4% 79.6% 83.9% 85.1% 86.3% 89.5% 91.9% 

Our method 53.6% 81.0% 84.7% 85.9% 86.7% 89.5% 92.5% 

4.2.3. Comparison with the Manifold Ranking Based Shoeprint Retrieval Method 

We compared the proposed method with the works of Wang et al. [29] which provided a 
manifold-based shoeprint retrieval algorithm. The method asks forensic experts to assign the 
shoeprint example an opinion score according to the similarity between the example and the query, 
in which the example denotes the shoeprint acquired at the same crime scene with the query 
shoeprint. To ensure a fair comparison, the vector T

1 2[ , ,..., ]Ky y y=y  used in our proposed method 

Figure 5. Results of our method and the compared methods. The top 10 in the ranking list of our
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shoeprints, and those encircled by dotted boxes are their counterparts. (a) Wang et al. 2014 [28]. (b) The
proposed hybrid feature. (c) The proposed neighborhood-based similarity estimation (NSE) method.

4.2.2. Comparison with the Traditional Manifold Ranking Method

Zhou et al. [32] provided a manifold based ranking (MR) algorithm, and the manifold
regularization term of our proposed ranking cost function is based on their ideas. To evaluate
the effectiveness of our method, we compared our method with the traditional manifold ranking
method [32]. To ensure a fair comparison, the affinity matrixes used in both methods were the same
ones calculated according to Equation (2). The cumulative match scores of the algorithms are listed in
Table 2. The results show that the performance of our method is approximately 0.7% on average above
that of Zhou et al. [32].

Table 2. Comparison with the traditional manifold ranking method.

Approaches The Cumulative Match Score of Top Percentage

0.1% 0.2% 0.3% 0.4% 0.5% 1% 2%

Manifold ranking method [32] 52.4% 79.6% 83.9% 85.1% 86.3% 89.5% 91.9%
Our method 53.6% 81.0% 84.7% 85.9% 86.7% 89.5% 92.5%

4.2.3. Comparison with the Manifold Ranking Based Shoeprint Retrieval Method

We compared the proposed method with the works of Wang et al. [29] which provided a
manifold-based shoeprint retrieval algorithm. The method asks forensic experts to assign the shoeprint
example an opinion score according to the similarity between the example and the query, in which the
example denotes the shoeprint acquired at the same crime scene with the query shoeprint. To ensure a
fair comparison, the vector y = [y1, y2, . . . , yK]

T used in our proposed method is same as that of [29],
where if ui is the query or the shoeprint sample that has the similar shoe pattern with the query, yi = 1;
else yi = 0. The cumulative match scores of the algorithms are listed in Table 3. The experimental
results show that the performance of our method surpasses that of [29]. The cumulative match score of
ours is approximately 3.0% above that of [29] on average.
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Table 3. Comparison with the manifold ranking based shoeprint retrieval method.

Approaches The Cumulative Match Score of Top Percentage

0.1% 0.2% 0.3% 0.4% 0.5% 1% 2%

Wang et al. 2016 [29] 52.6% 76.0% 81.8% 84.5% 85.5% 90.1% 93.5%
Our method 54.6% 81.7% 86.5% 87.9% 88.9% 90.9% 94.8%

4.2.4. Comparison with the State-of-the-art Algorithms

We also compared the proposed method with the state-of-the-art shoeprint retrieval methods
on the MUES-SR10KS2S dataset. The results are shown in Table 4. For some state-of-the-art methods
do not release codes, the results listed in Table 4 are achieved by running the codes implemented by
ourselves. In this section, to ensure a fair comparison, the vector y = [y1, y2, . . . , yK]

T used in [29] is the
one detailed in Section 3.1. The experimental results show that the cumulative match score of top 2% of
the proposed algorithm is more than 92.5%. It can also be found that the cumulative match score of the
proposed method is improved 5% compared to the work of Wang et al. [28] on top 2% of the ranked
list. The results show that some methods cannot have the similar performance as that reported in the
literatures on the MUES-SR10KS2S dataset. We think the possible reasons may be that: (i) the quality
and quantity of shoeprints in datasets are greatly different; (ii) the codes and experimental settings
may not be the optimal ones.

Our hardware configuration consists of a 3.33-GHz central processing unit (CPU) with 8-GB
random access memory (RAM). All of the methods are implemented with MATLAB codes. The mean
average running time is applied to evaluate the running times.

MAT =

nq

∑
i=1

T(i)

nqK
(19)

where i denotes the ith query image, T(i) represents the running time of the ith retrieval, nq denotes
the number of query images, and K is the number of the gallery images.

Table 4. Comparisons with the state-of-the-art algorithms on the MUES-SR10KS2S dataset.

Methods

Performance Reported in the Literature Performance on Our Dataset

Performance Gallery Set
Description

The Cumulative
Match Score of

Top 2%

Mean Average
Running
Time(ms)

Kortylewski et al. 2014 [19] 85.7%@20% #R:1,175 38.64% 0.5696

Almaadeed et al. 2015 [24] 68.5%@2.5% #R:400 34.7% 14.2

Wang et al. 2014 [28] 87.5%@2% #S:10,096 87.5% 17.8

Wang et al. 2016 [29] 93.5%@2% #S:10,096 91.1% 17.8238

Kong et al. 2017 [12] 92.5%@20% #R:1,175 45.6% 186.0

Our method _ #S:10,096 92.5% 18.2

To further verify the effectiveness of the proposed method, we compared our proposed method
with the works of Kortylewski et al. [26], Wang et al. [29], Kong et al. [12], Kortylewski [27] and
Kong et al. [13] on a public available database named FID-300 [26]. The results are listed in Table 5.
The results of Kortylewski et al. [26] and Kong et al. [12] are borrowed from Figure 5 in Kong et al. [12].
The results show that our method achieves a good performance on the FID-300 dataset, and the
cumulative match score of our method reaches more than 95.3% in the top 20% of the dataset.
The results also show that there is an improvement of approximately 1.3% compared with the
works of Kong et al. [13] in the top 20% of the ranked list. However, the cumulative match scores of
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Kong et al. [13] surpass those of ours in the top 1%, 5% and 15% of the ranking list. The main
reason may be as follows. Most of the probe shoeprint images in FID-300 database are of small
size, and some of them only provide a small periodical pattern patch to retrieve shoeprint images.
Kong et al. [13] used a template matching method to search over both translations (with a stride of 2)
and rotations, which can work well for the case that the query image is a small patch. However, our
method does not consider this case.

Table 5. Comparisons with the state-of-the-art shoeprint retrieval algorithms on the FID-300 dataset.

Method
The Cumulative Match Score of the Top Percentage

1% 5% 10% 15% 20%

Kortylewski et al. 2016 [26] 22.0% 47.5% 58.0% 67.0% 71.0%
Wang et al. 2016 [29] 67.9% 81.3% 86.3% 91.3% 94.0%
Kong et al. 2017 [12] 73.0% 82.5% 87.5% 91.0% 92.5%

Kortylewski 2017 [27] 58.0% 72.0% 79.0% 81.5% 84.0%
Kong et al. 2018 [13] 79.0% 86.3% 89.0% 91.3% 94.0%

Our method 71.8% 81.7% 87.3% 92.0% 95.3%

4.3. Analysis and Discussion

In this section, we further analyze the effect of different components of the cost function on the
ranking result, which includes the roles of the proposed NSE method and the hybrid feature similarity.
The influence caused by each kind of low-level feature is also discussed.

4.3.1. Effectiveness of the proposed NSE method and the hybrid feature similarity

In this section, we conducted experiments to verify the effectiveness of the proposed NSE method
and the hybrid feature similarity. We conducted two kinds of experiments by using the MR method
with two different affinity matrixes. The first affinity matrix consists of the hybrid feature similarities
calculated according to Equation (12), and the second affinity matrix is acquired by using the proposed
NSE method. The cumulative match scores of the algorithms are listed in Table 6, and the cumulative
match characteristic curves of the algorithms are shown in Figure 6. The cumulative match scores
show that the performance of our method is approximately 4.1% above that of Zhou et al. [32] with
our proposed hybrid feature similarity on average, and approximately 0.7% on average above that of
Zhou et al. [32] with the affinity matrix computed by using our proposed NSE method. The results
also show that the proposed method using both hybrid feature similarity and NSE method achieves a
higher performance than the one using only the proposed NSE method or the hybrid feature similarity.

Table 6. Comparison with the traditional manifold ranking method.

Approaches The Cumulative Match Score of Top Percentage

0.1% 0.2% 0.3% 0.4% 0.5% 1% 2%

Hybrid feature similarity+MR 53.2% 71.8% 78.0% 81.3% 82.7% 87.5% 90.5%
NSE+MR 52.4% 79.6% 83.9% 85.1% 86.3% 89.5% 91.9%

Our method (Hybrid feature
similarity +NSE+ MR) 53.6% 81.0% 84.7% 85.9% 86.7% 89.5% 92.5%
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4.3.2. Effectiveness of Each Kind of Low Level Feature

We conducted experiments to verify the effectiveness of each kind of the low level features.
In the experiments, we replaced the proposed hybrid feature with three kinds of features, and evaluated
the performance of these features according to their cumulative match score. The first kind of feature
was the hybrid feature of holistic and region feature, and we conducted this kind of experiments to
verify the effectiveness of the local features. The second kind of feature was the hybrid feature of
holistic and local feature, and we conducted this kind of experiments to verify the effectiveness of
the region features. The third kind of feature was the hybrid feature of region and local feature, and
we conducted this kind of experiments to verify the effectiveness of the holistic features. The results
are listed in Table 7. The results show that the method with the proposed hybrid features achieves a
higher performance than the one using only two of them. Furthermore, the proposed hybrid features
can integrate the strengths of three kinds of low-level features, and each kind of features can help the
proposed method to yield more satisfactory retrieval results.

Table 7. Performance of the proposed method with the three kinds of features.

Approaches The Cumulative Match Score of Top Percentage

0.1% 0.2% 0.3% 0.4% 0.5% 1% 2%

Hybrid feature of holistic and region 48.8% 73.0% 76.6% 80.4% 81.3% 86.7% 89.3%
Hybrid feature of holistic and local 33.9% 44.4% 50.2% 54.4% 56.7% 70.4% 77.2%
Hybrid feature of region and local 48.6% 72.2% 75.8% 78.8% 83.9% 88.5% 89.5%

The proposed hybrid feature 53.6% 81.0% 84.7% 85.9% 86.7% 89.5% 92.5%

5. Conclusions

In this paper, we proposed an effective shoeprint image retrieval method. In the proposed
method, we enhance the retrieval precision from two perspectives: (i) integrate the strengths of
three kinds of low-level features to yield more satisfactory retrieval results; and (ii) enhance the
traditional distance-based similarity by leveraging the information embedded in the neighboring
shoeprints. The greatest difference between the proposed method and the other existing shoeprint
retrieval methods is that we not only consider the relationship between every two shoeprints, but also
the relationships between their neighbors. Our proposed method can also be generalized as a
generic reranking framework which utilizes information contained in the neighbors to improve
the effectiveness of manifold based method. Experiments on the real crime scene datasets have shown
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that the performance of the proposed algorithm outperforms not only the traditional manifold ranking
method, but also the state-of-the-art shoeprint retrieval algorithms.
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