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Abstract: UAVs (unmanned aerial vehicles) have been widely used in many fields, where they need
to be detected and controlled. Small-sample UAV recognition requires an effective detecting and
recognition method. When identifying a UAV target using the backward propagation (BP) neural
network, fully connected neurons of BP neural network and the high-dimensional input features will
generate too many weights for training, induce complex network structure, and poor recognition
performance. In this paper, a novel recognition method based on non-negative matrix factorization
(NMF) with sparseness constraint feature dimension reduction and BP neural network is proposed
for the above difficulties. The Edgeboxes are used for candidate regions and Log-Gabor features are
extracted in candidate target regions. In order to avoid the complexity of the matrix operation with
the high-dimensional Log-Gabor features, preprocessing for feature reduction by downsampling is
adopted, which makes the NMF fast and the feature discriminative. The classifier is trained by neural
network with the feature of dimension reduction. The experimental results show that the method
is better than the traditional methods of dimension reduction, such as PCA (principal component
analysis), FLD (Fisher linear discrimination), LPP (locality preserving projection), and KLPP (kernel
locality preserving projection), and can identify the UAV target quickly and accurately.

Keywords: non-negative matrix factor (NMF); sparseness constraint; back propagation (BP) neural
network; feature dimension reduction

1. Introduction

UAVs (unmanned aerial vehicles) have been widely used in the military and civilian fields in
recent years because of their advantages of small size, low cost, low noise, strong maneuverability,
high concealment, and superior stability. They can be applied to enemy investigation, dangerous
area detection, target tracking, electronic interference, communication relay, and even small-sized
weapons. Therefore, it is necessary to detect and monitor non-cooperative UAVs using our UAVs in
the air. Through monitoring the border area and other national troops by UAVs in real-time, the border
surveillance of wide areas can be realized economical, and it plays a certain security role for the country
and society.

It is difficult to identify UAVs because of the variety in illumination, shapes, scales, attitudes,
and background in the air. Considering the possibility that the UAV could be hovering in air,
the detection method for static images is suitable for UAV targets. We need a fast and effective
method to detect targets in a static image. The region proposal method is the first and foremost in
importance, while traditional time-consuming sliding window method is not advisable. As can be
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seen from the following state, the EdgeBoxes method is faster and more accurate than other methods.
We select the EdgeBoxes method to extract the region of interest, as it satisfies the real-time requirement.

As for recognition, BP (back propagation) neural network can approximate any nonlinear function.
It has many advantages, such as strong ability for suppressing noise, fault tolerance, adaptive learning
and parallel processing ability [1–3]. It is widely used in the field of target detection. The convolutional
neural network of deep learning has achieved excellent results in the field of object detection, however,
it needs a large number of data samples to train the network of deep learning. In actual work, such as
the UAV object recognition in this paper, it is too difficult to get so many training samples, and it
would be easy to overfit under the conditions of limited/few datasets. According to this problem,
designing a kind of object recognition method using back propagation neural network is necessary for
small sample UAV recognition.

Compared with convolutional neural networks, the back propagation neural network has a
short training time and can adapt to environmental change. The accuracy of recognition can meet
most of the application requirements [4–7]. However, when BP neural network is used for UAV
target recognition, the high-dimensional input feature makes the network structure complex and
reduces training performance, so it is necessary to reduce the original high-dimensional feature before
training classifier.

The commonly used methods of feature reduction include principal component analysis (PCA),
Fisher linear discriminant analysis (FLD), locality preserving projection (LPP), and so on. The principal
component analysis method is simple and efficient, but it is not suitable for high-dimensional nonlinear
data structure [8]. Locality preserving projection (LPP) not only solves the problem that in the linear
method it is difficult to maintain the nonlinear manifold of the data, but also overcomes the shortcoming
that in the nonlinear method it is difficult to obtain the low-dimension projection of new samples.
LPP has a good local discriminant ability [9]. The kernel local preserving projection (KLPP) maps the
low-dimensional, linear, and inseparable data into high-dimensional space through the kernel function,
and has a better ability to extract nonlinear feature than LPP [10]. However, LPP is an unsupervised
learning method. When the illumination and attitude of the target change, or the two classes are close
and even overlapped, the recognition rate will decline. The process of matrix transforming to vector is
easy to bring a dimensionality curse for LPP method, and the amount of calculation is very large.

Non-negative matrix factorization (NMF) is a dimension-reduction technique based on a
low-rank approximation of the feature space. Besides providing a reduction in the number of
features, NMF guarantees that the features are non-negative, producing additive models that respect,
for example, the non-negativity of physical quantities [11]. One of the most useful properties of
NMF is that it usually produces a sparse representation of the data. Such a representation encodes
much of the data using few ‘active’ components, which makes the encoding easy to interpret.
The sparse representation can inhibit the effects of the occlusion, illumination variation, and rotation
for feature extraction.

Therefore, a novel UAV target recognition method, based on NMF with sparseness constraint
(NMFsc) [12] feature dimension reduction and BP neural network, is proposed in this paper.
The Log-Gabor features are extracted from the UAV target image in the first, and then the
high-dimensional Log-Gabor features are reduced by the NMFsc algorithm. The BP neural network
classifier is used to training and recognition after feature reduction. Compared with PCA (principal
component analysis), FLD (Fisher linear discrimination), LPP (locality preserving projection), and KLPP
(kernel locality preserving projection), and other algorithms, the method of NMFsc with BP neural
network overcomes the problem of both working in real-time and accuracy, and improves the
recognition performance. Figure 1 is the flowchart of our algorithm.
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Figure 1. The flowchart of algorithm. NMFsc is non-negative matrix factorization (NMF) with 
sparseness constraint. 
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The SelectiveSearch [13] proposal method is one of the well-known methods. SelectiveSearch is 
based on multiple hierarchical segmentation using superpixels. SelectiveSearch has been broadly 
used as the proposal method of choice by many state-of-the-art object detectors, including the R-CNN 
[14] and Fast R-CNN [15] detectors. For covering a diverse set of regions, different kinds of grouping 
strategies and color spaces are used, which produce high recall at fast speeds—a few seconds per 
image. However, there is no scoring mechanism on the proposals; therefore, proposals cannot be 
ranked. Carreira and Sminchisescu [16], CMPC, and Endres and Hoiem [17] methods solve multiple 
graph cuts with different seeds and parameters to generate class-independent proposals. Both of 
these methods generate binary foreground/background segments, with each obtained foreground 
segment as an object hypothesis, and both of these methods learn to predict the segments that cover 
complete objects and rank proposals accordingly. However, both algorithms are slow due to their 
reliance on the gPb edge detector, but generate high-quality segmentation masks. 

On the other hand, window scoring methods are very different, with each window score being 
calculated according to how likely it is to contain an object. This approach generates a bounding box 
much faster than the grouping methods. However, this approach has low localization accuracy. 
Objectness [18] is a window-based approach in which each candidate window score is calculated 
according to different image cues. This method uses saliency, color contrast, edge density, and 
superpixel straddling cues to obtain the characteristics of images, and adopts Bayesian’s framework 
to combine several cues. The last advantage of objectness is its slow emergence of drawback, which 
appears at a snail’s speed. This method has low localization accuracy, but the first few proposals it 
obtains are of high quality. 

Rahtu et al. [19] begins with a large number of randomly sampled boxes from an objectness and 
multiplies them with proposal regions generated from single, pair, and triplet superpixel 
segmentations. 

EdgeBoxes [20] is another window-based approach, and is among the fastest object proposal 
generation methods. EdgeBoxes generates object proposals directly from the edges of an image.  

Table 1 shows results of the different approaches. The EdgeBoxes approach is significantly faster 
and more accurate than previous approaches. The only methods with comparable accuracy are 
SelectiveSearch and CPMC, but these are considerably slower. The only method with comparable 
speed is BING [21], but BING has the worst accuracy of all evaluated methods at IoU of 0.7 [20]. 
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Figure 1. The flowchart of algorithm. NMFsc is non-negative matrix factorization (NMF) with
sparseness constraint.

2. UAV Interesting Candidate Regions: Generation and Selection

2.1. Related Algorithms of Region Proposal

These proposal algorithms are broadly divided into two categories: grouping methods and
window scoring methods. Grouping methods generate multiple segments of an image which are
likely to contain objects. The most common approach to grouping methods is to do hierarchical
image segmentation and merge segments according to the similarities between those segments.
Most grouping algorithm performance relies on initial segmentation algorithms.

The SelectiveSearch [13] proposal method is one of the well-known methods. SelectiveSearch is
based on multiple hierarchical segmentation using superpixels. SelectiveSearch has been broadly used
as the proposal method of choice by many state-of-the-art object detectors, including the R-CNN [14]
and Fast R-CNN [15] detectors. For covering a diverse set of regions, different kinds of grouping
strategies and color spaces are used, which produce high recall at fast speeds—a few seconds per
image. However, there is no scoring mechanism on the proposals; therefore, proposals cannot be
ranked. Carreira and Sminchisescu [16], CMPC, and Endres and Hoiem [17] methods solve multiple
graph cuts with different seeds and parameters to generate class-independent proposals. Both of these
methods generate binary foreground/background segments, with each obtained foreground segment
as an object hypothesis, and both of these methods learn to predict the segments that cover complete
objects and rank proposals accordingly. However, both algorithms are slow due to their reliance on the
gPb edge detector, but generate high-quality segmentation masks.

On the other hand, window scoring methods are very different, with each window score
being calculated according to how likely it is to contain an object. This approach generates a
bounding box much faster than the grouping methods. However, this approach has low localization
accuracy. Objectness [18] is a window-based approach in which each candidate window score is
calculated according to different image cues. This method uses saliency, color contrast, edge density,
and superpixel straddling cues to obtain the characteristics of images, and adopts Bayesian’s framework
to combine several cues. The last advantage of objectness is its slow emergence of drawback, which
appears at a snail’s speed. This method has low localization accuracy, but the first few proposals it
obtains are of high quality.

Rahtu et al. [19] begins with a large number of randomly sampled boxes from an objectness and
multiplies them with proposal regions generated from single, pair, and triplet superpixel segmentations.

EdgeBoxes [20] is another window-based approach, and is among the fastest object proposal
generation methods. EdgeBoxes generates object proposals directly from the edges of an image.

Table 1 shows results of the different approaches. The EdgeBoxes approach is significantly
faster and more accurate than previous approaches. The only methods with comparable accuracy are
SelectiveSearch and CPMC, but these are considerably slower. The only method with comparable
speed is BING [21], but BING has the worst accuracy of all evaluated methods at IoU of 0.7 [20].
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Table 1. Comparison of different region proposal methods.

Method Approach Time (s) Recall Results Detection Results

SelectiveSearch [13] Grouping 10 *** ***
Rantalankila [22] Grouping 10 · **

CPMC [16] Grouping 250 ** *
Endres and Hoiem [17] Grouping 100 *** **

Objectness [18] Window scoring 3 * ·
Rahtu [19] Window scoring 3 · *

EdgeBoxes [20] Window scoring 0.3 *** ***
Bing [21] Window scoring 0.2 * ·

·, *, **, *** indicate progressively better results.

2.2. UAV Interesting Candidate Regions Selection

Through the analysis above, the EdgeBoxes method has good performance in speed and accuracy.
We select the EdgeBoxes method to obtain the interesting candidate regions. As the UAV might hover
in the air, we detect and identify the UAV target in static images. The 0.2 s region proposal time satisfies
practical requirement. The image effect of EdgeBoxes method is shown in Figure 2.
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3. Feature Extraction and Dimension Reduction

3.1. Log-Gabor Feature Extraction

Field proposes an alternate method to perform both the DC compensation and to overcome the
bandwidth limitation of a traditional Gabor filter. The Log-Gabor filter has a response that is Gaussian
when viewed on a logarithmic frequency scale instead of a linear one. This allows more information to
be captured in the high frequency areas and also has desirable high pass characteristics.

Log-Gabor filters in frequency domain can be defined in polar coordinates by H (f, θ) = Hf × Hθ ,
where Hf is the radial component and Hθ , the angular one:

H( f , θ) = exp

{
−[ln( f / f0)]

2

2[ln(σf / f0)]
2

}
× exp

{
−(θ − θ0)

2

2σ2
θ

}
(1)

where f 0 is the central frequency; θ0, the filter direction; σf defines the radial bandwidth; and σθ defines
the angular bandwidth. In order to maintain constant shape ratio filters, the ratio of σf/f 0 should
be maintained constant. In the following experiments, the shape parameter is chosen such that each
filter has a bandwidth of approximately 2 octaves and the filter bank was constructed with a total of
8 orientations and 5 scales.

Amplitude of Log-Gabor shows the local energy spectrum of image, and it should be regarded as
the intensity of edge of specific orientation.
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UAV image is filtered by Log-Gabor to extract features. This is an image convolution operation,
as follows:

LGu,v(x, y) = E(x, y) ∗Φu,v(x, y) (2)

where * expresses convolution operation, E (x, y) is the UAV image, and Φu,v (x, y) is a Log-Gabor
filter with u scales and v orientations. LGu,v (x, y) is the result of convolution operation. Generally,
amplitude will be selected.

In order to improve the computing speed of filtering and convolution, the scale and orientation of
filter are selected as 1 and 3 separately. The parameters are empirically selected, which σθ is 1.5 and
σf/f 0 is 0.65. Figure 3 shows the convolution result of UAV with one scale and three orientations.
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Figure 3. Log-Gabor filter amplitude with three orientations of unmanned aerial vehicle (UAV) image.

3.2. Preprocessing for Log-Gabor Feature Reduction by Downsampling

The sample image is transformed to 24,576-dimensional features by Log-Gabor filter with one
scale and three orientations. Although the information of high-dimensional features is very rich, it is
also redundant. NMFsc on such a high-dimensional matrix is not conducive to obtaining effective
discriminative features. Also, the time of matrix decomposition of NMF is long, and it cannot achieve
the best recognition performance. Therefore, we need a method to reduce the dimensions of Log-Gabor
feature before NMFsc.

The method of downsampling is a simple and effective method. It has a fast speed and good
recognition result according to the following experiments in this paper. It can reduce the original
dimensions to 6144 or 1536 dimensions by using downsampling once or twice.

Figure 4a is an UAV image and Figure 4b is Log-Gabor filtering images of one scale and three
orientations. Figure 4c is a downsampling image of Figure 4b. As shown in Figure 4, although the
dimension of downsampling image is reduced, the main information is retained.Information 2019, 10, x FOR PEER REVIEW 6 of 18 
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3.3. Feature Reduction by Non-Negative Matrix Factorization with Sparseness Constraints (NMFsc)

Lee and Seung published a non-negative matrix decomposition algorithm in Nature, which is a
non-negative decomposition of all elements in a matrix in 1999. Negative results can be found in the
results of matrix decomposition from the point of view of computation, but negative elements often lack
physical meaning in practical problems. It has no negative values in the decomposition result because
of its decomposition algorithm and has attracted the attention of many scientists and researchers.
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Non-negative data are decomposed by non-negative data, and a simple and effective
multiplicative iterative algorithm is used under non-negative constraints. The information about
the local features of the object is contained in the learning base vector. Compared with the traditional
principal component analysis (PCA), the results of the non-negative matrix factorization accord with
the intuitive experience of the brain and have a clear physical meaning.

Non-negative matrix factorization (NMF) [23] is a method for finding such a representation.
Given a non-negative data matrix V, NMF finds an approximate factorization V ≈ WH into
non-negative factors W and H. The non-negativity constraints make the representation purely additive
(allowing no subtractions), in contrast to many other linear representations such as principal component
analysis (PCA) and independent component analysis (ICA).

Non-negative matrix factorization is a linear, non-negative approximate data representation.
Denoting the (N-dimensional) measurement vectors vt (t = 1, . . . , T), a linear approximation of the
data is given by

vt ≈
M

∑
i=1

wiht
i = Wht (3)

where W is an N ×M matrix containing the basis vectors wi as its columns.
Arranging the measurement vectors vt into the columns of an N × T matrix V, V can now

be described:
V ≈ WH (4)

Given a data matrix V, the optimal choice of matrices W and H are defined to be those
non-negative matrices that minimize the reconstruction error between V and WH. Various error
functions have been proposed, perhaps the most widely used is the squared error (Euclidean
distance) function.

E(W, H) = ‖V−WH‖2 = ∑
i,j

(Vij − (WH)ij)
2 (5)

Although the minimization problem is convex in W and H separately, it is not convex in
both simultaneously. Paatero gave a gradient algorithm for this optimization, whereas Lee and
Seung devised a multiplicative algorithm that is somewhat simpler to implement and also showed
good performance.

Definition NMF with sparseness constraints [24,25] (NMFsc) [12] as follows:
Given a non-negative data matrix V of size N × T, find the non-negative matrices W and H of

sizes N ×M and M × T (respectively) such that

E(W, H) = ‖V−WH‖2 (6)

is minimized, under optional constraints

sparseness(wi) = Sw, ∀i
sparseness(hi) = Sh, ∀i

(7)

where wi is the i:th column of W and hi is the i:th row of H. Here, M denotes the number of components,
and Sw and Sh are the desired sparsenesses of W and H (respectively). These three parameters are set
by the user.

The process of feature reduction based on NMFsc:

(a) Vectorization of the UAV sample image. The pixels of sample image are rearranged by column.
The two-dimensional matrix Ai (i = 1, 2, . . . , m) of p × q is converted to n × 1 one-dimensional
column vector vi (where n = p × q). Then, m samples form n × m matrix V = [v1 v2 . . . vm],
of which each column of the matrix represents a sample image.
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(b) The formula Vn×m ≈Wn×r Hr×m is written as vi = Whi of column form, where the one column
vi of V corresponds to one column hi of H. In other words, vi is the linear combination of all row
vectors of the base matrix W and the weight coefficient hi. Therefore, under the W subspace,
the hi of low dimension can replace the original sample vi of high dimension. When the NMF
coefficient matrix of UAV image is solved, the image feature is obtained. The quality of projection
coefficient hi is determined by the base matrix W. The few base vectors of W should satisfy the
description and approximation of raw data.

Figure 5 shows that information of image after downsampling of different number and NMFsc
dimension reduction. As shown in Figure 5b,c, the information of image are reserved basically after
downsampling once or twice. However, as the number of downsampling increasing, more and more
information about image is lost. Hence, it is best to perform downsampling once or twice, whereby it
reduces the dimensions while preserving the basic information of the image.
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4. Target Recognition Using BP Neural Network

4.1. Principle of BP Neural Network

The BP algorithm is one of the most highly studied neural network (NN) algorithms due to
its self-adaptation, self-learning, robustness, and generalizability. The BPNN with a three-layered
topology can approach any nonlinear function with precision [26].

Equation (8) shows the relationship between the input and output of hidden neurons. The output
of the whole network is y, the desired output is y’, and the error function is defined as e = y’ − y.

Ij = f1(Pj) = f1

(
n

∑
i=1

wijXi + θj

)
, (i = 1, 2, · · · , n; j = 1, 2, · · · , m), (8)

y = f2(Q) = f2

(
m

∑
j=1

wjk Ij + θk

)
, (j = 1, 2, · · · , m; k = 1) (9)
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The training process of BPNN continuously adjusts the weight and the threshold in order to
minimize the network error. In this article, the transfer function for hidden layers is ‘tansig’ and that
for the output layer is ‘purelin’.

Back propagation neural network (BPNN) is a simple architecture that involves a forward
calculation of a network input vector to compare to a desired output vector and an error correction that
propagates backwards from the output vector. The network consists of layers: an input layer, an output
layer, and a usually hyperbolic tangent or sigmoid, to create a scaled output of the hidden processing
element. All other processing elements in the hidden layer are summed and transformed in a similar
manner. The output of the hidden layer becomes the input of the output layer, where summation
and transformation also occur. During training, the output of output layer is compared to the desired
output, and an error is computed. The weights are subsequently adjusted by taking the derivative of
the error with respect to the connection weights. The procedure is repeated in an iterative fashion until
a desired number of iterations are completed, or the error between the desired and calculated output
is below a specified criterion.

4.2. The Design of the BP Neural Network Classifier

The design of the BP neural network classifier includes the design of the input layer, hidden layer,
and output layer. It includes the design of the parameters of initial weight, neuron excitation function,
learning rate, expectation error, and more. The steps to build the BP neural network are as follows:

(1) Designing the input layer: the input node equals the extracted feature dimension of image.
The actual input node is the reduction feature dimension by NMFsc in this paper.

(2) Designing the hidden layer:

(a) The number of hidden layers—increasing the number of hidden layers can improve the
generalization performance of the network, reduce the error, and increase the recognition
rate, but also make the network complex and the training time long. Hence, three layers
of neural network are used in this paper.

(b) The number of hidden layer neurons—the number of the hidden layer neurons should be
in a reasonable range. Too few and it will be easy to fall into the local minimum and the
trained network may not converge, with low recognition rate and poor fault tolerance.
Too many will make the network structure complex, generalization ability poor, training
time long, real-time performance bad, and recognition rate low. The recommended
empirical formulas are provided for reference in practice:

n1 =
√

n + m + a (10)

n2 =
√

n×m (11)

The number of neurons in the hidden layer is obtained from formulas, in which m is the number
of neurons in the output layer, n is the number of neurons in the input layer, and a is the integer of 1–10.

It is easier to observe and control the accuracy by adjusting the number of hidden layer neurons
than increasing the number of hidden layers. Therefore, in general, the number of neurons in the
hidden layer is considered for change first. When the single hidden layer cannot meet the requirements,
other hidden layers will be added. However, it is best to have no more than two hidden layers. It has
been proven, theoretically, that the three-layer BP neural network with sigmoid nonlinear function is
able to approximate any continuous function to any accuracy.

(3) Designing output layer—the categories of identifying target are directly used for the output node
of the neural network. In this paper, as only the UAV target needs to be identified, the number of
output nodes is set to 1.
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(4) Initialization of weight and threshold with uniformly distributed random numbers—it is very
important for the initialization of weight and threshold in nonlinear systems. If the initial weight
is too large, the weighted input will be entered into the saturation area of the activation function,
which leads to the stagnation of the adjustment. Randomization is particularly important in
the implementation of the BP model. If the weights are not initialized randomly, the learning
process may not converge. In this paper, the initial weights are taken from the random numbers
between (−1,1).

(5) Giving the input samples, desired output, neuron activation function, and learning rate—the
activation function has a considerable influence on the convergence effect of the network.
Each input of the neuron corresponds to a specific weight, and the weighted sum of the input
determines the activation state of the neuron. The learning rate determines the variation of the
weight during each training. Too high a learning rate leads to network oscillation, and too low a
learning rate leads to slow convergence and long training times. In general, it tends to choose a
smaller learning rate to ensure the stability of the system. In this paper, expected error is set to
0.01, the transfer function of the hidden layer neuron is a tangent S function ‘tansig’, the transfer
function of the output layer is a linear function ‘purelin’, the training function is ‘LM’, and the
number of learning times is set to 10,000.

(6) Training the sample data—with the sample data inputted, the actual output of the hidden layer
and output layer are obtained, and the hidden layer error and the output layer error are calculated.
If the error cannot reach the set value, the error signal is returned along the original path, and the
network weight and threshold are corrected according to the error feedback. When the error or the
learning time reach the set value through repeating the above process, the training is completed.

5. Experiments Results

To evaluate our proposed method, we collect 2000 UAV images from internet and our practical
shooting videos, which 1000 images for train and 1000 images for test. All calculations are implemented
using MATLAB 2015b on an Intel i5 2.6 GHz processor with 8 GB memory and Windows 10 64-bit
operating system.

By counting the aspect ratio of the UAV images, the aspect ratio 1:2 is obtained, and the all sample
images are normalized to 64 × 28 size.

(1) Candidate region extraction

Figure 6 shows the candidate regions with different degree using the EdgeBoxes extraction
method. The parameter is optimized for detecting boxes at intersection over union (IoU) of 0.7.
The other parameters are set alpha = 0.65, beta = 0.90, opts.multiscale = 0, model.opts.sharpen = 0.
The number of candidate regions in Figure 6a is more than the number in Figure 6b with the parameter
max number of boxes. However, a large amount of candidate regions increases the calculation work,
which will lead to inefficiency. Hence, we use an appropriate parameter, such as Figure 6c. For the
image size 500 × 281, the time is 0.068 s. The time difference is about 0.001 s with the parameter “max
number of boxes” varying from 50 to 1000.
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(2) Feature extraction and dimensionality reduction:

Log-Gabor feature is extracted from candidate regions of the steps above. In order to speed up the
detection, Log-Gabor filters of one scale and three directions are adopted. The filter time of Log-Gabor
for the single sample image is 0.003 s, which fully satisfies the real-time need. These amplitudes of
Log-Gabor filtering image are used in this paper, and all column pixels are concatenated into a single
vector. It generates 24,576-dimensional feature vector.

Although the 24,576 high-dimensional feature information is rich but also redundant. NMF on
such a high-dimensional matrix is not beneficial to getting effective identification feature, and the
matrix decomposition time is long. Also, it cannot achieve the best recognition rate. The method
of downsampling is a simple and easy method, which has a fast speed and good recognition result.
The dimension of the feature is reduced to 6144~12 dimensions by downsampling. In order to test the
effect of downsampling and NMFsc on the recognition results, the normalized 224 positive sample
images and 243 negative sample images are used. The feature is reduced to 10 dimensions by NMFsc,
which is used as the input of the neural network. The number of hidden layers are four, and the neural
network has three layers. The experimental results are shown in the Table 2.

Table 2. Experimental results of Log-Gabor feature downsampling and NMFsc.

Feature
Dimensions of

Log-Gabor

Number of
Downsampling

Dimension Reduction
Time by NMFsc in

Training (s)

Recognition
Rate (%)

Error Rate
(%)

24,576 0 97 91 0
6144 1 22 100 0
1536 2 5.6 100 0
384 3 1.5 100 0
96 4 0.4 99.5 0
24 5 0.09 94 0
24 6 Not using NMFsc 91 0
12 6.5 Not using NMFsc 85 0
6 7 Not using NMFsc 48 0

As shown in Table 2, using the original 24,576-dimensional Log-Gabor features are not
conducive to matrix transformation of NMFsc and improving the recognition rate. Although the
24,576-dimensional features have abundant information, they are redundant. High-dimensional feature
makes the NMFsc complex, and leads to long computing times. Also, it is difficult to effectively extract
discriminative information. The recognition rate using the original 24,576-dimensional Log-Gabor
features is not as good as the downsampling.

The dimensionality reduction time of NMFsc decreases with the feature dimension.
The recognition performance remains basically unchanged when the Log-Gabor feature dimensions
are above 384. With the feature dimensions decreasing, the recognition performance begins to decline,
which indicates that the discrimination information is lost in the case of downsampling.
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Figure 7 shows the probability distribution of recognition result for the normalized 224 positive
samples and 243 negative sample images. The ordinate (Y-axis) of Figure 7 is the probability
distribution of recognition rate, and the abscissa (X-axis) is 467 sample images. The 224 positive
samples are from 1 to 224 on abscissa, and 243 negative samples are from 244 to 467. For positive
samples, the performance is best when the probability is greater than or equal to 1 and, for negative
samples, the performance is best when the probability is close to 0.Information 2019, 10, x FOR PEER REVIEW 12 of 18 
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As shown in Figure 7, the results of 6144- and 1536-dimensional Log-Gabor features are very
similar. The result of 6144 dimensions is slightly better than of 1536 dimensions, while the results
of 12-dimensional Log-Gabor features without using NMFsc reduction is very different from others,
which it has poor performance. It is hard to distinguish between positive samples and negative
samples from Figure 7c. The results show that the feature reduced by NMFsc contains the main
discriminating information.

Table 3 shows the comparable results of the classical NMF and NMF with sparseness constraint
(NMFsc). We can see that the NMFsc is better than the classical NMF in the dimension reduction time
and the recognition rate.

Table 3. Experimental comparison of NMFsc and NMF.

Recognition
Rate (%)

Error Rate
(%)

Average
Dimension

Reduction Time
in Training (s)

Average NN
Training
Time (s)

Average
Dimension

Reduction Time
in Testing (s)

Average
Recognition

Time (s)

NMFsc 100 0 5 0.2416 0.0021 0.0105
NMF 0.9967 0 15 0.2459 0.0026 0.0121

After downsampling twice of the original Log-Gabor feature, the 1536-dimensional features
are formed, and then the 1536-dimensional features are reduced to 5~40 dimensions by different
dimension reduction method. The better dimension reduction algorithm is selected by comparing the
comprehensive effect of dimension reduction and recognition result. The probability distribution of
the simulation results is shown in Figure 8, and the dimensionality reduction time of each method is
shown in Table 4.
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Table 4. Dimension reduction time of different methods.

Method Average Time for Training Sample (s) Average Time for Testing Sample (s)

PCA 1.87 0.006
FLD 1.88 0.021

NMFsc 5.6 0.002
LPP 43 0.004

KLPP 48 0.153

PCA and Fisher linear discriminant (FLD) analysis are simple calculations, highly efficient and
having the shortest time in dimension reduction than others. NMF can be considered to be an
optimization problem, which a simple iterative method for solving U and V matrixes. The solving
method has fast convergence speed and small storage space. The dimension reduction time of the
manifold learning algorithm, LPP, is longer because the dense matrix is to be solved. The dimension
reduction time of KLPP algorithm is also longer because the data are mapped to kernel space.

Figure 9 shows the experimental comparison of different reduction method. As shown in Figure 9,
the dimension reduction time increases with the increasing of the feature dimension, and the difference
of various methods is large. The recognition rate reaches the best when feature dimension is 10 to 20.

By analyzing, comprehensively, dimension reduction efficiency, training performance,
and recognition results, NMFsc obtains the coordination in real-time, accuracy, network performance,
and other aspects. The combination of NMFsc and BP neural network can achieve better recognition
results. When the dimension is in the range of 5–15, the recognition rate is better. When the dimension
exceeds 20, the recognition rate begins to decrease, and training and recognition time increase slowly.
Considering real-time and accuracy, 10-dimensional Log-Gabor features are selected for subsequent
training and recognition.



Information 2019, 10, 37 13 of 17Information 2019, 10, x FOR PEER REVIEW 14 of 18 

 

  

(a) (b) 

  

(c) (d) 

Figure 9. Experimental comparison of different reduction method: (a) dimension reduction time in 
training; (b) dimension reduction time in testing; (c) error rate; (d) recognition rate. 

(3) Training and recognition of BP neural network 

Both the number of hidden layers and the number of hidden layer neurons have an effect on the 
accuracy and time of recognition for BP neural network. According to Formula (10), the number of 
neurons of hidden layer ranges from 4 to 13 when using a three-layer network. Precision is set to 0.01. 
As shown in Figure 10, the performance of training and recognition varies with the number of 
neurons in the hidden layer. As the number of hidden layer neurons increases, the training time 
slowly increases. The recognition rate is 100% when the number of neurons is from 4 to 12. While the 
number of neurons continues to rise, the recognition rate begins to decrease. The result shows that 
regarding the number of neurons in the hidden layer, more is not necessarily better, and there will 
be an extreme value. The best number of neurons can be selected to achieve the best recognition 
performance through many experiments. 

We select 1000 images for UAV detection test from the frame of our practical shooting videos. 
Figure 11 shows the UAV detection results. There are 993 UAV images that are accurately detected, 
and 5 UAV objects that are not detected because of their complicated background, poor illumination, 
and far distance. The accuracy rate is 99.7%. Also, there are 16 candidate regions of error recognition. 
This is because of the similarity between the UAV and candidate regions in the case of certain 
illumination, shape, and angle. 

Figure 9. Experimental comparison of different reduction method: (a) dimension reduction time in
training; (b) dimension reduction time in testing; (c) error rate; (d) recognition rate.

(3) Training and recognition of BP neural network

Both the number of hidden layers and the number of hidden layer neurons have an effect on
the accuracy and time of recognition for BP neural network. According to Formula (10), the number
of neurons of hidden layer ranges from 4 to 13 when using a three-layer network. Precision is set to
0.01. As shown in Figure 10, the performance of training and recognition varies with the number of
neurons in the hidden layer. As the number of hidden layer neurons increases, the training time slowly
increases. The recognition rate is 100% when the number of neurons is from 4 to 12. While the number
of neurons continues to rise, the recognition rate begins to decrease. The result shows that regarding
the number of neurons in the hidden layer, more is not necessarily better, and there will be an extreme
value. The best number of neurons can be selected to achieve the best recognition performance through
many experiments.

We select 1000 images for UAV detection test from the frame of our practical shooting videos.
Figure 11 shows the UAV detection results. There are 993 UAV images that are accurately detected,
and 5 UAV objects that are not detected because of their complicated background, poor illumination,
and far distance. The accuracy rate is 99.7%. Also, there are 16 candidate regions of error recognition.
This is because of the similarity between the UAV and candidate regions in the case of certain
illumination, shape, and angle.
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(4) Experimental comparison with FasterR-CNN

Deep learning has achieved great success in the application of large samples. However, for the
small sample of UAV images, how about the performance? We have done some experiments to
address this. Faster R-CNN [27] is used in the experiment, and VGG-16 is selected for the feature
extraction network. A total of 300 UAV images are selected as training samples to be sent to the
network. The experimental result is shown in Figure 12. The AP (Average Precision) value is 0.984.
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A comparison between Faster R-CNN and our method is shown in Table 5. The precision of
the two methods is very close. However, regarding the training time, computer cost, and image
annotation, our method has the advantage. Experimental results show that Faster R-CNN takes 14 h of
training time cost, while our method only requires 6 s for training. Deep learning has high hardware
requirements. Our method does not require a large number of samples to be trained and has small
time cost, good real-time performance, and high precision. By the comprehensive analysis, the method
proposed in this paper is feasible.

Table 5. Comparison with Faster-RCNN.

Precision (%) Average Testing
Time (s)

Average
Training Time

Computer
Cost

Image
Annotation

Faster R-CNN [27] 98.4 0.12 14 h High Many
Our method 98.6 0.16 seconds Low Less

6. Conclusions

For the problem that the BP neural network is hard to effectively train to discriminate
high-dimensional features, NMFsc feature reduction and the BP neural network are used together
in this paper. The high-dimensional Log-Gabor features are reduced to low dimensions by the NMF
with sparseness constraint algorithm, and then input into the BP network to train the classifier to
improve the recognition performance. The experimental results show that the method overcomes the
problem of both working in real-time and the accuracy of the traditional dimensionality reduction
method, and the feature reduction is superior to the common methods, such as PCA, FLD, LPP, KLPP,
and others. It is especially suitable for the target recognition of high-dimension features. For the UAV
object recognition and detection in this paper, we achieve satisfactory results. How to reduce error
recognition will be the question to address by follow-up research work—the methods of moving object
detection could be used. Also, deep learning techniques for small samples would be researched in
this field.
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