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Abstract: Extracting road from high resolution remote sensing (HRRS) images is an economic and
effective way to acquire road information, which has become an important research topic and has a
wide range of applications. In this paper, we present a novel method for road extraction from HRRS
images. Multi-kernel learning is first utilized to integrate the spectral, texture, and linear features of
images to classify the images into road and non-road groups. A precise extraction method for road
elements is then designed by building road shaped indexes to automatically filter out the interference
of non-road noises. A series of morphological operations are also carried out to smooth and repair
the structure and shape of the road element. Finally, based on the prior knowledge and topological
features of the road, a set of penalty factors and a penalty function are constructed to connect road
elements to form a complete road network. Experiments are carried out with different sensors,
different resolutions, and different scenes to verify the theoretical analysis. Quantitative results prove
that the proposed method can optimize the weights of different features, eliminate non-road noises,
effectively group road elements, and greatly improve the accuracy of road recognition.

Keywords: high resolution; remote sensing image; road extraction; multiple kernel learning; shape
features; road elements grouping

1. Introduction

Road is an important geographic information resource. The correct and effective extraction
of road plays an important role in geographic information system (GIS) database updates, image
registration, navigation, information fusion, change detection, etc. [1–3]. Extracting road from high
resolution remote sensing (HRRS) images is an economic and effective way to acquire road information.
Road extraction has become a research hotspot in the field of remote sensing imagery processing, but
it is still an unsolved research topic. On the one hand, the objects on the ground have diverse and
complex spectral features, some of which may have similar spectral appearances to the road, making it
difficult to distinguish the road from non-road [4]. On the other hand, noises like the shadows of trees,
buildings on roadsides, and the vehicles on the road can be observed from high-resolution imagery.
Thus, extracting smooth and complete road areas from HRRS images remains a challenging and tricky
topic [5].

Great attention has been plaid to research on road extraction from HRRS images and
various methods have been proposed over the past decades. Some comprehensive reviews can
be found in [6,7]. The methods have been founded in diverse image processing technologies,
including classification [6,8,9], segmentation [10–12], linear feature based extraction [13–15], template
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matching [16–18], etc. Most of the popular methods rely on classification, which can be divided
into supervised classification and unsupervised classification. While the unsupervised classification
method enjoys a higher degree of automation, supervised classification method is more adaptable
and efficient and has become the mainstream method for extracting information from remote sensing
images. The support vector machine (SVM), a powerful tool in classification, has been widely used
in road extraction [19]. In general, SVM has better performance than similar algorithms [20], and
representative methods adopting SVM are as follows.

(1) Pixel-spectral classification (PSC) [21] is widely used in early road extraction; this method classifies
an image into the road group and the non-road group according to the pixel spectral information
of the image.

(2) Spectral-spatial classification (SSC) [9] is a two-step method for extracting road skeleton from
HRRS images. In the first step, a feature vector is constructed by integrating spectral–spatial
classification and shape features. The SVM classifier is used to segment the imagery into two
classes: The road class and the non-road class. In the second step, the road class is refined by
utilizing homogenous and shape features.

(3) Region-based classification (RBC) [22] is a semi-automatic approach that first segments the image
and combines adjacent segments by Full Lambda Schedule. The SVM classifier is then used to
classify the segmented region by spatial, spectral, and textural features of the image, and the
initial road skeleton is obtained. Finally, the quality of the detected road skeleton is improved by
using morphological operators.

It is worth mentioning that in recent years, convolution neural networks (CNN) have made great
progress in image classification tasks [23–25]. The CNN can reduce false detections by embedding
much high-level and multi-scale information [26,27]. Especially when extracting roads from HRRS
images with complex backgrounds, CNN has obvious advantages, but its classifier needs to be trained
through a large number of labeled samples, and manually labeling samples is time-consuming and
laborious. A large number of training samples with different resolutions and different scenes are often
difficult to obtain [28]. The goal of the research on road extraction from HRRS images is to obtain a
large amount of classified data through a small number of labelled samples.

The existing road extraction methods are mostly directed to a specific type of image that is highly
dependent on data. Besides this, the road information on the HRRS images is not fully utilized.
As a result, most of the existing road extraction models are not adaptable or applicable. Overall, no
breakthrough progress has been made. To fill the knowledge gap, this study first adopts multi-kernel
learning to effectively integrate the spectral features, texture features, and linear features of images
to enhance the adaptability of the algorithm. Road skeleton is then refined by a set of suitable post
processing stages. A global road connection model based on the prior knowledge and topological
features of the road is designed to further connect road elements to form a complete road network.
By designing a novel method of road extraction from HRRS images, this paper aims to improve the
adaptability and applicability of the road extraction method.

Accordingly, this paper is organized as follows. Section 2 presents the new method to extract road
from HRRS images, while experimental results are reported in Section 3, and a conclusion is presented
in Section 4.

2. Proposed Methodology

The objective of this study is to design an efficient approach to extract an accurate road network
from HRRS images. Figure 1 summarizes the main processing steps of the proposed method. As shown
in this figure, the method mainly consists of the following four steps.

(1) The features of the road in HRRS images and extract image features suitable for describing road
are analyzed. Multi-scale and multi-direction non-subsampled contourlet transform (NSCT) is
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used to describe the texture features and linear features of the road. A color moment matrix is
used to describe the spectral feature.

(2) Road elements are roughly extracted by multi-kernel learning and multi-feature fusing (MKL).
About 8% of the road samples and 10% of the non-road samples are taken for classification
learning, and the MKL-SVM classifier is obtained to divide the image into two categories: Road
and non-road. This step provides candidate road elements.

(3) Road elements are precisely extracted by road shape features and morphological filtering.
This step combines such features as the slenderness of the road’s shape, the compactness of
ground objects, and the area of surroundings to build road shape indexes for automatically
filtering out the interference of non-road noises. A series of morphological operations are also
carried out to regulate the incomplete structures of the road elements. This step provides the
initial road skeleton.

(4) Road elements are grouped by the road element connection penalty factor, which is constructed
based on the prior knowledge and topological features of the road. This step obtains the connected
and complete road network.

Details of each step are described in the following sections.
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2.1. Image Features Extraction

2.1.1. Non-Subsampled Contourlet Transform

Non-subsampled contourlet transform (NSCT) is a fully shift-invariant, multi-scale, and
multi-direction transform and is an expansion of the contourlet transform proposed by Cunha et al. [29].
NSCT offers a high degree of directionality and anisotropy, and it is capable of modeling the
dependencies across directions, scales, and space. Thus, NSCT is a true two-dimensional representation
of images. NSCT uses the non-subsampled pyramids (NSP) and the non-subsampled directional
filter banks (NSDFB) to obtain multi-scale and multi-directional decompositions of the image without
down-sampling or up-sampling. An example of the decomposition process of NSCT is given in Figure 2.

The road has important geometric characteristics such as multi-scale, multi-directional, and
unique curve features. There are several advantages of NSCT expressing the road features. (1) NSCT
has a delicate ability to identify directions. (2) For the multi-scale features of roads, NSCT is capable of
continuously characterizing images from different scales. (3) NSCT can express the curve in the image
very well. (4) NSCT is the inheritance and development of the standard contourlet transform, which
can be regarded as a contourlet transform with translation-invariant properties.
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In view of the above analysis, this paper adopts NSCT transform to make NSCT decomposition on
HRRS images based on the deep analysis of road features, and obtains information of multi-directional
sub-bands at different scales. Then, a statistical model is constructed by analyzing each sub-band
coefficient. The low frequency sub-band and high frequency sub-band feature vectors are constructed,
respectively, so as to reasonably express the deep image features of the road.

1. Features of low frequency sub-band.

(1) Mean

µLow =
1

M ·N

M∑
x=1

N∑
y=1

ILow(x, y) (1)

In Equation (1), ILow(x,y) denotes the matrix of low frequency sub-band coefficients, M, N
denotes the number of rows and columns of coefficients in the sub-band respectively, M,
and N is the dimension of the coefficient matrix.

(2) Variance

δLow =

√√√√
1

M ·N

M∑
x=1

N∑
y=1

[ILow(x, y) − µLow]
2 (2)

(3) Homogeneity

hLow =
M∑

x=1

N∑
y=1

ILow(x, y)

1 + (x− y)2 (3)

The low frequency sub-band reflects the information of the image’s basic features. The
texture feature vector constructed by the mean (µLow), the variance (δLow), and the
homogeneity (hLow) can be expressed as:

F1 = [µLow, δLow, hLow] (4)

2. Features of high frequency sub-band.

After the image is transformed by NSCT, multi-directional high frequency sub-bands of different
scales are obtained. The coefficient magnitude sequence of these sub-bands is calculated as the
features of high frequency sub-bands.

(1) Gradient energy

EH =
1

M ·N

M∑
x=1

N∑
y=1

{
[IH(x, y) − IH(x− 1, y)]2 + [IH(x, y) − IH(x, y− 1)]2

}
(5)
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(2) Variance

δH =

√√√√
1

M ·N

M∑
x=1

N∑
y=1

[IH(x, y) − µH]
2, (6)

where µH is the mean value of the high frequency sub-bands.

Let the number of direction filters used by layer i be ni (i∈[1, L]), and the layer i generates 2ni

multi-directional sub-bands. The sub-image obtained through NSCT decomposition of L Layers is{
BAND1(1), · · · · · · , BANDi(1), BANDi(2),
· · · · · ·BANDi(2ni), · · · · · · , BANDL(2nL)

}L

i=1
(7)

In order to effectively express the special features of spectral–texture fusion and to reduce the
texture feature dimension so as to improve the speed of recognition, the 2ni directional sub-band
features of each layer are counted as the feature of this layer. F(i) represents the statistical characteristics
of all directions of the layer i. F(i) is defined as:

F(i) =
1

2ni

2ni∑
k=1

(BANDi(k)) (8)

which can be used to calculate the textural features of the high frequency sub-bands of each layer. The
dimension of features is reduced while considering the directional features of each layer. The high
frequency sub-band reflects the detailed information of the image. The texture feature vector constructed
by the high frequency sub-band gradient energy and the high frequency sub-band coefficient variance
can be expressed as:

F2 =
[
EH1 , δH1 , EH2 , δH2 , · · · · · · , EHL , δHL

]
(9)

2.1.2. Spectral Feature Extraction

Spectral feature is an important visual attribute of remote sensing images, and each object on the
ground has its own unique spectral feature. A spectral feature has high stability and strong robustness
of image scaling and rotation. In this paper, the color space of the image is first converted from
RGB(Red, Green, Blue) to HSV(Hue, Saturation, Value), and then the three components of H, S, and V
are converted into one-dimensional feature vectors. The corresponding histogram [30] is

p(k) =
nk
N

k = 0, 1, · · · , L (10)

where k is the value of the color feature and L is the maximum value of k. nk indicates the number of
pixels whose color feature value is k in the image, and N is the total number of pixels of the image.
By Equation (10), each feature parameter [31] is defined as follows:

µ1 =
G∑

i=0
ip(i)

σ2 =
G∑

i=0
(i− µ1)

2p(i)

µ2 = σ−3
G∑

i=0
(i− µ1)

3p(i)

µ3 = σ−4
G∑

i=0
(i− µ1)

4p(i) − 3

e =
G∑

i=0
[p(i)]2

. (11)
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The color features can be expressed as:

F3 = [µ1, σ2,µ2,µ3, e]. (12)

2.2. Image Classification Based on Multi-Kernel Learning

Machine learning aims to extract the hidden patterns from data based on algorithms. Due to the
rapid advance of technology and communication, these algorithms have drawn widespread attention
and have been successfully applied to many real-world problems [32]. The machine learning approach
can be applied to different optimization problems ranging from wind energy decision system [33],
socially aware cognitive radio handovers [34], and truck scheduling at cross-docking terminals [35,36]
to the sustainable supply chain network integrated with vehicle routing [37]. These studies proved
that machine learning can adapt the environmental changes, creating its own knowledge base and
adjusting its functionality to make dynamic data and network handover decisions. Therefore, this
paper introduces the method of machine learning into the study of road extraction to improve the
adaptability and applicability of the road extraction method and thus improve the accuracy of road
information recognition.

The kernel method is a commonly used method in machine learning. SVM has proven to be an
effective kernel method. Compared to single-kernel SVM, multi-kernel learning [38] can optimize the
weights of different features. This paper optimizes the weights of different features in the training
stage by the multi-kernel learning framework, and achieves the effective fusion of spectrum, texture,
and direction information.

According to the property of the kernel function, the linear weighted combination of M kernel
functions is still a kernel function [39], which can be expressed as:

K
(
xi, x j

)
=

M∑
m=1

dmKm
(
xi, x j

)
,

s.t. dm ≥ 0 and
M∑

m=1
dm = 1.

(13)

Equation (13) is a kernel function expression for multi-core learning, where Km denotes the kernel
function of each feature, M denotes the number of base kernel functions, and dm denotes the coefficient
of the linear combination. The MKL-SVM classifier [40] is thus designed as:

g(x j) = sign
(∑Num

i=1
aiyi

∑M

m=1
dmkm

(
xi, x j

)
+ b

)
(14)

where Km(xi,xj) represents the mth kernel function, g(xj) denotes the predicted label value for the
image j, ai is the optimization parameter, yi denotes the label of the training sample, b denotes the
optimal offset of the multi-core classification panel, and Num indicates the number of training samples.
The windows scan the whole image with the pixel at the center. A trained MKL-SVM classifier is used
to judge the central pixel, which is divided into two types: Road and non-road. The corresponding
pixel assignment is as follows:

P(x) =
{

1 i f x is classi f ied as road,
0 otherwise.

(15)

2.3. Road Skeleton Extraction Based on Shape Feature and Morphology

While the multi-kernel learning method can effectively eliminate most non-road areas and roughly
extract road elements, misidentified roads still exist as remotely sensed imagery exhibits a complex
spectral character. A refinement process is necessary to improve the accuracy of the road skeleton.
First, the morphological skeleton is extracted by using a series of morphology operations, such as
corrosion and open operation, which can effectively tackle issues such as holes in some road elements,
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loose connections between different pixels, and incomplete structures. Second, road shape features [41]
can be used to filter false segments. These features can be measured by area, compactness, and
length–width ratio, which are introduced as follows:

(1) Roads do not have small areas and regions with small areas can be regarded as noise and should
be removed.

(2) Compactness is defined as 4 .π. A/P2, where P is the perimeter of the region and A is the area of
the region. Compactness is in the range of (0, 1].

(3) Roads are narrow and long. Length–width ratio is the aspect ratio of the minimum-
enclosing rectangle.

2.4. Road Elements Grouping

The road network is a topologically connected space system. However, disturbances in the
appearance of roads can interfere with the extraction and cause gaps between extracted road sections.
In order to eliminate the error candidate road elements and bridge the gaps, a set of penalty factors is
established for road element connection. The factors are as follows:

(1) Distance, including absolute distance and vertical distance. The absolute distance is the distance
between the two nearest end points of the two road elements. The vertical distance is the distance
from the two nearest endpoints in the vertical direction between the two road elements. Both the
absolute and the vertical distance should be lower than a threshold.

(2) Width difference. The difference of average width between two adjacent elements should be
lower than a threshold.

(3) Direction difference. The direction of a road section is defined as the vector connecting the two
end points of its center-line. The direction difference, that is, the angle between the direction
vectors of the two road sections, should be lower than a threshold for the two road sections to
be connected.

(4) Homogeneity. The road has strong homogeneity. Considering the similar spectral characteristics
of adjacent road elements, this paper defines homogeneity as the color mean of each element.
Homogeneity difference of the adjacent elements should be lower than a threshold.

When there are more than two candidate elements, the connected elements can be selected by the
penalty function (Equation (16)),

Pi = ‖Loc0−Loci‖
D + θi

Θ + Wi
W +

exp(− (Length(i))
L ) + µ ∗Homi

(16)

where Pi represents the penalty function of the connected candidate element i, and D, Θ, W, L, and µ
are the weight constants of each factor. Loc0 represents the endpoint coordinate of the element that
has been identified as the road, and Loci is the nearest endpoint coordinate of candidate element i
from Loc0, while ||Loc0 − Loci|| represents the Euclidean distance between the two endpoints. θi is the
direction difference between the candidate element i and the identified road element. Wi is the width
factor, reflecting the average width difference between the candidate element i and the identified road
element. Length (i) represents the length of the candidate element i. Homi represents the homogeneity
factor, which can be expressed as Min(Mean(Li), Mean(L0))/Max(Mean(Li), Mean(L0)), where Mean(Li),
and Mean(L0) and represents the color mean of element i and element 0, respectively.

3. Experimental Results and Discussions

To validate the effectiveness and superiority of this method, the proposed approach has been
applied to a set of scenes in four experiments. The four selected test images are of different sensors,
different resolutions, and different scenes (including city block, suburban area, complex intersection,
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and university campus). These images include typical objects on the ground. Three representative
road extraction methods designed by previous researchers are selected for comparative analysis from
the perspective of three accuracy measures, completeness, correctness, and quality.

3.1. Tests of Different Study Areas

3.1.1. Study Area I

The first test image is downloaded from VPLab [42]. The study area has a spatial dimension of
512 × 512 pixels with three bands. The spatial resolution is 1 m per pixel. Figure 3a shows the study
area of Experiment 1. Visual observation reveals that the selected test image (#1) belongs to a city
block with a well-developed road network. Besides roads, other ground objects such as vegetation,
shadows, vehicles, buildings, etc., can also be found in the study area. While part of the road surface
is blocked by vegetation, shadows, or vehicles, the road network can still be clearly distinguished.
Figure 3b–e show the results of extracting the road skeleton from #1 image by the PSC method, SSC
method, RBC method, and the proposed method in this paper, respectively. It can be seen from a
comparative analysis that the proposed method performs the best in maintaining the integrity of the
road skeleton. The proposed method can effectively identify elements that cannot be identified by the
PSC method, SSC method, or RBC method. Thus, the proposed method has a comparative advantage
among the four methods.
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Figure 3. Comparison of the results of different road extraction strategies on the #1 test image. (a) The
#1 test image; (b) road extraction result by PSC; (c) road extraction result by SSC; (d) road extraction
result by RBC; (e) road extraction result by the proposed method; and (f) the superposition result of #1
test image and the road extracted by the proposed method.

3.1.2. Study Area II

In the second experiment, an image with a spatial size of 1500 × 1500 pixels, downloaded from [43],
was used to test the performance of the proposed method, as shown in Figure 4a. Visual observation
reveals that the selected test image (#2) belongs to the suburban area, which has various types of
objects, including roads, buildings, parking lots, bare land, vegetation, waters, etc. Figure 4b–e show
the results of extracting road skeleton from #2 image by the PSC method, SSC method, RBC method,
and the proposed method in this paper, respectively. It is clear from the results that the PSC method
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can only extract an incomplete skeleton. While the SSC method is superior to the PSC method and RBC
method in extracting complete skeletons, it has the shortfall of serious mis-extraction of phenomenon.
As can be seen from the results, the proposed method can extract more complete and accurate road
skeletons than the above three methods.
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result by RBC; (e) road extraction result by the proposed method; and (f) the superposition result of 
#2 test image and the road extracted by the proposed method. 
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Worldview-II optical sensor. The study area has a spatial dimension of 3680 × 3140 pixels. The 
spatial resolution is 0.5 m per pixel, including three bands of red, green, and blue. Figure 5a shows 
the third test image (#3). The test image shows an area of a complex intersection. The main road is a 
two-way lane, and the isolation zone is clearly visible. There are eight auxiliary roads, two of which 
are seriously obstructed by vegetation. The two covered auxiliary roads are marked as “α” and “β”, 
respectively, in Figure 5a. Another main road that shares the same road width and pavement 
material with the intersection road is also the target of extraction in this experiment, marked as “γ” in 
Figure 5a. Figure 5b–e show the results of extracting road skeleton from #3 image by the PSC 

Figure 4. Comparison of the results of different road extraction strategies on the #2 test image. (a) The
#2 test image; (b) road extraction result by PSC; (c) road extraction result by SSC; (d) road extraction
result by RBC; (e) road extraction result by the proposed method; and (f) the superposition result of #2
test image and the road extracted by the proposed method.

3.1.3. Study Area III

The third test image is a part of the suburb area of Beijing in 2011, which was recorded by the
Worldview-II optical sensor. The study area has a spatial dimension of 3680 × 3140 pixels. The spatial
resolution is 0.5 m per pixel, including three bands of red, green, and blue. Figure 5a shows the
third test image (#3). The test image shows an area of a complex intersection. The main road is a
two-way lane, and the isolation zone is clearly visible. There are eight auxiliary roads, two of which
are seriously obstructed by vegetation. The two covered auxiliary roads are marked as “α” and “β”,
respectively, in Figure 5a. Another main road that shares the same road width and pavement material
with the intersection road is also the target of extraction in this experiment, marked as “γ” in Figure 5a.
Figure 5b–e show the results of extracting road skeleton from #3 image by the PSC method, SSC
method, RBC method, and the proposed method in this paper, respectively. It is clear from the results
that the proposed method performs the best in extracting high-quality road skeleton, while the PSC
method is the worst. The road skeleton extracted by the RBC method is complete, but due to the initial
segmentation, the RBC method extracts two-way roads with serious adhesions, and the mis-extraction
region is the most common among the four methods.
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3.1.4. Study Area IV

The fourth test image is the WorldView-II image of the 1800 × 2100 pixels of Fuzhou University
(Qishan Campus) in 2014, as shown in Figure 6a, marked as “#4”. The spatial resolution is 0.5 m per
pixel, including three bands of red, green, and blue. The test image the main types of objects on the
university campus, such as campus main roads, branch roads, teaching buildings, administrative
buildings, libraries, campus squares, sports fields, stadiums, vegetation, waters, and unfinished
construction projects. The #4 image experiment aims to extract campus road information from the new
district of Fuzhou University. The road samples are only selected from the internal road surface of the
campus. The results of the four methods of extracting #4 images are shown in Figure 6b–e. It can be
seen from Figure 6f that the roads extracted by our method anastomose well with the original roads.
Visual comparison of the four results in Figure 6 shows that the accuracy and completeness of the
proposed method are superior to the other three methods.
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#4 test image; (b) road extraction result by PSC; (c) road extraction result by SSC; (d) road extraction
result by RBC; (e) road extraction result by the proposed method; and (f) the superposition result of #4
test image and the road extracted by the proposed method.

3.2. Experiment Results

To quantitatively evaluate the performance of the proposed method, the following three accuracy
measures, proposed by Wiedemmann et al. [44], are used in this study:

E1 = NTP
NTP+NFN

E2 = NTP
NTP+NFP

E3 = NTP
NTP+NFP+NFN

(17)

where E1, E2, and E3 denote completeness, correctness, and quality, respectively, and NTP, NFP, and
NFN represent the pixel number of true positives, false positives, and false negatives, respectively.
The results of NTP, NFP, and NFN are shown in Table 1, and the results of completeness, correctness,
and quality are shown in Table 2.

According to the results given in Table 1, it can be concluded that the proposed method is superior
to the other three methods in view of completeness and quality, which indicates that the method is
more suitable for road recognition and extraction from HSRS images.
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Table 1. Results of different road extraction methods.

Method
#1 Image #2 Image #3 Image #4 Image

NTP NFN NFP NTP NFN NFP NTP NFN NFP NTP NFN NFP

PSC 31,882 7871 1725 144,099 49,873 9425 405,093 105,743 46,055 24,9564 115,830 22,286
SSC 35,221 4532 3295 175,934 18,038 17,772 461,796 49,040 31,249 324,756 40,638 44,410
RBC 35,897 3856 3726 167,010 26,962 13,050 468,947 41,889 97,682 296,700 68,694 57,448
Ours 38,760 993 3399 184,468 9504 10,878 479,150 31,686 5213 333,230 32,164 35,374

Table 2. Comparison of different road extraction methods.

Method
#1 Image #2 Image #3 Image #4 Image

E1
(%)

E2
(%)

E3
(%)

E1
(%)

E2
(%)

E3
(%)

E1
(%)

E2
(%)

E3
(%)

E1
(%)

E2
(%)

E3
(%)

PSC 80.2 94.9 76.9 74.3 93.9 70.8 79.3 89.8 72.7 68.3 91.8 64.4
SSC 88.6 91.4 81.8 90.7 90.8 83.1 90.4 93.7 85.2 88.9 88.0 79.2
RBC 90.3 90.6 82.6 86.1 92.8 80.7 91.8 82.8 77.1 81.2 83.8 70.2
Ours 97.5 91.9 89.8 95.1 94.4 90.1 93.8 98.9 92.8 91.2 90.4 83.1

4. Conclusions

In this paper, we propose a novel method based on multi-kernel learning for road extraction from
HSRS images, which includes the rough extraction and precise extraction of road elements. First, a
road element rough extraction method based on multi-kernel learning and multi-feature fusing is
designed. This method can be applied in complex terrain conditions and can effectively distinguish
road and non-road areas from HRRS images. Second, a road element precise extraction method is then
designed. The results of road element rough extraction are filtered by the designed shape index to filter
out noise interference such as small surface elements and nonlinear blocks. A series of morphological
operations are also carried out to smooth road elements and repair the structure and shape of road
elements. Third, based on the prior knowledge and topological features of the road, the road element
connection penalty factor is constructed, which is used to establish a global road connection model
to further connect road elements to form a complete road network. The empirical results of remote
sensing images with different sensors, different resolutions, and different scenes show that the proposed
method can significantly outperform the state-of-the-art methods.

There are two limitations to our study. (1) Some parts of the proposed method still need manual
intervention, so the automation level of the method needs to be further improved. As a future
optimization, we will consider establishing the database of road image features to reduce manual
intervention in the process of sample selection so as to improve the automation level of road extraction
method. (2) This study only focuses on high-resolution optical remote sensing images. How to
effectively integrate road information in multi-source data(LiDAR and SAR) to achieve complementary
advantages is an interesting research topic of its own, and as such, is intended as our future work.
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