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Abstract: Ride-sharing (RS) plays an important role in saving energy and alleviating traffic pressure.
The vehicles in the demand-responsive feeder transit services (DRT) are generally not ride-sharing
cars. Therefore, we proposed an optimal DRT model based on the ride-sharing car, which aimed
at assigning a set of vehicles, starting at origin locations and ending at destination locations with
their service time windows, to transport passengers of all demand points to the transportation hub
(i.e., railway, metro, airport, etc.). The proposed model offered an integrated operation of pedestrian
guidance (from unvisited demand points to visited ones) and transit routing (from visited ones to the
transportation hub). The objective was to simultaneously minimize weighted passenger walking
and riding time. A two-stage heuristic algorithm based on a genetic algorithm (GA) was adopted
to solve the problem. The methodology was tested with a case study in Chongqing City, China.
The results showed that the model could select optimal pick-up locations and also determine the
best pedestrian and route plan. Validation and analysis were also carried out to assess the effect
of maximum walking distance and the number of share cars on the model performance, and the
difference in quality between the heuristic and optimal solution was also compared.

Keywords: DRC transit system; shared car; vehicle route; heuristic algorithm

1. Introduction

Demand-responsive feeder transit (DRT) system, which assigns a set of vehicles located at depots
to visit all demand points to pick up passengers and transport all of them to the transportation hub,
is the development trend of public transportation. Compared to traditional feeder transit services,
DRTs with a door-to-door shared ride service are widely recognized as a competitive mode to shift
travel demand from cars to public transportation. DRTs provide better customer service in remote
areas with weak transportation infrastructures [1]. Generally speaking, the DRT operation company
builds own depots and vehicle fleets. Although the service quality can be guaranteed, it leads to a high
operating cost.

Traditional DRTs, as a further extension of the classical vehicle routing problem (VRP) with pickup
and delivery (PDP) with time windows (VRPTW and PDPTW) [2,3], is based on the hypothesis of each
demand point being visited by vehicles. When several demand points are adjacent to each other in
space, their travel time may be very long in the real transit network, by taking the geometry and spatial
distribution of the roads and demand points into account. In the case, one of them is selected as the
pick-up location visited by the vehicle, the passengers at the remaining places could walk to a selected
location to get on the bus, which would greatly improve the efficiency of vehicle operation and reduce
total riding time of all passengers. At present, most studies have neglected the integrated operation
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of pick-up location selection (from some demand points to pick-up locations), pedestrian guidance
(from unvisited demand points to selected ones), and transit routing (from these pick-up places to the
transportation hub) [4–6]. Obviously, the assignment of unvisited places to these pick-up locations
is determined by a pick-up location selection. Therefore, it is necessary to study DRT location-route
problem to find the optimal relationship between service level and operating efficiency.

Another objective of this study was to address the DRT transit system in terms of ride-sharing
cars, where private car owners gain access to provide dial-a-ride pick-up/delivery service by joining a
DRT operation company when they have their origins and destinations on the service time windows.
This is a new “product-as-service” approach to vehicle use. Obviously, it can reduce a fleet of company
vehicles, increase the income of car owners, and reduce inefficient mileage to reduce carbon emissions,
compared to traditional DRTs [7–9]. However, this problem is different from traditional ones, and
the complexity of the former is more complex than that of the latter. Since solving such an issue has
already been recognized as an effective tool to improve service efficiency, environmental concerns, and
financial status, many scholars try to make some contributions to this area.

The main contribution of this study was to design an optimization framework for DRTs based
on the ride-sharing car in order to reveal optimal relations between service level and operating
efficiency. The research focused on the following aspects: (1) coordination of pedestrian guidance (from
unvisited demand points to selected pick-up locations) and transit routing (from pick-up locations to
the transportation hub) process to balance this with the total riding and walking time of all customers;
(2) design of a two-stage heuristic algorithm based on genetic algorithm (GA) to resolve proposed mode
efficiently. At last, a test case was used to evaluate the effectiveness of the proposed methodology.

The rest of this study is described as follows. A summary of related work on DRTs is presented in
Section 2. Section 3 analyzes the framework of the proposed model. A two-stage heuristic algorithm
based on GA is designed in Section 4. A case study is utilized to illustrate the application and feasibility
of the proposed methodology in Section 5. Some conclusions and recommendations for future studies
are discussed in Section 6.

2. Literature

DRTs are an extension of VRPTW and PDPTW [2,3], in which VRPTWs assign a set of vehicles to
visit all demand points, while PDPTWs transport the number of goods from their origins to destinations.
However, distinct differences between VRPTWs and PDPTWs in transporting goods and DRTs with
the transportation of people decide that the latter is more complex than the former.

The existing studies on DRTs are mainly divided into analytic approaches and network approaches,
in which: the former aims at finding the optimal relation between the stop space, route design, and the
operating headway from a continuous perspective of the geometry and spatial distribution of the roads
and demand points in the service area; the latter aims at finding links between these pickup locations
and the segments of bus routes from the perspective of discrete traffic network. Many varieties of
DRTs are summarized as follows: (1) DRTs with multiple use of vehicles, where the key difficulties in
efficiently searching the solution space of multi-vehicle are compared to that of single-vehicle DRTs; (2)
DRTs with multiple depots, where vehicles, leaving different depot,s have a different travel distance,
leading the operation costs of multi-depot to be reduced compared to that of single-depot DRTs; (3)
DRTs with the integration of the design of passenger rail service, station spacing, and headways [10,11].
The various objectives of the above varieties of DRTs involve the fleet size of the company, the travel
distance or travel time of route, and their related operating costs [1,12–15]. However, those different
objectives and constraints don’t usually change the properties of DRTs, which lead to the use of existing
algorithms to resolve general models with a combination of one or more objectives.

The solution algorithm to DRTs can be divided into exact methods and heuristic algorithms [16],
where the former can be further classified into Lagrange relaxation-based methods [17,18], column
generation [19], and dynamic programming [20,21]; the latter can be also further classified into the
route-building heuristics and metaheuristics. Since the VRPTW belongs to the NP-hard problem, exact
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methods often perform very poorly in computational efficiency and are unable to solve the large-scale
instances [16,22–24]; heuristic algorithms thus turn to be more active. In the route-building method,
a set of feasible routes is firstly generated and then used to search and fine-tune initial solutions
according to the proposed constraints at a reasonable computational cost. In meta-heuristics method,
simulated annealing [25–27], tabu search [18,23,28], genetic algorithms [29–32], and colony algorithm
approach [33,34] are widely used to contend with DRTs.

On reviewing the literature on DRTs, some critical issues deserve further investigations:

(1) Although several studies have formed a variety of DRTs, few of them have taken a shared car into
account. Obviously, it can reduce a fleet of company vehicles, increase the income of car owners,
and reduce inefficient mileage to reduce carbon emissions, compared to traditional DRTs. Both
of these—DRTs and ride-sharing (RS)—assign vehicles to transport passengers from origins to
destinations. The difference between them is that destinations of passengers in DRTs are the same
(i.e., the transportation hub), while the destination of each passenger in RS is not the same. Since
they are an extension of VRPs, their solution algorithms can be used with each other. However,
an integration of DRTs and RS is much more complicated than DRTs and RS alone [7–9,31].

(2) The basic assumption of traditional DRTs is all of the demand points must be visited by vehicles.
The assumption is unable to reflect the characteristics of real traffic network, such as a one-way
street or left-turn only intersection. When the shape and geometry distribution of the roads and
customers are considered for model development, an integrated operation of transit (locating
from unvisited locations to pick-up places) and transit routing (from pick-up places to the
transportation hub), which not only reduces the travel time of residents but also improves the
operation efficiency of vehicles, has been widely regarded as an effective tool in designing DRT
network to the reliability of the result [4–6,34].

The main contribution of this study was to develop an operational methodology for the design
of the DRT route based on a shared car with enough capability to capture the interaction between
transit locating and routing process to meet travel demand. The research focused on the following
aspects: (1) propose a mixed-integer optimization model that is capable of assigning a set of shared
cars, starting at origin locations and ending at destination locations with their service time windows,
to transport passengers of all demand points to the transportation hub; (2) develop a genetic algorithm
(GA)-based two-stage heuristic to quickly obtain meta-optimal solutions of proposed model. At last, a
test instance was given to best understand and apply the proposed models. This paper firstly proposed
a service framework in which car owners and users could access the internet to define their preferred
service time windows and locations, as well as receiving feedback from service providers, and then
a mixed-integer linear program was formulated to handle a demand-responsive connector design
problem with a time window constraint.

3. Methodology

3.1. Research Framework

This paper aimed at providing a special door-to-door shared-ride service, which assigns a set
of shared cars to transport all customers from pick-up locations to the transportation hub [23,24].
Through cellphone platform, some car owners are willing to share their travel information, including
origins/destinations and time windows, and many travel orders are also issued by passengers to gather
their travel information for locations, number of people, and boarding time windows of demand points.
This paper aimed at allocating these travel orders to shared cars to improve the service level by meeting
the travel needs of both passengers and shared car owners. To increase the whole system efficiency,
some demand points are selected as pick-up locations visited by shared cars, and other unvisited
demand points are assigned to these selected ones. The proposed model is capable of seamlessly and
simultaneously coordinating pedestrian guidance (from unvisited places to visited ones) and transit
routing (from pick-up locations to the transportation hub). The key inputs of the model are travel
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information of passenger and car-sharer, involving number of passengers at demand points, boarding
time windows, origins, destinations of shared cars, etc., obtained from a cellphone APP, as well as the
traveling information matrix between these vehicular nodes obtained from Open Google or Baidu
Map tool.

In Figure 1, a small example was used to further explain the detail in DRT model. The DRT route
network consists of one rail station or airport (M), six demand points (Di, i = 1, 2 . . . , 6), and three
shared cars with their origin’s Li and destinations Ai (i = 1, 2, 3). The two numbers in brackets below
each demand point denote preferred boarding time windows. The two numbers in brackets below
origins Li and destinations Ai (i = 1, 2, 3) of shared cars denote departure and arrival time windows.
There are three DRT routes obtained in the optimization process. Route 1 is denoted as a connecting
line [L1-D1–D2–M-A1], Route 2 by [L2-D5(D6)-M-A2], and Route 3 by [L3-D3(D4)-M-A3]. D4 and D6
are not directly visited by shared cars, D3 is visited by the first car, and D5 is visited by the second
car. The main objective was to minimize weighted total walking and riding time for all customers. To
ensure that this methodology fits into real-world case quite well, this paper was based on the following
assumptions:

(1) Each shared car visits one demand point, at least.
(2) A demand point must be visited once by one shared car, as a pick-up location, or a non-boarding

location by walking to another place.
(3) A ticket discount policy lets customers in unvisited demand points be willing to walk a certain

distance to a pick-up location.
(4) The influence of uncertainty in the traffic network on the scheduling scheme based on node-failure

is not considered.
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Figure 1. Graphical representation of DRT (demand-responsive feeder transit services) based on the
shared car.

3.2. Model Formulation

Notation
To facilitate the presentation and analysis of the DRT model, all definitions and notations used

throughout this work are described in Table 1.
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Table 1. Definitions and notations of the DRT (demand-responsive feeder transit services) model.

Indices

i Demand point index

j,m Vehicular node (pick-up locations, the transportation hub, and origin/destination of shared car) index

k Shared car index

Sets

I Set of demand points

M Set of the transportation hubs, without loss of generality we are assuming a single station in this model

O Set of origins of shared cars

D Set of destinations of shared cars

K Set of shared cars

Parameters

pi Number of persons at the demand point i

[li, ei] Time window of each demand point i

Qk Maximum capacity of the shared car k

Lmax Maximum mileage of each shared car

Lmin Minimum mileage of each shared car

Tmax Maximum travel time of each shared car

di j
Travel distance between vehicular nodes (demand points, the transportation hubs, origins, and

destinations of shared cars)

ti j
Travel time between vehicular nodes (demand points, the transportation hubs, origins, and

destinations of shared cars)

Tk Travel time of the shared car k

TL,s
k /TL,e

k Departure time window of the shared car k

TA,s
k /TA,e

k
Arrival window of the shared car k

W Maximum walking distance

v Walking speed

H A large fixed number

Decision Variables

yk
j If a demand point is selected as a pick-up location visited by the shared car k, true; otherwise, false

xk
jm If the shared car k visit two adjacent vehicular nodes j and m, true; otherwise, false

zk
i j If an unvisited demand point is assigned to a pick-up location on the shared car k, true; otherwise, false

tk
j Arrival time of the shared car k visiting the vehicular node j

qk
j Number of passengers on the shared car k visiting the vehicular node j

U jk An auxiliary variable for eliminating sub-tour in the route of the shared car k

Formulation
A mixed-integer program (MIP) model was proposed as follows.

min f =
∑
∀i∈I

∑
∀k∈K

∑
∀ j∈I

pi ·
zk

i j · di j

v
+

∑
∀ j∈I

∑
∀k∈K

qk
j ·

[
Tk
− tk

i

]
(1)

s.t.:
zk

i j ≤ yk
j ∀k ∈ K ∀i, j ∈ I (2)
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yk
i +

∑
∀ j∈I

zk
i j = 1 ∀k ∈ K ∀i ∈ I (3)

zk
i j · di j ≤W ∀k ∈ K ∀i, j ∈ I (4)

Σ
∀ j∈I

yk
j ≥ 1 ∀k ∈ K (5)

2xk
jm ≤ yk

j + yk
m ∀k ∈ K ∀ j, m ∈ I (6)∑

∀m∈I∪M
xk

jm =
∑

∀m∈O∪I
xk

mj =yk
j ∀k ∈ K ∀m ∈ I

Umk −U jk+
∣∣∣∣I ∪O∪M

∣∣∣∣xk
mj ≥

∣∣∣∣I ∪O∪M
∣∣∣∣−1

(7)

∀k ∈ K ∀ j, m ∈ I ∪O∪M (8)

tk
j + t jm − (1− xk

jm).H ≤ tk
m →∀k ∈ K→∀ j, m ∈ I ∪O∪D∪M (9)

tk
j + t jm + (1− xk

jm).H ≥ tk
m ∀k ∈ K ∀ j, m ∈ I ∪O∪D∪M (10)

qk
j +

∑
∀i∈I

pi · zk
i j − (1− xk

jm).H ≤ qk
m →∀k ∈ K→∀ j, m ∈ I ∪O∪D∪M (11)

qk
j +

∑
∀i∈I

pi · zk
i j + (1− xk

jm).H ≥ qk
m ∀k ∈ K→∀ j, m ∈ I ∪O∪D∪M (12)

Σ
∀ j∈I

yk
j · q

k
j ≤ Qk

∀k ∈ K→ (13)

LMin ≤
∑

∀ j,m∈I∪O∪D∪M

xk
jm · d jm ≤ LMax . ∀k ∈ K→ (14)

TK =
∑

∀ j,m∈I∪O∪D∪M

xk
jm · t jm ≤ TMax. ∀k ∈ K (15)

∑
∀m∈I

xk
jm = 1 ∀k ∈ K ∀ j ∈ O (16)

∑
∀m∈I

xk
mj = 0 ∀k ∈ K ∀ j ∈ O→ (17)

∑
∀m∈I

xk
mj = 0 ∀k ∈ K ∀ j ∈ D (18)

∑
∀m∈I

xk
mj = 1 ∀k ∈ K ∀ j ∈ D (19)

TL,s
k ≤ tk

j ≤ TL,e
k ∀k ∈ K ∀ j ∈ O (20)

TA,s
k ≤ tk

j + t jm ≤ TA,e
k ∀k ∈ K ∀ j ∈ D ∀m ∈M (21)

Objective (1) was to minimize the total travel time, i.e., the sum of passenger walking and riding
time. Constraint (2) indicates that if an unvisited demand point is assigned to another one, this demand
point must be visited by the car. Constraint (3) indicates that an unvisited demand points must only be
assigned to a visited demand point, and a visited demand point must not be assigned to another one.
Constraint (4) ensures that the walking distance of passengers at an unvisited demand point does not
exceed a certain threshold. Constraint (5) ensures that each car has visited at least one demand point.
Constraint (6) specifies the shared car route links may exist between two visited demand points only if
both of them are selected as pick-up locations. Constraint (7) guarantees each vehicular node (except
origins and destinations of shared cars) being served to have only one incoming and outgoing cars.
Constraint (8) is sub-tour elimination in the shared car routing (Miller, 1995). Constraints (9) and (10)
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represent the relation in arriving time between two adjacent demand points visited by the same shared
car. Constraints (11) and (12) reveal the link in load changes between two adjacent demand points
visited by the same shared car. Constraint (13) indicates that the number of passengers covered by
a shared car does not exceed its maximum capacity. Constraint (14) indicates that the total mileage
of the shared car is within a certain range. Constraint (15) indicates that the total travel time of the
shared car is not higher than its upper limit. Constraints (16)–(19) indicate that the shared car starts
from their origins and reaches their destinations. Constraints (20) and (21) limit the start and arrival
time windows of shared cars.

As mentioned above, the proposed model, as an extension of VRP, is also a non-deterministic
polynomial-time hard (NP-hard). Some exact heuristic approaches in some powerful solvers, such as
IBM ILOG CPLEX, can’t resolve small-scale problems efficiently. Hence, a GA-based two-stage heuristic
algorithm was further designed to find a good solution in a reasonable amount of running time.

4. A GA-Based Two-Stage Heuristic Algorithm

In the proposed DRT model, all demand points can be divided into selected and unselected ones,
where selected demand points are visited by shared cars, and each unselected demand point is assigned
to selected one based on the greed principle (passengers in unvisited demand points need to walk
to this pick-up location to get on the bus). When the set of selected demand points visited by each
shared car is determined, the order of the vehicle visiting these pick-up locations is obtained using the
shortest path principle. Hence, a GA-based two-stage heuristic algorithm was designed to solve the
problem [7,21,23–25]. The solution framework of the algorithm is shown in Figure 2. In the first stage,
GA is used to determine selected demand points allocated to vehicles. By embedding the Dijkstra
algorithm in GA, the order of the selected pick-up places visited by each vehicle access is determined,
so as to pursue the shortest travel time of passengers. In the second stage, the unvisited demand points
are allocated to their pick-up locations with the shortest walking distance based on the greed principle.
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4.1. Coding of GA Chromosomes

The chromosome structure is the core of the GA searching solution. The main body of the DRT
model is composed of selecting pick-up locations, matching unvisited demand points with pick-up
locations, and designing routing plans that are corresponding to yk

j , zk
i j, and xk

jm, respectively. Therefore,
a vector U = (u1, u3, . . . , u2I) of GA chromosomes was designed to code and decode solutions of this
model, in which:

(1) The first part of GA chromosomes (u1, u3, . . . , uI) would be used to denote the decision of part of
demand points selected as pick-up locations. If u j = 1, then the corresponding demand point j is
targeted as a feeder bus stop.

(2) The second part of GA chromosomes (uI+1, u3, . . . , u2I) would be used to denote the decision for
assigning the selected demand points to different vehicles. Thus, each uI+ j ranges from 1 to k,
where k ∈ K represents the number of shared cars.

For example, a feasible solution for two vehicles and eight demand points (D1–D8) is (1 1 0 1 1 1 0
1 1 1 1 1 2 2 2 2), in which D1, D2, D4, D5, D7, D8 are selected as pick-up locations, and vehicle 1 and 2
visit the first set of D1, D2, D4 and the second set of D5, D7, D8 separately. A complete scheduling
scheme can be obtained by matching the sequence of pick-up locations for a shared car and assignment
of unvisited demand points to pick-up locations for using the following two-stage algorithm.

Stage I: Assignment of Pick-Up Locations to Shared Car Routes
By decoding the chromosomes, some demand points are selected as pick-up locations and

assigned to shared car routes, i.e., yk
j . The Dijkstra algorithm is implemented to search the shortest

route dispatching from the origin of a shared car to the transportation hub so as to order the sequence
of pick-up locations for a shared car, i.e., xk

jm (see Table 2).

Table 2. Shared car route building process based on the Dijkstra algorithm.

Input Traffic network G, consisting of pick-up locations visited by shared car and its
origin and destination

Output Shortest route and its weight distance for vertex, d[] and p[]

Algorithm Flow Chart

generate vertex set Q//initialization
for each vertex g in G:

d[g]←∞, p[g]← -1 and add g to Q
d[s]← 0

while Q , Ø://Path construction process
u← vertex in Q with min d[u]

remove u from Q
for each neighbor g of u:
alt← d[u] + length (u, g)

if alt < d[g]: d[g]← alt and p[g]← u

Stage II: Pick-Up Location Selection for Unvisited Demand Points
Stage I has linked a sequence of pick-up locations along with designed shared car routes. Stage II

aims to select the most appropriate pick-up location for each unvisited demand point based on the
principle of minimization of walking distance, which has been declared within the objective function

of
∑
∀i∈I

∑
∀k∈K

∑
∀ j∈I

pi ·
zk

i j·di j

v
∑
∀i∈I

∑
∀k∈K

∑
∀ j∈I

pi ·
zk

i j·di j

w , i.e., xk
i j = { j|min[pi ·

zk
i j·di j

v ],∀i ∈ I}.
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4.2. Fitness Evaluation

When calculating the fitness of an individual with violated constraints (13)–(15), (20), and (21), a
penalty function is applied to reduce the fitness of the individual and reduce the probability of the
individual being passed on to the next generation. Thus, the modified fitness function is defined as:

F = f + H ·
∑
∀k∈K

[max(
∑
∀j∈I

yk
j · q

k
j , 0) + max(Tk

− TMax, 0)]

+H ·
∑
∀k∈K

∑
∀j∈U

[max(TL,s
k − tk

j , 0) + max(tk
j − TL,e

k , 0)]

+H ·
∑
∀k∈K

∑
∀j∈M

[max(TA,s
k − tk

j − t jm, 0) + max(tk
j + t jm − TA,e

k , 0)]

4.3. A Heuristic for Generating Initial Population

Because of the complexity of the problem, the randomly generated solutions maybe not necessarily
feasible solutions. As it has been widely recognized, the quality of solutions in the initial population
determines computational efficiency by applying the GA-based algorithm.

Thus, a heuristic algorithm, embed into the GA process, is designed to obtain some feasible
solution in the initial population. The detail is described as in Algorithm 1.

Algorithm 1 Heuristic algorithm to obtain some feasible solution in the initial population

Step 1: Input parameters of the proposed model, namely, I (a set of demand points), M (the transportation
hub), and K (a set of shared cars).
Step 2: For each shared car k ∈ K, determine its assignment of demand points and a sequence of pick-up
locations along with the designed route.
Step 3: Repeat removing a node (unvisited demand point) from the route of the shared car k ∈ K until no
violation of the constraints (14), (15), (19), and (20).
Step 4: Assign unvisited demand point to the shared car k ∈ K, and select the most appropriate pick-up
location for it, considering the capacity constraints and minimum walking distance.
Step 5: Use the obtained decision of yk

j , zk
i j, and xk

jm from Step 1 to 4 to generate initial population U.

4.4. Genetic Operators

Selection
The selection operation is a genetic operation used to determine how individuals from a parent

population are selected in a certain way to be passed on to the next generation. It is used to determine
recombination or crossover individuals and how many offspring individuals will be produced by the
selected individuals. The random league and the crowding out strategies are used in this paper.

Crossover and Mutation
Obviously, genetic crossover and mutation operator do not destroy the coding structure of the

solution. Using the uniform crossover strategy, the genes on each locus of two paired individuals
are exchanged with the same crossover probability, thus forming two new individuals. Similarly, the
uniform mutation strategy is adopted to replace the original gene values on each locus in the individual
coding string with random numbers that are uniformly distributed within a certain range and with a
certain small probability.

4.5. Stopping Criteria

The algorithm stops to search a better solution until the stop condition is met, i.e., a pre-set
maximal number or population diversity.
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5. Numerical Example

5.1. Example Description and Data Preparation

In this case study, there are twenty-five demand points (D1–D25), and three shared cars with their
three origin or destination locations (S1–S3). The number of passengers and their time windows in
demand points are shown in Table 3. Moreover, the origin and destination locations of these shared cars
and their service time windows are shown in Table 4. Figure 3 is used to map the spatial distribution of
origin/destination locations, demand points, the transportation hub (a rail station near the airport) in
Google GIS. The key input of the model and the algorithm used in this paper are described as follows:

• Maximum capacity of the shared car: Qk = 10 per;
• Minimum length of the shared car: LMin = 4 KM;
• Maximum length of the shared car: LMax = 15 KM;
• Maximum travel time of the shared car: Tmax = 30 MIN;
• Maximum walking distance: W = 1000 m;
• Walking speed: v = 110 m/min;
• The parameters of the hybrid algorithm: iteration times 100, chromosome number 500, crossover

rate 0.7, the mutation rate of 0.1.

Table 3. Information about the demand points.

Demand Point Number of Persons Time Window Demand Point Number of Persons Time Window

D1 1 6:30–7:00 D14 1 6:40–7:00
D2 2 6:30–7:00 D15 2 6:20–6:40
D3 1 6:20–6:40 D16 2 6:30–6:50
D4 1 6:20–6:40 D17 1 6:30–7:00
D5 2 6:20–6:50 D18 1 6:20–6:40
D6 1 6:30–7:00 D19 1 6:20–6:50
D7 2 6:20–6:50 D20 2 6:40–7:00
D8 2 6:30–7:00 D21 1 6:20–6:40
D9 1 6:20–6:40 D22 1 6:20–6:50
D10 2 6:20–6:50 D23 1 6:30–7:00
D11 1 6:30–7:00 D24 1 6:20–6:50
D12 2 6:20–6:40 D25 1 6:30–7:00
D13 1 6:20–6:50 - - -

Table 4. Information about shared cars.

Shared Car Origin/Destination Departure Time Window Arrival Time Window

R1 S1, S3 6:20–6:30 6:40–7:00
R2 S1, S3 6:20–6:30 6:40–7:00
R3 S2, S3 6:20–6:40 6:40–7:00

5.2. Results

As explained before, the proposed model could solve two dimensions, including pedestrian
guidance and transit routing. Table 5 lists all visited demand points with the assignment of unvisited
ones to them, which included numbers of people on the assigned vehicle and walking distance for each
visited demand point. Taking demand point D1visited by the vehicle R1 as an example, passengers at
unvisited demand point D3 got on at this selected pick-up location by walking 303.9 m. Due to one
person waiting for the bus at D1 and D3, two people were getting on the bus. Table 6 also summarizes
the number of passengers covered by the shared car.
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Table 5. Result of selection and assignment for demand points picked up by the shared car.

Visited Demand Point Unvisited Demand Point Number of Persons Vehicle Walking Distance (m)

D1 D3 2

R1

303.9

D2 2 244.9

D18 D4 2 439.7

D5 D6 3 106.9

D7 2

R2

219.8

D9 D8 3 54.8

D10 D11 3 140.9

D12 2 192

D13 D14 2 116.6

D15 D16 4

R3

175.5

D17 1 188.4

D19 1 66.2

D21 D20 3 106.7

D22 1 36.7

D24 D23 2 13.3

D25 1 147.3

Table 6. The scheduling plan for each shared car.

Vehicle Adjacent Pick-Up Locations Covered by the
Vehicle

Travel Distance
(km) Travel Time (min)

R1 S1-D1-D2-D18-D5-M- S3 13.4 26.5
R2 S1-D7-D9-D10-D12-D13-M- S3 9.4 19.7
R3 S2-D15-D17-D19-D21-D22-D24-D25-M- S3 9.9 24.5

Table 6 shows the DRT routes of three shared cars. Each of them had a total mileage of 13.4 km,
9.4 km, and 9.9 km, as well as total travel time of 26.5 min, 19.7 min, and 24.5 min, respectively. Taking
R1 as an example, an empty car would depart from the original location of S1, and this car first visited
D1 to pick up two passengers. After this, this car visited D2, D18, and D5 to pick up two passengers,
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two passengers, and one passenger, respectively, and arrived at the rail station M to deliver nine
passengers. Finally, the car reached its destination of S3.

Furthermore, the proposed model had its unique features compared with the traditional DRTs
without integration operation of pedestrian guidance. Figure 4 shows that total ride time for all
passengers of the proposed model would be reduced by 94.1 min, while the total walking time for
all passengers of the proposed model would be increased by 62.2 min, compared with the traditional
DRTs. However, the total travel time of this model was less than 31.9 min of the traditional model,
which proved that the proposed model was superior to the traditional model. Figure 5 also gives
iterative convergence curve to compare solution solving speed of traditional and proposed model
using GA. Since the traditional model with no integrated location selection problem is relatively simple
than the proposed model, the convergence speed of the former was faster than that of the latter.
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5.3. Sensitivity Analysis

Figure 6 further analyzes how the changes in maximum walking distance W affect a trade-off

between total walking and riding time. When W = 0, it becomes an equivalent traditional model. As W
gradually increases, total ride time would be reduced, and the total walking time would be increased.
However, both of them remain the same, if the value of W does not reach the changed point, except for
W = 100, 200, 400, 600, 700. Due to the increase in total walking time being less than the decrease in
total ride time, total travel time tends to keep going down, as W gets bigger.
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Table 7 also compares the difference in model performance under a different number of shared
cars. With the increase in the number of shared cars, the increase in the number of visited demand
points leads to a decrease in the number of unvisited demand points, which leads to the gradual
decrease of the total walking time. Further, a proper increase in the number of routes can provide direct
services for passengers, which leads to a decrease in the total travel time of passengers. However,
more routes lead to an increase in visited demand points, which leads to poor direct performance
of passengers. As a result, the total passenger time of the routes will increase, and the calculation
results are in line with the intuitive analysis. Besides, the deviation between the solution result of this
algorithm and Cplex is within 7%, but the calculation time is greatly reduced, which also shows that
this algorithm is effective and feasible in terms of solution time and solution quality.

Table 7. Comparison of the results of a different number of shared cars.

Scenario
Objective (min) Solution Time (min) Total Riding

Time (min)
Total Walking

Time (min)
Total

Mileages (km)
Total Times

(min)Cplex GA Cplex GA

3 vehicles 320.3 342.7 20.2 2.2 258.1 62.2 31.2 50.2
4 vehicles 304.5 322.7 136.5 2.5 248.3 56.2 32.4 61.2
5 vehicles 372.4 397.4 214.4 2.6 324.2 48.2 35.3 65.6

Furthermore, the solutions of the proposed algorithm and Cplex were evaluated by many
computational experiments on larger-scale, randomly generated instances at every test scenario.
Comparison of the results are given in Table 8, from which we can see:

(1) Although Cplex can always obtain the optimal solution, a greater the number of demand points,
the more time to solve the problem, which is more than 1 h.
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(2) The improved algorithm can only find an approximate solution in a short time, which is less than
10 min. As the number of demand points gets bigger, the quality of the solution gets worse, in
which the deviation between the best solution, the average solution, and the optimal solution will
be larger and larger.

Table 8. Comparison of the results of different algorithms.

Number of Demand
Points

GA
Optimal Solution of

Cplex

Computation Time

Best
Solution

Average
Solution

Worst
Solution Cplex GA

25 342.7/6.9% 347.8/8.6% 356.8/11.4% 320.3 <0.5 h 2.2 min

50 560.2/7.4% 574.3/10.1% 592.0/13.5% 521.6 >1 h 2.9 min

75 734.0/8.2% 761.2/12.2% 784.9/15.7% 678.4 >12 h 3.6 min

100 901.8/9.3% 943.9/14.4% 966.2/17.1% 825.1 >24 h 4.5 min

150 1040.7/10.4% 1100.1/16.7% 1134.1/20.3% 942.7 >48 h 5.3 min

200 1151.6/12.0% 1218.4/18.5% 1270.9/23.6% 1028.2 - 6.5 min

Remark
The two numbers on either side of the slash represent the best, average, and worst values and

their increments relative to the optimal solution.

6. Conclusions

This study proposed a new optimization framework DRT based on shared cars. Being different
from the previous literature, the main contribution of this paper lied in: (1) offered an integration of
pedestrian guidance (from unvisited demand points to visited ones) and DRT routing (from visited
demand points to the transportation hub) to significantly improve the performance of the feeder bus
system and (2) developed a two-stage heuristic algorithm-based GA in which a heuristic algorithm
of generating the initial population was further proposed and embedded. An example was also
further used to explain the feasibility and applicability of the proposed framework. Results showed
that the model could be used as an effective tool for transit authorities not only for selecting optimal
visited demand points with the assignment of unvisited ones to them but also for determining the
best DRT route plan on a real-world road network. Further, validation and analysis were also carried
out to assess the effect of maximum walking distance and the number of shared cars on the solution
performance, as well as a comparison in the quality of the heuristic and optimal solution to validate
the performance of the developed algorithm.

Note that this study assumed that travel time stays the same, and neglected the time-varying
speed at a different time of the day. In the real traffic environment, traffic congestion often occurs,
resulting in an uncertainty in the travel time. In this sense, further research work in extending the
model with uncertain travel time may be worthwhile.
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