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Abstract: To improve the accuracy of rolling-bearing fault diagnosis and solve the problem of
incomplete information about the feature-evaluation method of the single-measurement model, this
paper combines the advantages of various measurement models and proposes a fault-diagnosis
method based on multi-measurement hybrid-feature evaluation. In this study, an original feature
set was first obtained through analyzing a collected vibration signal. The feature set included
time- and frequency-domain features, and also, based on the empirical-mode decomposition
(EMD)-obtained time-frequency domain, energy and Lempel–Ziv complexity features. Second,
a feature-evaluation framework of multiplicative hybrid models was constructed based on correlation,
distance, information, and other measures. The framework was used to rank features and obtain
rank weights. Then the weights were multiplied by the features to obtain a new feature set. Finally,
the fault-feature set was used as the input of the category-divergence fault-diagnosis model based
on kernel principal component analysis (KPCA), and the fault-diagnosis model was based on a
support vector machine (SVM). The clustering effect of different fault categories was more obvious
and classification accuracy was improved.
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1. Introduction

As one of the most widely used components in rotating machinery, the health status of rolling
bearings has an important impact on the working conditions of the entire mechanical equipment.
Once a failure occurs, the performance of the equipment is greatly reduced and even has catastrophic
consequences [1]. Therefore, the status monitoring and fault diagnosis of rolling bearings have become
an important part to ensure the normal operation and safety of machinery and equipment.

As a key part of the fault diagnosis of rolling bearings, feature extraction aims to extract various
parameter indices that reflect the fault characteristics by analyzing the original vibration signals in
the time, frequency, and time-frequency domains. In recent years, it has become a popular trend
to use integrated multidomain and multicategory features to characterize the fault modes of rolling
bearings [2–4]. Feature extraction plays an important role in subsequent data processing. This is not
only reflected in the processing of vibration and sound signals, but also in machine learning and
deep learning [5–7]. The importance of feature extraction is more obvious in the diagnosis of rotating
machinery faults [8–10]. Now, many scholars have invested in the research of rolling bearing fault
diagnosis based on feature evaluation and feature extraction [11–13]. Usually, fault-classification
input is composed of a high-dimensional feature vector. However, the high-dimensional feature set
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increases computational demands and reduces diagnostic efficiency [14,15]. On the other hand, the
advantage of sensitive features to fault classification cannot be highlighted, as correlation between
nonsensitive features of the classification effect is weakened, which makes it difficult to improve the
accuracy of fault diagnosis. Therefore, before a feature-vector set is input into the classifier, each feature
value needs to be evaluated. According to the feature score, each feature parameter is weighted. The
existing evaluation criteria are mainly divided into the following categories: distance measures [16],
correlation measures [17], information measures [18], and consistency measures [19]. The evaluation
criteria of each category also include a number of feature-evaluation models, such as the average
distance between classes, within-class–between-class integrated distance, and the Fisher score [20]
belonging to the category of distance measurement. The Pearson correlation coefficient belongs to a
class of correlation-measure criteria, and information gain, minimum description length, and mutual
information are the evaluation criteria based on information measures. In addition, the Laplacian score
(LS) proposed by He et al. [21,22] retentively scores features based on the local information and the
variance of the features, which provides a new idea for feature evaluation and has successfully been
applied to fault diagnosis. The above-mentioned various characteristic evaluation models evaluate
characteristics from different aspects, respectively, which has a certain one-sidedness that then affects
subsequent classification performance [23–28]. Therefore, based on the combination of multiple models
under different measurement criteria, it is possible to obtain relatively comprehensive and objective
evaluation results.

In view of the above analysis, this paper proposes a fault-diagnosis method based on
multi-measurement hybrid-feature evaluation. By using a four-feature evaluation model of
comprehensive distance, correlation, and information, the original feature set composed of the
time domain, frequency domain, and time-frequency domain features parameters that are used to
obtain the feature score. The new weighted feature set is formed for each feature weight by each
feature score, and then applied to the fault diagnosis of the rolling bearing. Finally, the proposed
diagnostic method is applied to two different sets of experimental data of rolling-bearing failure. The
comparative-analysis results verified the effectiveness and superiority of the proposed method. The
paper is organized as follows: Feature extraction and the weighting scheme are introduced in Section 2.
Section 3 describes the method and process of fault diagnosis proposed in this paper. Section 4
introduces the experimental bearing dataset and the fault-diagnosis results. Finally, conclusions are
drawn in Section 5.

2. Feature Extraction and Multimeasurement Hybrid-Feature Weighting Scheme

2.1. Multiple-Type Feature Extraction from Multiple Domains

When rotating machinery falls into a faulty state, the amplitude and probability distribution of
the collected vibration signal changes, as well as the frequency components and the position of spectral
peak. Thus, statistical features describing distribution information of the time-domain waveform and
frequency spectrum have been efficacious indicators of failure occurrence in rotating machinery. Due
to the advantages of clear physical meanings of simple computation and strong practicability, various
statistical features of the time and frequency domains have been successfully utilized in the fault
diagnosis of rotating machinery in many studies. Among these, 10 time-domain features, namely, peak,
mean, variance, root mean square (RMS), skewness, kurtosis, waveform index, crest index, pulse index,
and peak indicator, and five frequency-domain features, namely, mean frequency, gravity frequency,
RMS frequency, standard deviation, and kurtosis frequency, were adopted in this paper to construct
the original time- and frequency-domain feature vector set; the detailed computation equations of the
above features are provided in Table 1.
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Table 1. Detailed description of statistical features.
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x(n), time series of a signal; n = 1, 2, · · ·N; N, length of the series; s(k), frequency spectrum of x(n)
wherein k = 1, 2, · · · , K; K, number of spectral lines; and fk, frequency value of the k-th spectral line.

Aiming at the characteristics of low signal to noise ratio (SNR), that is, the nonlinearity and
nonstationarity of the faulty signal, various types of time-frequency domain features were employed
to mine more fault information than could be found with statistical parameters in the time and
frequency domains. In this paper, two types of time-frequency domain features, i.e., energy and
Lempel–Ziv complexity based on empirical-mode decomposition (EMD), were employed to build
the original time-frequency-domain feature set. As one of the common nonlinear time-frequency
analysis technologies, EMD adaptively decomposes a complicated signal x(t) into a set of complete
and almost orthogonal components, namely, intrinsic mode functions (IMFs) ci(t) and residue rn(t).
The decomposition procedure is defined as:

x(t) =
n∑

i=1

ci(t) + rn(t) (1)

The energies of IMFs including different frequency bands have the ability to more fully and
effectively reveal the original vibration signal in view of time-frequency amplitude and distribution;
thus, they are considered as efficacious indicators of the faulty state of rotating machinery. In this
paper, after correlation analysis, the first five IMFs containing almost all valuable information were
selected. The energy of the i-th IMF (i = 1, 2 · · · , 5) was calculated as:

Ei =

∫ +∞

−∞

∣∣∣ci(t)
∣∣∣dt (2)

Furthermore, in order to eliminate the impact of the physical dimension, Ei was normalized by
Ei/E, wherein E =

∑5
i=1 Ei.
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Lempel–Ziv complexity measurement is a tool to weigh the complexity of finite sequences, which
reflects the occurrence rate of a new mode in a time sequence along with the increase of length. Aiming
at this topic, the Lempel–Ziv complexity indicator is expected to respond to changes in the condition
of rotating machinery. Considering the dispersed sequence of the SiN = [Si1, Si2, · · · , SiN], then the
Lempel-Ziv value of SiN can be calculated by CiN(r)(r ≤ N) through N cycles; CiN(r) is the Lempel–Ziv
complexity of the i-th IMF, and N is the length of the binary data that is occupied by IMF when
solving the complexity. The value of N needs to be defined based on the length of the IMF. The size
of Lempel–Ziv complexity is affected by the length of the sequence N. To be robust, normalized
Lempel–Ziv complexity is defined as:

Li = Ci,N(r) =
(
Ci,N(N) log2 N

)
/N (3)

Summarily, an original 25-dimensional fault-feature set, composed of a 15-dimensional
time-domain and frequency-domain statistical-feature vector, and a 10-dimensional
time-frequency-domain feature vector F2 = [E1/E, E2/E, · · · , E5/E, L1, L2, · · · , L5], was constructed for
subsequent fault diagnosis.

2.2. Hybrid Feature-Weighting Scheme

To strengthen the performance of the subsequent classification module, the obtained feature set
was weighted with a novel hybrid model based on the feature-weighting scheme proposed in this
section before they were input into the subsequent intelligent classier. The proposed feature-weighting
scheme synthetically evaluated the original features from the perspectives of distance, correlation, and
information; the corresponding flowchart is shown in Figure 1.
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Figure 1. Flowchart of proposed feature-weighting scheme.

As seen in Figure 1, there are three steps for the capture of the weighted-feature set in the
proposed scheme: the computation of feature weights based on the single evaluation model, the hybrid
product of feature weights originating from the four available feature-evaluation models, and the
feature-weighting phase through combining the integrated score vector of the feature set with the
original feature set. From these steps, the second, namely, acquiring the integrated sensitivity vector of
the feature set, is the key to the proposed scheme.

The hybrid feature-evaluation model embraces four mature feature-evaluation models, wd
j , wc

j, wi
j

and wni
j , which are the distance, correlation, traditional-information, and special-information operators

of the j-th feature, and calculated by inner- and interclass integrated distance, an integrated Pearson
correlation coefficient, regularization information gain and Laplacian score, respectively, as follows.

Given a sample matrix X =
{
xi j

}
∈ RN×M and the corresponding classification-label vector

Y =
{
yi
}
∈ RN, where N and M respectively denote the number of samples and dimensions of features,

xi j is the j-th feature value of the i-th sample and yi ∈ [1, 2, · · · , C] is the corresponding classification
label of the i-th sample, where C denotes the class number in the sample set.
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2.2.1. Four Basic Measure Schemes

1. Category distance is an important criterion for the separability of the samples of different
categories. The commonly used category distance mainly includes inner- and interclass average
distance, inner–inter-class comprehensive distance, etc. Therefore, the calculation expression based on
the category-distance model is as follows:

wd
j =

db
j

dw
j
=

1
C×(C−1)

∑C

c, e = 1
c , e

∣∣∣µe, j − µc, j
∣∣∣

1
C

C∑
c=1

1
Nc(Nc−1)

Nc∑
l, m = 1
l , m

∣∣∣xm,c, j − xl,c, j
∣∣∣ (4)

In Equation (4), xm,c, j is the j-th feature value of the m-th sample affiliated with the c-th class, Nc

is the number of samples affiliated with the c-th class in the sample set, N =
∑C

c=1 Nc, db
j and dw

j are,
separately, the average distance between different class samples and the one within C classes, and the
j-th feature mean value of the c-th class samples is defined as µc, j =

1
Nc

∑Nc
m=1 xm,c, j. According to the

principle that class distance is an important criterion to the divisibility of different class samples, in this
paper, the class distance of samples under a certain feature dimension, especially inner- and interclass
integrated distance, is regarded as an effective indicator of feature-score degree to distinguish different
faulty classes. It is noteworthy that, the bigger the value of wd

j , the stronger the score of the j-th feature.
Inner-and interclass integrated distance of samples in some features can be used as measurement

criteria for the score of samples to different faults. This has the advantage of comprehensively
considering similarity in the same category and difference between different categories, but this method
does not reflect the corresponding relationship between features and classification labels.

2. The Pearson correlation coefficient measures the contribution of individual features to
classification by using the correlation between features, or features and categories. The formula is
as follows:

wc
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p f−c
j

p f− f
j

=
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(5)

In Equation (5), p f−c
j and p f− f

j , respectively, denote the Pearson correlation coefficient between
features and classes, and the one between features. The above-defined integrated Pearson correlation
coefficient synchronously considers the correlation of the j-th feature with classes and the correlation
of the j-th feature with other features to measure the score of the j-th feature. In other words, if the
correlation of the j-th feature with a class is the highest and the one of the j-th feature with other
features is the lowest, then this feature is preferred to other features.

An integrated Pearson correlation coefficient uses the correlation between features or between
features and category labels to measure the contribution of individual features to classification. This
method measures linear correlation and is only sensitive to linear relations. If there is a nonlinear
relationship between features and category labels, the integrated Pearson correlation coefficient is not
able to correctly screen for it.

3. Regularization-information gain is a typical characteristic-evaluation model based on
information measurement, whose basic idea is to measure the importance of characteristics for
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classification by calculating the value of useful information brought by a certain characteristic.
Therefore, the calculation expression based on regularization-information gain is as follows:

wi
j = 2×

H(Y) −H
(
Y
∣∣∣x j

)(
H
(
x j

)
+ H(Y)

)
H(Y)

(6)

where H
(
x j

)
is the information entropy of the j-th feature in the sample set, H(Y) is the information

entropy of the class-label vector, and H
(
Y
∣∣∣x j

)
is the conditional entropy. The central theme of the

regularization-information gain defined in Equation (6) is to measure the importance degree of the
j-th feature by calculating the size of useful information brought by the feature for classification. The
bigger the value of wi

j is, the more useful the information of the j-th feature.
Regularization-information gain calculates the useful information brought by a certain

characteristic for classification to measure the importance of this characteristic for classification.
Regularization-information gain can only deal with attribute values of continuity, but not the
characteristics of continuous values. The natural bias of the algorithm is to choose properties
with more branches, which easily leads to overfitting.

4. The Laplacian score is based on Laplacian feature-value mapping and local retention projection.
Its basic idea is to measure features through local-information-retention ability and variance information.
Therefore, the calculation expression based on the Laplacian score model is as follows:

wni
j =

∑N
i,n=1

(
xi j − xnj

)2
sin

var
(
x j

) (7)

where var
(
x j

)
is the estimated variance of the j-th feature, sin is the element of the i-th row and the

n-th column in similarity matrix S, which denotes the similarity between the i-th and n-th samples.
If node i and n are connected to each other in the neighborhood graph, sin = exp

(
−‖xi − xn‖

2/t
)
;

otherwise, sin = 0. Equation (7), namely, the Laplacian score calculation equation, is considered a
new information-measurement-based feature-evaluation model due to its characteristic of reflecting
locality-preserving power and variance information. By contrast to the aforementioned three operators,
value wni

j is inversely proportional to the classification contribution of the feature.
The Laplacian score measures features through local-information retention and variance

information, and describes the inherent local geometric structure of the data space. It is convenient and
quick to operate. However, the Laplacian score ignores the relationship between features. It analyzes
each feature independently and discards the relation between features, which makes it difficult for the
Laplacian score to seek global optimization.

2.2.2. Weight Calculation of Hybrid-Feature Evaluation

It is worth noting that the above-mentioned classical feature-evaluation models are based on a
single measure criterion to obtain the feature score, of which the results have some limitations, as they
are not good at reflecting the relationship between features and labels and the linear correlation between
features, do not have single-category feature-selection capabilities, and pose difficulties in seeking
global optimality. Feature evaluation and the weighting framework of hybrid models based on distance,
correlation, and information measurement can make up for the shortcomings of single-measurement
feature evaluation. Among them, 25 characteristics were evaluated by four single-measurement models,
and four feature evaluation results were obtained. The results were multiplied to obtain comprehensive
feature-evaluation results, and comprehensive feature-evaluation weights were further calculated. The
integrated feature weights and original feature values were calculated. This combination constituted a
new fault-feature set that could combine the advantages of various measurement methods. Feature
weighting has the characteristics of strengthening the contribution to the classification and weakening
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the contribution of the classification while retaining the integrity of the original feature set. When
the scores of the single-measurement methods are consistent, the multi-measurement hybrid-feature
evaluation model increases as the score of the single-measurement model increases, and lower as the
score of the single-measurement model decreases. This can screen out features with a large classification
contribution rate, and features with a small classification contribution rate. When the scores of various
single-measurement methods are inconsistent, the multiplication product comprehensively balances
the scores of various measurement scores, the characteristics of the medium contribution rate can be
further subdivided, and the dominant features can be screened out. The new fault-feature set obtained
by the established multi-measurement hybrid-feature evaluation model is input into the subsequent
diagnosis model to obtain the diagnosis result. The multi-measurement hybrid-feature evaluation
model can more accurately evaluate features and further improve diagnostic accuracy. The integrated

weight wH =
{

wH
j

}M

j=1
of the new fault feature set is calculated by:

wH
j = wd

j ×wc
j ×wi

j/wni
j (8)

Finally, the new fault-feature set is obtained by computing integrated score vector wH of the feature
set to multiply with the original feature set. From the definitions in Equations (4)–(7), it is remarkable
that the value ranges of correlation measurement index wc

j, traditional information evaluation index wi
j,

and special information index wni
j are 0 to 1. The value range of distance measurement index wd

j is also
larger than 1. To achieve more reliable multi-measurement hybrid feature weights, the four indices
were respectively normalized before constructing hybrid weighting index wH

j . Then, the obtained
integrated feature weights were further normalized to eliminate the value-range fluctuation that is
caused by the product admixture formula shown as Equation (8). The weight value of the j-th feature
was normalized by the following formula:

w j
′ =

w j −min(w)

max(w) −min(w)
(9)

where w j can represent measurement indices wc
j, wi

j, wni
j , wd

j or wH
j ,respectively, and ω is the

corresponding feature-weight vector wc, wi, wni, wd or wH.According to Equation (8), the four
score vectors after normalization are used to calculate the score vector of the hybrid feature. After
normalization, the hybrid-feature score vector is weighted to the original matrix to obtain the
hybrid-feature weighted-feature matrix.

The hybrid model proposed in this paper scores the original feature set and weights the original
feature set according to the given score. The new fault feature set highlights superiority over features
with a high classification contribution rate at fault classification and weakens interference in features
with a small classification contribution rate set at fault classification. Compared with the original
feature set, the new fault-feature set is weighted for each feature. The feature of large classification
contribution rates is to get a larger weight value, while the feature of small classification contribution
rates and the feature of interference obtains smaller or even zero weight values. The new fault-feature
set gives play to the advantage of features and improves classification accuracy.

3. Method and Process of Fault Diagnosis Based on Multimeasurement Hybrid-Feature
Evaluation

3.1. Fault-Diagnosis Method Based on Multimeasurement Hybrid-Feature Evaluation

In order to verify the effectiveness of the new fault-feature set based on the multi-measurement
hybrid-feature evaluation model in this paper, a category-divergence fault-diagnosis model based on
kernel principal component analysis (KPCA) [29] and a fault-diagnosis model based on a support vector
machine (SVM) [30], are proposed. Category-divergence fault diagnosis based on KPCA quantifies the
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clustering ability of different feature sets using category divergence (including within-, between-, and
within-class–between-class scatter) as the evaluation index. It can be considered a direct diagnostic
model. The second diagnosis scheme is used to support the vector to take the output results of the SVM
model with different feature sets under the same structural parameters. That is to say, classification
accuracy is a measure index of different feature evaluation and weighted schemes. It can be considered
as an indirect diagnostic model.

3.1.1. Fault-Diagnosis Model Based on KPCA

In order to further evaluate the influence of the proposed feature-weighting scheme on
follow-up classification from a quantitative sense, three commonly used clustering-performance
measurement indicators, namely, within-class scatter Sw, between-class scatter Sb, and synthesized
within-class–between-class scatter SS were employed into the first three-dimensional principal
components, namely, three KPCA-based reduction features of the five aforementioned different
feature sets. Their detailed definitions are shown as follows:

Sw =
1
C

C∑
i=1

 1
Ni

Ni∑
j=1

‖ f i
j − µ

i
f ‖

2

 (10)

Sb =
1
C

C∑
i=1

‖µi
f − µ f ‖

2
(11)

SS =
Sb
Sw

(12)

where C is the number of fault status categories, N =
∑C

i=1 Ni is the number of total samples in which
Ni is the number of samples belonging to the i-th class, f i

j is the feature value of the j-th sample in

the i-th class, µi
f is the mean feature value of the i-th class, µ f = 1/C

∑C
i=1 µ

i
f is the total mean feature

value of all classes. As known from the above definitions, within-class scatter Sw characterizes the
average concentrated level of samples belonging to the same class, between-class scatter Sb indicates
the average dispensability among different classes, and synthesized within-class–between-class
scatter SS gives a comprehensive evaluation that combines Sw and Sb. It is noteworthy that the
clustering performance of a certain feature is proportional to the values of between-class scatter Sb
and synthesized within-class–between-class scatter SS, but inversely proportional to the value of
within-class scatter Sw In other words, the larger the values of between-class scatter Sb and synthesized
within-class–between-class scatter SS, but the smaller the value of within-class scatter Sw, the better the
clustering performance of the first KPCA-based 3D reduction features of features sets originating from
four different feature score-weighting methods, as well as that of the original unweighted-feature set.

3.1.2. Fault-Diagnosis Model Based on SVM

The SVM is a machine learning method based on statistical theory and structural risk minimization
principle. It is a large edge classifier suitable for small samples. The thought of the SVM is to find an
optimal hyperplane that can be classified, which can not only guarantee the classification accuracy but
also maximize the blank space on both sides of the hyperplane. Theoretically, SVM can achieve the
optimal classification of linear classification data, and the classification of complex nonlinear data in
high-dimensional Hilbert space can be achieved through nonlinear projection.

Given a nonlinear classification sample set
{
(xi, yi)

}N
i=1, where xi ∈ Rd, -dimensional input vector,

yi[±1] is the corresponding class label of xi, N is the number of samples in the sample set. Through
the nonlinear mapping function ϕ(·), the input sample data is mapped from the original space to
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the high-dimensional feature space, and the optimal classification hyperplane is constructed in the
high-dimensional feature space:{

(ω ·ϕ(x)) + b = 0
s.t.yi((ω ·ϕ(x)) + b) + εi ≥ 1, i = 1, 2, · · · , n

(13)

where ω is the weight vector; b is bias; and εi ≥ 0 is a soft variable that allows a certain degree of
misclassification for some points around the decision boundary. ω and b determine the location of the
classification hyperplane. The determination of the optimal classification hyperplane can be achieved
by solving the following convex quadratic programming optimization problem:

minϕ(ω, ε) =
1
2
‖ω‖2 + C

n∑
i=1

εi (14)

where C is a penalty factor. By changing the penalty factor, the generalization ability and
misclassification rate of the classifier can be balanced.

The kernel function plays an important role in the SVM classifier. It can calculate the dot product
result of the high space in low-dimensional space and use it as a means of classification. Now, the
kernel function has been fully developed. Radial-basis functions (RBF) are the most widely used and
have a wide convergence domain. It is an ideal classification function and can be defined as:

K
(
xi, y j

)
= exp

(
−‖xi − y j‖

2/2σ2
)

(15)

where σ represents nuclear parameters. We use an RBF constructed SVM, where penalty factor C and
kernel parameter σ directly affect the classification accuracy of the SVM classifier. Therefore, in this
paper, different input feature sets adopt a SVM classification model with the same parameter value,
thus reflecting the fairness and objectivity of the program comparison.

3.2. Fault-Diagnosis Process Based on Multimeasurement Hybrid-Feature Evaluation

In order to prove the model presented in this paper is better than a traditional single measure
model, two different diagnostic models were used for analysis, respectively, and the specific process is
shown in Figure 2.

(1) Vibration signals of rolling-bearing faults are statistically analyzed relating to the time and
frequency domains, building T1 = {P1, P2, · · ·, P15} , the time and frequency domains of the original
feature set; and EMD analysis is carried out on the vibration signal, extraction, and original signal
correlation based on correlation analysis of the top five largest energy and Lempel–Ziv complexity
characteristics of the IMF, building the original frequency-domain feature set T2 = { E1 ∼ P2, L1 ∼ L5} ,
a combination of T1 and T2 building 1× 25 D multidomain fault-feature vector T = { t1, t2, · · ·, t25} .

(2) Using the proposed fault-diagnosis method to evaluate each feature parameter ti in the
original fault-feature set T, the comprehensive score value HFSi of each feature is obtained, and new
fault-feature set T′ is formed by combining the corresponding feature weight and feature value.

(3) The new fault-feature set in Step (2) is input in the category-divergence fault-diagnosis model
based on KPCA and the fault-diagnosis model based on SVM. This obtains category divergence and
classification accuracy, respectively.
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Figure 2. Flowchart of diagnosis based on multi-measurement hybrid-feature evaluation.

4. Experiment Analysis

4.1. Experiment Depictions

In order to evaluate the effectiveness of the proposed fault-diagnosis method for rotating machinery,
two real-world experiments involving corrosion faults of rolling-element bearings and gearbox failures
were employed in this paper. The specific information of the two cases is as follows.

The first experiment, Case I, was fault diagnosis of rolling-element bearing where fault data
originated from the Case Western Reserve University [31]. The layout diagram of this experiment is
shown in Figure 3.Information 2019, 10, x FOR PEER REVIEW  11  of  18 
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Figure 3. Schematic diagram of rolling-element-bearing fault-simulation experiment (Case I).

The test bench comprised a 2 HP reliance electric motor (left), a torque transducer (center), a
dynamometer (right), and control electronics. In the experiment process, nine kinds of corrosion faults
of the drive-end bearing in the motor were imitated by respectively seeding single points of 0.007,
0.014, and 0.021 inches in diameter on the rolling element, and inner and outer raceway with the electro
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discharge machine. Bearing-vibration data were collected by the accelerometer attached to the housing
with magnetic bases. Here, 10 kinds of bearing conditions—normal and the nine aforementioned types
of corrosion faults—were investigated. Sampling frequency was 12 kHz, and 50 samples were selected
in each condition. The experiment data is shown in Table 2.

Table 2. Description of dataset in case I.

Motor Speed
(rpm) Motor Load (HP) Fault location Fault Diameter

(inch) Name of Setting

1750 2 normal 0 normal
1750 2 Rolling 0.007 B/0.007
1750 2 Rolling 0.014 B/0.014
1750 2 Rolling 0.021 B/0.021
1750 2 Inner-race 0.007 IR/0.07
1750 2 Inner-race 0.014 IR/0.014
1750 2 Inner-race 0.021 IR/0.021
1750 2 Outer-race 0.007 OR/0.007
1750 2 Outer-race 0.014 OR/0.014
1750 2 Outer-race 0.021 OR/0.021

The second experiment (Case II) was conducted on the gearbox-fault simulation-test rig shown in
Figure 4 [32].
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Figure 4. Schematic diagram of gearbox-fault experiment (Case II).

The tested bearing type was double-row ball bearing, main shaft frequency was 10 Hz (600 rpm),
the bearing-fault vibration signal was measured by the vibration-acceleration sensor installed on the
gearbox housing at the upper end of the bearing under test, and sampling frequency of the signal was
48 KHz. Four bearing states were normal; inner and outer race, 0.8 mm wide and 0.3 mm deep notch
failure; and ball, 0.5 mm wide, 0.5 mm deep notch failure. The experiment data is shown in Table 3.

Table 3. Description of dataset in case II.

Motor Speed(rpm) Fault Location Fault Diameter (mm) Name of Setting

600 normal 0 Normal state
600 Inner-race 0.8 Inner-race failure
600 Outer-race 0.3 Outer-race failure
600 Ball 0.5 Ball failure
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4.2. Validation and Comparisons of New Fault-Feature Set

For the two groups of experiment data, the data length of each single sample was set to 2048, with
50 samples for each state, 30 of which were used as training samples and the remaining 20 samples
were used as test samples.

First, time-frequency and EMD-based time-frequency domain analysis was performed on the
sample data of each type in each experiment to construct eigenvectors T = [Ti]1×25. Two primitives
of different dimensions were constructed according to the number of samples in the two groups of
experiment data, respectively. Characteristic matrix C1 ∈ R500×25 and C2 ∈ R200×25.

Second, by using the hybrid-feature evaluation model proposed in this paper, we respectively
scored the feature parameters corresponding to matrices C1 and C2 of each column vector to obtain
the sum of scores corresponding to two matrix feature parameters s1 = [HFS1, HFS2, · · ·, HFS25] and
s2, and then constructed a row vector of s1 or s2. The number of rows was equal to the number of
sample-weight matrixes s1 and s2, respective to original feature matrix C1 and C2 dot multiplication.
Two sets of experiment data corresponding to the hybrid-feature score weighted feature matrix sum
were WW1

H and WW2
H.

Considering that the eigenvectors of a single sample in this weighting-feature matrix had high
dimensionality, which is unfavorable for the visual display of samples, the KPCA, a typical nonlinear
feature-dimensionality reduction method, was used for matrix WW1

H and WW2
H dimension reduction,

so as to obtain the two- or three-dimensional display output of sample data, as shown in Figures
5a and 6a. At the same time, in order to realize new fault-feature matrices WW1

H and WW2
H based

on the multi-measurement hybrid-feature evaluation proposed in this paper, comparative analysis
of the sample-clustering performance for the weighted-feature set based on the four traditional
single-measurement features (WP, weighted eigenmatrix based on Pearson correlation coefficient
model; WD, weighted eigenmatrix based on category distance model; WI, weighted eigenmatrix
based on mutual information model; and WL, weighted feature matrix based on Laplacian scoring
model) and original unweighted feature matrices C1, C2. The KCPA method was applied to the
five different feature matrices above that were, respectively, dimensionally reduced to obtain the
two-dimensional output results of the five feature matrices, as shown in Figures 5b–f and 6b–f. In
Figures 5 and 6, PC1 PC2, PC3 stand for the first, second, third dimensional principal components after
KPCA dimensionality reduction, respectively. We can see two different groups of experiment data of
rolling-bearing failure. The distinguishing effects of the feature samples were obviously better than
those of the four other weighted-feature samples and the original unweighted-feature samples based
on the single-measurement evaluation model, which not only made between-class scatter clustering of
each type of fault-sample data more concentrated, but also greatly improved existing overlap between
different types of samples in five feature-sample sets.

At the same time, in order to realize quantitative evaluation of the effect of the method of
feature weighting based on the multi-measurement hybrid-feature evaluation proposed in this
paper on sample clustering and classification-performance improvement, according to the two sets
of the characteristic-weighting scheme-evaluation system proposed in this paper, the six different
failure-characteristic sets in the two different rolling-bearing failure experiments above were calculated
and analyzed as necessary. Between them, the first evaluation method aimed to quantitatively evaluate
the clustering performance of the feature set by comprehensively calculating the category divergence
values of the sample data of the fault feature sets in each feature parameter dimension. At the same
time, taking into account the large amount of computation caused by the high dimension of the feature
set and the nonlinearity between the feature parameters in the feature set, this paper used KPCA to
reduce the dimensionality of different feature sets; the result of the divergence and the mean of the first
two principal components were an indirect reflection of the overall divergence index of the feature
set. Therefore, with feature-divergence calculation according to Equations (12)–(14), the clustering
performance of six different weighted feature sets in the two experiment sets were comprehensively
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evaluated. The results of the divergence-value calculation are shown in Table 4 and Figure 7. In
Figure 7, F1–F6 stand for feature set WW2

H, WP2, WD2, WI2, WL2, C2, respectively.Information 2019, 10, x FOR PEER REVIEW  13  of  18 
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Figure 6. Experiment data for Case II of six kinds of different KPCA result feature matrix: (a) WW2
H;

(b) WP2; (c) WD2; (d) WI2; (e) WL2; (f) C2.

Table 4. Divergence calculation results of six different fault-feature sets in experiment data 1.

Feature Sets
First Main Element Second Main Element Mean Value

Sw Sb SS Sw Sb SS Sw Sb SS

WWH
1 1.26 × 105 3.78 × 108 3.01 × 103 5.82 × 103 8.44 × 106 1.45 × 103 6.59 × 104 1.93 × 108 2.23 × 103

WP1 1.25 × 104 7.18 × 106 575.19 3.26 × 103 1.29 × 106 396.76 7.87 × 103 4.24 × 106 485.98
WD1 8.59 × 103 2.16 × 107 2.51 × 103 3.25 × 103 2.01 × 106 616.76 5.92 × 103 1.18 × 107 1.56 × 103

WI1 8.53 × 103 6.43 × 106 753.15 2.87 × 103 1.17 × 106 407.11 5.70 × 103 3.79 × 106 580.13
WL1 1.24 × 104 1.91 × 107 1.54 × 103 2.75 × 103 1.71 × 106 622.50 7.57 × 103 1.04 × 107 1.08 × 103

C1 474.22 3.57 × 105 753.15 159.75 6.50 × 104 407.11 316.98 2.11 × 105 580.13
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Figure 7. Divergence-calculation results of six different fault-feature sets in experiment data 2.
(a) Within-class scatter values corresponding to different measurement methods; (b) between-class
scatter values corresponding to different measure methods; and (c) within-class–between-class scatter
values corresponding to different measure methods.

From Table 4 we can see that, for the first set of rolling-bearing-fault experiment data, the
multi-measurement hybrid-evaluation weighted-feature matrix achieved the maximum between-class
and within-class–between-class scatter at the expense of a certain degree of within-class scatter
corresponding to it; the four other groups of weighted feature sets based on the single-measurement
evaluation of class-divergence between-class and within-class–between-class scatter were second; and
the original unweighted-feature between-class and within-class–between-class scatter was minimal.
It can be seen from Figure 7 that, in the experiment data of the second group of rolling-bearing
failures, the minimum within-class–between-class scatter, the largest between-class scatter, and
the within-class–between-class scatter were obtained based on the new fault-feature set of the
multi-measurement hybrid-evaluation model proposed in this paper. In addition, the four other
weighted feature sets based on the single-measurement evaluation model had higher between-class
and within-class–between-class scatter than the original unweighted-feature sets.

To sum up, the weighted method based on multi-measurement hybrid evaluation proposed in this
paper has more obvious advantages for improving clustering performance of the original fault-feature
set of the rolling bearing than the existing weighted method based on a single measurement.

Another method for evaluating the weighting scheme is to use the classification accuracy of
differently weighted feature sets in the same classifier model as a measurement of quality evaluation and
weighting scheme corresponding to the new fault-feature set. We used an SVM, a classic small-sample
large-edge classifier, as the common classification model for the six different feature sets in the above
experiment data; structural parameters of the value were set to C = 2, σ = 1. SVM model classification
accuracy corresponding to each feature set is shown in Figure 8. It can be seen from Figure 8 that, for
experiment data 1, the new fault-feature matrix weighted by the score of each feature parameter in the
feature set was weighted by the original feature matrix and had higher classification accuracy than the
original feature matrix. The weighted-feature matrix based on the hybrid-model scores proposed in
this paper overcame the one-sidedness of the traditional single-model evaluation and achieved the
highest classification accuracy.
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Figure 8. Support vector machine (SVM) test-classification results of six different feature sets in
experiment data 1.

The classification results of six different fault-feature sets in experiment data 2 based on the
SVM classification model are shown in Table 5. With the help of the same classification model, the
new fault-feature set based on the multi-measurement hybrid-evaluation model achieved the highest
classification accuracy of 95.0% (cumulative number of misclassified samples was four). In contrast, the
four other weighted-feature sets based on the single-measurement evaluation model achieved 90.0%
(cumulative number of misclassified samples was eight), 87.5% (cumulative number of misclassified
samples was 10), 81.25% (cumulative number of misclassified samples was 15), and 87.5% (cumulative
number of misclassified samples was 10) classification accuracy, respectively; the unweighted-feature
set had the lowest classification accuracy of only 78.75% (cumulative number of misclassified samples
was 17), the multi-measurement hybrid-evaluation model had the advantages of quality features and
reduce interference of inferior features. Classification accuracy of the single-measurement evaluation
model was not as high as that of the multi-measurement hybrid-evaluation model. The total number
of sample misclassifications was not as low as that of the multi-measurement hybrid-evaluation
model. The experiment data 2 shows that the proposed method based on the multi-measurement
hybrid-evaluation model could achieve higher classification performance than the traditional correlation
based on distance, information, and Laplacian score.

Table 5. Comparison of test-classification results of six different fault feature sets in experiment data 2
based on SVM model.

Feature Sets

Cumulative
Number of

Misclassified
Samples

Normal
State

Inner Race
Failure

Outer Race
Failure Ball Failure

Classification
Accuracy (%)Misclassified

Sample
Number

Misclassified
Sample
Number

Misclassified
Sample
Number

Misclassified
Sample
Number

WWH
2 4 2 2 0 0 95.0

WP2 8 0 3 0 5 90.0
WD2 10 0 10 0 0 87.5
WI2 15 3 10 2 0 81.25
WL2 10 2 5 0 3 87.5
C2 17 2 5 3 7 78.75

To sum up, for the two sets of experiment data of rolling-bearing failure simulation, the new
fault-feature set based on multi-measurement hybrid evaluation achieved better performance than the
traditional weighted-feature set based on single measurement, and the original unweighted-feature
set higher classification accuracy, thus proving the advantage of feature-based classification based on
multi-measurement hybrid evaluation proposed in this paper.

5. Conclusions

In order to make up for the defect of the single-measurement model and improve the
accuracy of fault diagnosis, this paper proposed a rolling-bearing fault-diagnosis method based
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on multi-measurement hybrid-feature evaluation. In the feature-evaluation step, the category distance,
Pearson correlation coefficient, regularization-information gain, and Laplacian score were used and
combined with a feature-weight vector. In the fault-diagnosis step, the KPCA was used to calculate the
clustering effect, and SVM was used to calculate classification accuracy. This method was evaluated
with two different sets of rolling-bearing-fault experiment data. The experiment results showed that
the clustering effect of different fault categories was more obvious, and the classification accuracy
was improved.
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