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Abstract. A double hierarchy hesitant fuzzy linguistic term set (DHHFLT) is deemed as an effective 
and powerful linguistic expression which models complex linguistic decision information more 
accurately by using two different hierarchy linguistic term sets. The purpose of this paper is to 
propose a multi-attribute decision making method to tackle complex decision issues in which 
attribute values are represented as double hierarchy hesitant fuzzy linguistic numbers, and there 
are some extreme or unreasonable data in the attribute values. To do this, firstly, four double 
hierarchy hesitant fuzzy linguistic generalized power aggregation operators are introduced, 
including the double hierarchy hesitant fuzzy linguistic generalized power average (DHHFLGPA) 
operator, the double hierarchy hesitant fuzzy linguistic generalized power geometric (DHHFLGPG) 
operator, and their weighted forms. Thereafter, several favorable properties, as well as 
representative cases of the proposed operators, are investigated in detail. Moreover, by virtue of the 
proposed operators, a novel approach is developed for coping with multi-attribute decision making 
cases in the double hierarchy hesitant fuzzy linguistic context. Finally, an illustrated example is 
given to demonstrate the practical application of the presented approach, an availability verification 
is given to show its validity, and a comparative analysis is also conducted to highlight the 
advantages of the proposed approach. 

Keywords: Multi-attribute decision making; double hierarchy hesitant fuzzy linguistic terms set; 
generalized power average operator; double hierarchy hesitant fuzzy linguistic generalized power 
averaging operator; double hierarchy hesitant fuzzy linguistic generalized power geometric 
operator 

 

1. Introduction 

Multiple attribute decision making (MADM) occupies a significant position in modern decision 
science. It aims to find out the most satisfying alternative from the given alternatives in accordance 
with the assessments given by decision-makers (DMs) among different attributes [1–5]. In practical 
evaluating issues, with the rising complexity of the social environment and the subjectivity and 
ambiguity inherent in human thought, attribute values under different alternatives are uncertain or 
vague for the most part [6–8]. Therefore, it might be more accurate to depict DM’s evaluation 
information in qualitative form than quantitative form. For instance, when assessing a car’s design, 
qualitative descriptions like “good” and “perfect” rather than crisp numbers are used [9]. Thus, 
Zadeh [10] first proposed the concept of fuzzy linguistic variable, and since then various linguistic 
representation forms arose for the past few years, such as the linguistic models on account of type-2 
fuzzy sets [11], 2-tuple linguistic mode [12], hesitant fuzzy linguistic term set (HFLTS) [13], 
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probability linguistic term set [14], etc. Among these models, the concept of HFLTS was originally 
defined by Rodríguez et al. [13] by combining the hesitant fuzzy sets [15] and linguistic variable, 
which allows DMs to hesitate in several possible linguistic terms. Therefore, the application of HFLTS 
is more aligned with the cognitive and expression habits of DMs. The HFLTS has gained great success 
as it can be used to represent several linguistic terms or comparative linguistic expressions together 
with some context-free grammars [16,17]. Now and in the future, decision-making methodologies 
and algorithms with hesitant fuzzy linguistic models are a quite promising research line representing 
a high-quality breakthrough in this topic. Over recent years, HFLTS has been deeply probed by quite 
a few scholars from different perspectives [18–21].  

However, as Gou et al. mentioned in Ref. [14], in some complex decision-scenarios, HFLTSs may 
fail to express fully and comprehensively the redefined evaluation preferences of DMs. As an 

example, let let { }1 2 3 4 5 6 7, , , , , , { , , , , , , }S worst very poor poor medium fine very fine perfectς ς ς ς ς ς ς= = be a 

linguistic term set (LTS), then we can utilize 3 2{ , }ς ς− − , 2 1 0{ , , }ς ς ς− − and 3{ }ς to describe the linguistic 
expressions “worse than very poor”, “between very poor and medium” and “perfect”, respectively. 
Nevertheless, in many cases, we might resort to some more meticulous linguistic terms (LTs) to 
comprehensively depict our views just as “only a bit high”, “exactly right medium”, “much fine”, 
etc. Considering that there are no linguistic models suitable for expressing such intricate linguistic 
information, Gou et al. [14] have given the definition of double hierarchy linguistic term sets 
(DHLTS), which are made up of two hierarchy LTSs in which the internal hierarchy LTS is used to 
make a further description or elaborate explanation for every LT contained in the external hierarchy 
LTS. Thereafter, they presented the double hierarchy hesitant fuzzy linguistic (DHHFL) term sets 
(DHHFLTS) [14] via extending DHLTS to the hesitant fuzzy circumstance. DHHFLTS is pretty 
available in managing situations where DMs hesitate between several complex LTs when presenting 
their views on alternatives in the course of decision-making, and it has become a project of 
widespread concern to researchers. Lately, Gou et al. further presented a number of distance and 
similarity measures of DHHFL elements (DHHFLEs) [22] and developed a process of reaching a 
common agreement in large-scale group decision making (GDM) using DHHFL preference 
relationship [23]. Liu et al. [24] investigated a DHHFL mathematical programming means for multi-
attribute GDM problems. Krishankumar et al. [25] have given a novel decision framework in the 
context of DHHFLTS, etc. 

For the past few years, the methods to aggregate the assessment information provided by DMs 
have also aroused abundant researchers’ concerns in the area of decision science [26–28]. The 
aggregation operators occupy a vitally important situation in the progress of information infusion. 
The prominent strength of using aggregation operators to aggregate the evaluation information is 
that it can fully consider the evaluation data and obtain the ranking of alternatives expressly. Up to 
now, many scholars have systematically studied the information aggregation operators from various 
aspects. Harsanyi [29] introduced the weighted averaging (WA) operator. On that basis, Yager [30] 
presented an ordered weighted aggregation (OWA) operator. Then with the deepening and 
development of research, some considerable operators are proposed, such as Heronian mean (HM) 
[31] operator and Bonferroni mean (BM) [32] operator. Nonetheless, a majority of the existing 
aggregation operators fail to take the generality and extremity of the values giving by DMs into 
consideration. Therefore, Yager [33] put forward to the power average (PA) operator that took the 
support degree between any two inputs into consideration. The most attractive advantage of the PA 
is that it can weaken the unreasonable extreme evaluation values on results ranking. Furthermore, 
Zhou [34] defined the generalized PA (GPA) operator, which is the development of the PA operator 
in a generalized form. Since then, vast extensions of the GPA operator have been excavated for 
different situations. Liu et al. presented the intuitionistic linguistic power generalized WA (ILPGWA) 
operator [35] through extending the GPA operator to the intuitionistic linguistic set, 2-dimension 
uncertain linguistic GPA (2DULGPA) operator [36] as well as intuitionistic trapezoidal fuzzy power 
generalized weighted average operator [37]. Wu et al. [38] introduced 2-tuple linguistic GPA operator 
and interval 2-tuple linguistic GPA operator, etc. 
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Despite the fact that DHHFLTS is pretty useful in handling situations where DMs hesitate 
between several complex LTs when presenting their views in the progress of decision-making, the 
extant approaches with respect to the DHHFLTS cannot take the support degree between any two 
inputs into consideration and fails to handle the presence of extreme values. At the same time, the 
extensions of the GPA operator cannot deal with the assessment values expressed in DHHFLTS form. 
Therefore, motivated by the GPA operator, the focus of this paper is to stretch the GPA operator to 
the DHHFLT circumstance and present the DHHFLGPA operator and DHHFL generalized power 
geometric (DHHFLGPA) operator, which can make a combination of the strengths of the DHHFLTS 
and GPA operator. Then we apply them to solve MADM problems and present a novel MADM 
method. 

The following part of this paper can be arranged as follows: Section 2 gives a general retrospect 
of some corresponding concepts, such as the DHHFLTS, its operational laws and GPA operator. 
Section 3 proposes some generalized power operators with respect to DHHFLES, then several 
properties as well as particular cases are provided. In Section 4, we put forward a novel MADM 
approach on account of presented operators. Section 5 presents with an instance to manifest the 
superiority of the presented approach. This paper comes to a conclusion in Section 6.  

2. Preliminaries  

2.1. Double Hierarchy Hesitant Fuzzy Linguistic Term Set 

Definition 1. [14] Given the first hierarchy LTS (FHLTS) { }| , , 1, 0,1, ,tS tς ε ε= = − −   and the second 

hierarchy LTS (SHLTS) { }| , , 1, 0,1, ,κθ ϑ κ ι ι= = − −  , and these two layers are entirely independent of each 

other. Then the mathematical form of DHLTS  can be expressed as, 

{ }| , , 1,0,1, , ; , , 1, 0,1, , .tS t
κθ ϑς ε ε κ ι ι< >= = − − = − −   

 (1) 

t κϑ
ς < > is referred to double hierarchy linguistic term (DHLT), in which κϑ  indicates its corresponding 

second hierarchy LT as tς  is the first hierarchy LT. Furthermore, the SHLTS may be different under the 
different first hierarchy LT. 

For example, let 3t ε= = , the allocations of four different forms of the SHLTS are shown in Figure 1 [14]. 

 
Figure 1. The allocations of four different forms of SHLTS. 
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Remark 1: In Figure 1, when ε  takes the different values, there are four different situations of the 
corresponding second hierarchy LTS, if 0ε ≥ , which means that the valence of the first hierarchy LTS is active, 
thus the level of the element contained in the second hierarchy LTS should be arranged from low to high. By 
contrast, the level of the first hierarchy LTS is passive when 0ε ≤ , thus the valence of the element contained in 
the second hierarchy LTS should be given from high to low. In particular, since both  and  merely contain 
a one-sided domain, we simply apply { }| , , 1,0κθ ϑ κ ι= = − −  and { }| 0,1, ,κθ ϑ κ ι= =   to depict ες and 

ες − , respectively.   

Moreover, Gou et al. [14] applied Sθ  to hesitant fuzzy environment and introduced the DHHFL 
term set as shown below,  

Definition 2. Let { }| , 1,0,1, , ; , , 1,0,1, ,tS t
κθ ϑς ε ε κ ι ι< >= = − − = − −     be a DHLTS. Then the 

mathematical form of DHHFL term set (DHHFLTS) on X can be shown as, 

{ }, ( ) |S i S i iH x h x x X
θ θ
= < > ∈


 (2) 

In which ( )S ih x
θ  is a collection of several elements in Sθ , indicating all of the concern membership degrees 

of ix  to SH θ , denoted as 

( ) | ; , , 1,0,1, , ;
( ) ,

, , 1,0,1, , ; 1, 2, ,
r rr r
t i t

S i

x S t
h x

r #L
κ κ

θ

ϑ ϑ θς ς ε ε

κ ι ι
< > < > ∈ = − −  =  
= − − =  

 

  
 (3) 

with #L indicating the amount of DHLTs in ( )S ih x
θ , ( ) ( 1, 2, , )

r rt ix r #L
κϑ

ς < > =   in certain ( )S ih x
θ  

representing the elements in Sθ . For the sake of simplicity, we call ( )S ih x
θ  the DHHFL element (DHHFLE), 

and the set of all DHHFLEs is . 
Next, according to the discussion of monotonic function, Gou et al. [14] proposed two monotonic functions 

for making the interconversion between DHLTs and real numbers and extended it into a continuous 
representation. 

Definition 3. Let { }| , , 1, 0,1, , ; , , 1, 0,1, ,tS t
κθ ϑς ε ε κ ι ι< >= = − − = − −     be a DHLTS, 

{ }| ; , , 1, 0,1, , ; , , 1, 0,1, , ; 1, 2, ,
r rr r

S t th S t r #L
θ κ κϑ ϑ θς ς ε ε κ ι ι< > < >= ∈ = − − = − − =     ， { |rhα α=

}0 1; 1, 2, ,r r #Lα≤ ≤ =   be a DHHFLE and a hesitant fuzzy element (HFE), respectively, where #L is the 

amount of LTs in Sh θ . Then the suffix r r
t κϑ
ς < >  of the DHLT r r

t κϑ
ς < >  and the membership degree that conveys 

the identical significance with the DHLT r r
t κϑ
ς < >  can make mutual conversion to each other by the following 

functions γ  and 1γ − .  

: [ , ] [ , ] [0,1],
( )11 , 1 1.

2 2 2
1 ( )1( , )= , .

2 2 2
1 , .

2 2

l rr r
l r

r r r r
r r r r

r r
r r

tt if t

t tt if t

if t

γ ε ε ι ι
κ ε ικ ι ε α ε ε

ε ι ε ει
κ ι ε κ ε ιγ κ α ε

ε ι ε ει
κ κ α ε

ε ι ει

− × − →
+ ++ + − × + = = − + ≤ ≤ −


+ + − + + × + = = =




× = = = −


 (4) 

ες ες−

Φ⋅Ψ

rα
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( )

( )

( 1 )

1

1
0

1+

: [0,1] [ , ] [ , ]

, 1 ;

( ) , 1 1;

, 1.
r

S if

S if

S if

ι

ι

ι

ϑ

ϑ

ϑ

γ ε ε ι ι

ε

γ α

ε

ℑ− ℑ  

ℑ

ℑ− − ℑ  

−

ℑ < >  

−
< >

ℑ < >  

→ − × −

 ≤ ℑ <
= − ≤ ℑ <
 − ≤ ℑ < −

，

 (5) 

In which 2 rεα εℑ = − . In that way, the conversion functions a nd  between the DHHFLE  Sh θ  

and the HFE hα  are given as follows, respectively, 

[ ] [ ]{ }
( ){ }

: , | ; , ; , ; =1,2, ,

| ,

r rr r
S t t

r r r r

H H h S t r #L

t h

θ κ κϑ ϑ θ

α

ς ς ε ε κ ι ι

α α γ κ

< > < >
 Φ⋅Ψ →Ξ = ∈ = − = − 
 

= = =


 (6) 

( ) { }( )
( ){ }

1 1 1

1

: , | [0,1]; 1, 2, ,

| .
rr r

r r

t r r S

H H h H r #L

t hκκ θ

α

ϑ

α α

ς ϑ γ α

− − −

−
< >

Ξ →Φ⋅Ψ = ∈ =

= < >= =


 (7) 

Definition 4. Let { }| , , 1,0,1, , ; , , 1, 0,1, ,tS t
κθ ϑς ε ε κ ι ι< >= = − − = − −   

 be a DHLTS, 

{ }| ; [ , ]; [ , ]; 1, 2, ,
r rr r

S t th S t r #L
θ κ κϑ ϑ θς ς ε ε κ ι ι< > < >= ∈ = − = − = 

, 
{

1

1 1| ;
rr rr

S tth S
θ κκ ϑ θϑς ς κ< >< >
= ∈ =

}[ , ]; 1, 2, ,r #Lι ι− =  , 
{

2

2 2| ; [ , ]; [ , ]; 1, 2
r rr r

S tth S t r
θ κκ ϑ θϑς ς ε ε κ ι ι< >< >
= ∈ = − = − =

 be three 
DHHFLEs, λ  be a nonnegative number. Then  

1 2

1 21 2

1
1 2 1 2

( ), ( )
(1) { }

S S

S S
H h H h

h h H
θ θ

θ θρ ρ
ρ ρ ρ ρ−

∈ ∈

 
⊕ = + −  

 


 , 

1 2

1 21 2

1
1 2

( ), ( )
(2) { }

S S

S S
H h H h

h h H
θ θ

θ θρ ρ
ρ ρ−

∈ ∈

 
⊗ =   

 


 , 

{ }1

( )
(3) 1 (1 )

S

S
H h

h H
θ

θ

λ

ρ
λ ρ−

∈

 
= − −  

 
 , 

{ }1

( )
(4)

S

S
H h

h H
θ

θ

λ λ

ρ
ρ−

∈

 
=   

 
 , 

( ) { }1

( )
(5) 1

S

c

S
H h

h H
θ

θρ
ρ−

∈

 
= −  

 
 . 

Example 1. Given a DHLTS { }| 3, , 1,0,1, ,3; 3, , 1,0,1, ,3tS t
κθ ϑς κ< >= = − − = − −    . Assume there are 

two DHHFLEs { }1 2 11 2,Sh θ ϑ ϑς ς− < > < >=  and { }2 1 3 20 0 1, ,Sh θ ϑ ϑ ϑς ς ς< > < > < >= , as well as a real number , we 

have, 

1 2

1 21 2

1
1 2 1 2

( ), ( )

1

(1) { }

4 5 4 5 4 2 4 2 4 7 4 7 8 5 8 5 8 2 8 2 8 7 8 7, , , , ,
9 9 9 9 9 3 9 3 9 9 9 9 9 9 9 9 9 3 9 3 9 9 9 9

S S

S S
H h H h

h h H

H

θ θ

θ θρ ρ
ρ ρ ρ ρ−

∈ ∈

−

 
⊕ = + −  

 
 = + − × + − × + − × + − × + − × + − × 
 




{ }1.53 2.67 0.975 2.1 2.34 2.551 , 2 , , ,,ϑ ϑ ϑ ϑ ϑ ϑς ς< > < >= ; 

H 1H −

}, ,#L

λ

1/ 3λ =
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{ }

1 2

1 21 2

1.56 0.66 2.79 0.12 1.68 0.45

1
1 2

( ), ( )

1

1 , 0 , , 1

(2) { }

4 5 4 2 4 7 8 5 8 2 8 7, , , , ,
9 9 9 3 9 9 9 9 9 3 9 9

, ,

S S

S S
H h H h

h h H

H

θ θ

θ θρ ρ

ϑ ϑ ϑ ϑ ϑ ϑ

ρ ρ

ς ς ς
− − − −

−

∈ ∈

−

− < > < > < >

 
⊗ =   

 
 = × × × × × × 
 

=




 

{ }

{ }

1

1

2.976 0.36

1

( )

1/3 1/3
1

1 0

(3) 1 (1 )

4 81 1 ,1 1
9 9

,

S

S
H h

h H

H

θ

θ

λ

ρ

ϑ ϑ

λ ρ

ς ς
−

−

∈

−

− < > < >

 
= − −  

 
     = − − − −    

     

=



 

{ } { }1 1.73 2.31

1/3 1/3
1 1

1 2
( )

4 8(4) , ,
9 9

S

S
H h

h H H
θ

θ

λ λ
ϑ ϑ

ρ
ρ ς ς− −

< > < >
∈

       = = =              
  

( ) { } { }1 0.99 0.99

1 1
0 2

( )

4 8(5) 1 1 ,1 , .
9 9

S

c

S
H h

h H H
θ

θ

ϑ ϑ
ρ

ρ ς ς
−

− −
< > − < >

∈

   = − = − − =       
  

Definition 5. Let { }| , , 1,0,1, , ; , , 1, 0,1, ,tS t
κθ ϑς ε ε κ ι ι< >= = − − = − −     be a DHLTS, 

{ }| ; , , 1,0,1, , ; , , 1,0,1, , ; 1,2, ,
r rr r

S t th S t r #L
θ κ κϑ ϑ θς ς ε ε κ ι ι< > < >= ∈ = − − = − − =      be a DHHFLE. Then 

the mathematical form of the expected value ( )SMe h
θ


 and the variance ( )SDe h

θ


 can be given as follows,  

( )
1

1( )
r r

#L

S t
r

Me h H
#Lθ κϑ

ς < >
=

= 


 (8) 

( )2

1

1( ) ( ) ( )
r r

#L

S t S
r

De h H Me h
#Lθ κ θϑς < >

=

= −
 

 (9) 

According to Equations (8) and (9), Gou et al. [14] further introduced a pairwise comparison approach among 
DHHFLEs, which is given as below,  

Definition 6. Let 1S
h

θ  and 2S
h

θ  be two DHHFLEs, we have 

(1) Suppose 1 2
( ) ( ),S SMe h Me h

θ θ
>

 
 then 1S

h
θ  is superior to 2S

h
θ . 

(2) Suppose 1 2
( ) ( ),S SMe h Me h

θ θ
=

 
 then 

Suppose 1 2
( ) ( ),S SDe h De h

θ θ
<

 
 then 1S

h
θ  is superior to 2S

h
θ ; 

Suppose 1 2
( ) ( ),S SDe h De h

θ θ
=

 
 then 1S

h
θ  is indifference with 2S

h
θ . 

Definition 7. Let { }| [ , ]; [ , ]tS t
κθ ϑς ε ε κ ι ι< >= = − = −  be a DHLTS, {

1

1 |
r r

S th
θ κϑ

ς
< >

=

}1
1; [ , ]; [ , ]; 1,2, ,

r r
t S t r #L

κϑ θς ε ε κ ι ι< > ∈ = − = − =  , {2

2 2 ; [ , ]; [ , ] ;
r rr r

S t th S t
θ κ κϑ ϑ θς ς ε ε κ ι ι< > < >= ∈ = − = −  

}21,2, ,r #L=   be two DHHFLEs, where  and  are the amount of terms in 1S
h

θ  and 2S
h

θ , severally 

and . Then the distance between 1S
h

θ  and 2S
h

θ  can be obtained by the given expression,  

1 2

1

2

1
( )

( )

1( , ) | |,

r tr r

r tr r

#L

S S r r
r

H

H

d h h
#Lθ θ

ϑκ

ϑκ

λ ς

γ ς

λ γ

< >

< >

=
=

=

= −
 (10) 

where 
1
r rt κϑ

ς < >  and 
2
r rt κϑ

ς < >  indicate the r th−  optimal values in 1S
h

θ  and 1S
h

θ . 

2Sh θ

1#L 2#L

1 2#L #L #L= =
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Remark 2. It is worth noting that may not be equal to , that is, they may hold different numbers of 
elements. Therefore, for the sake of calculating the distance between two DHHFLEs, Gou et al. [14] proposed a 
method to expand the shorter DHHFLE by adding double hierarchy LTS to it until , Let 

{ }| [ , ]; [ , ]tS t
κθ ϑς ε ε κ ι ι< >= = − = −  be a DHLTS, { | ;

r rr r
S t th S
θ κ κϑ ϑ θς ς< > < >= ∈ , , 1, 0,t ε= − −  

}1, , ; , , 1,0,1, , ; 1,2, ,r #Lε κ ι ι= − − =     be a DHHFLE and  be the optimized parameter, 

1 1t κϑ
ς < >  and #L #L

t κϑ
ς < >  are the minimum and maximum DHLT of , respectively. Then we can expand the 

shorter DHHFLE with the following DHLT,  

1 (1 ) 1
(1 ) #L #L

t t tκ κ κϑ ϑς ς
< −ϒ +ϒ× >< > −ϒ +ϒ×=

 (11) 

In this paper, we let , then the DHLT we can add to the shorter DHHFLE is 1 1
22

#L #L
t t tκ κ κϑ ϑς ς

< + >< > +=
. 

2.2. The Generalized Power Average (GPA) Operator 

Definition 8. A GPA operator in n-dimensional can be shown as a mapping GPA, nR R→ , whose definition 
is given with such parameter ( , )η ∈ −∞ ∞  and 0η ≠ , in accordance with the following function,  

1

1
1 2

†
† 1

(1 ( ))
( , , , )

(1 ( ))

n

c c
c

n n

T
GPA

T

ρ
ρζ ζ

ζ ζ ζ
ζ

=

=

 
+ 

 =
 + 
 




  (12) 

where 
1

( ) ( , )
n

c c z
z
z c

T supζ ζ ζ
=
≠

= , ( , )c zsup ζ ζ  denotes the support degree of cζ  to zζ , which possesses the 

following three characteristics,  

(1)0 ( , ) 1,c zsup ζ ζ≤ ≤  

(2) ( , ) ( , ),c z z csup supζ ζ ζ ζ=  
(3) ( , ) ( , ), ( , ) ( , ),c z p q c z p qsup sup if d dζ ζ ζ ζ ζ ζ ζ ζ> <  with ( , )c zd ζ ζ  being the distance 
between cζ  to zζ . 

3. Double hierarchy hesitant fuzzy linguistic generalized power aggregation operators 

In this chapter, we introduce the conception of DHHFLGPA and DHHFLGPG operators as well 
as their weighted forms through extending the GPA operator to the DHHFL environment. 

3.1. DHHFLGPA Operator and its Weight Form 

Definition 9. Given a collection of DHHFLEs ( )1, 2, ,
c

hs c nθ =  , the definition of DHHFLGPA operator 

with such parameter ( , )η ∈ −∞ ∞  and 0η ≠  is given as follows,  

( )1 2

1

1
( , , , )

n i

n

i
i

DHHFLGPA hs hs hs hs
ηη

θ θ θ θξ
=

 = ⊗ 
 



  (13) 

where, 
†

1,

† 1

1 ( )
, ( ) ( , )

(1 ( ))

c

c c z

n

c n
z
z c

T hs
T hs Sup hs hs

T hs

θ
θ θ θ

θ

ξ
=
≠

=

+
= =

+


 , with ( , )
c z

Sup hs hsθ θ  being the support level of 

c
hsθ  from z

hsθ , which satisfies three characteristics,  

(1) ( , ) [0,1];
c z

Sup hs hsθ θ ∈   

1#L 2#L

1 2=#L #L

(0 1)ϒ ≤ ϒ ≤

Sh θ

1/ 2ϒ =
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(2) ( , ) ( , );
c z z c

Sup hs hs Sup hs hsθ θ θ θ=  

(3) ( , ) ( , )
c z c z

Sup hs hs Sup hs hsθ θ θ θ≥ , if ( , ) ( , )
c z c z

d hs hs d hs hsθ θ θ θ≤ , where ( , )
c z

d hs hsθ θ  is the distance 

between c
hsθ  and z

hsθ . 

On the basis of the algorithm of DHHFLEs, it is easy to get Theorem 1. 

Theorem 1. Suppose ( )1, 2, ,
c

hs c nθ =   is a group of DHHFLEs, the aggregated value acquired by Equation 
(13) remains a DHHFLE, and 

( )1 2

1

1
( , , , )

n i

n

i
i

DHHFLGPA hs hs hs hs
ηη

θ θ θ θξ
=

 = ⊗ 
 





( )
1

1

1( )
1 1 i

i i

n

i
iH hs

H
θ

ηξη−

=∂ ∈

     = − − ∂       
∏  

(14) 

Proof of Theorem 1. On account of the operational laws of DHHFLEs, we can derive, 

( ) { }1

( )
i

S i

S
H h

h H
θ

θ

η
η−

∂∈

 
 = ∂
 
 
 , ( ) { }1

( )

1 (1 ) i

i
S i

i S
H h

h H
θ

θ

η
ξηξ −

∂∈

 
 ⊗ = − − ∂
 
 


 ;and 

( ) 1

1 1( )
1 (1 ) i

i
i S i

nn

i S
i iH h

h H
θ

θ

η
ξηξ −

= =∂ ∈

   ⊗ = − − ∂    
 ∏


 . 

Hence, ( )
11

1

1 1( )
1 (1 ) i

i
i S i

nn

i S
i iH h

h H
θ

θ

ηηη
ξηξ −

= =∂ ∈

       ⊗ = − − ∂           
 ∏


 □ 

It is apparent that the DHHFLGPA operator is commutativity. 

Theorem 2 (Commutativity). Given a set of DHHFLEs { }
1 2
, , ,

nS S Sh h h
θ θ θ

 , presume that { }
1 2
, , ,

nS S Sh h h
θ θ θ

  

is a set obtained through swapping the position of elements contained in { }
1 2
, , ,

nS S Sh h h
θ θ θ

 , then, 

1 2 1 2
( , , , ) ( , , , )

n n
DHHFLGPA hs hs hs DHHFLGPA hs hs hsθ θ θ θ θ θ=     . 

Proof of Theorem 2. Because { }
1 2
, , ,

nS S Sh h h
θ θ θ
    is a substitution of { }

1 2
, , ,

nS S Sh h h
θ θ θ

 , on account of 

Theorem 1, we can obtain, 

( )1 2

1

1
( , , , )

n i

n

i
i

DHHFLGPA hs hs hs hs
ηη

θ θ θ θξ
=

 = ⊗ 
 



 ( )

1

1
i

n

i
i

hs
ηη

θξ
=

 = ⊗ 
 


 

1 2
( , , , )

n
DHHFLGPA hs hs hsθ θ θ=    □ 

Next, the following are some special cases of DHHFLGPA when η  takes different values. 

Case 1. If 1η = , the DHHFLGPA operator degenerates into the DHHFL power arithmetic operator 
(DHHFLPA) as follows,  

1 2
1

( , , , )
n i

n

i
i

DHHFLGPA hs hs hs hsθ θ θ θξ
=

= ⊗



1 2

( , , , )
n

DHHFLPA hs hs hsθ θ θ=  . 

Furthermore, let all the support degrees are be equal, and ( , )
j m

Sup hs hs eθ θ = , for all j m≠ , then the 
DHHFLGPA further reduces to DHHFL arithmetic mean (DHHFLAM) as follows,  

1 2
1

( , , , )
n i

n

i
i

DHHFLGPA hs hs hs hsθ θ θ θξ
=

= ⊗



1

1
i

n

i
hs

n θ
=

=  1 2
( , , , )

n
DHHFLAM hs hs hsθ θ θ=  . 
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Case 2. If 2η = , the following conclusion can be given through Theorem 1.  

( )1 2

1
22

1
( , , , )

n i

n

i
i

DHHFLGPA hs hs hs hsθ θ θ θξ
=

 = ⊗ 
 



 ( )

1
2

1 2

1( )
1 1 i

i i

n

i
iH hs

H
θ

ξ−

=∂ ∈

     = − − ∂       
∏

1 2
( , , , )

n
DHHFLPQ hs hs hsθ θ θ=  . 

It is obvious that the DHHFLGPA operator reduces to DHHFL power quadratic (DHHFLPQ) 
operator. 

Next, we take the weight vector of input data into account and present the DHHFL weighted 
generalized power aggregation (DHHFLWGPA) operator.  

Definition 10. ( )1, 2, ,
c

hs c nθ =   is a group of DHHFLEs, 1 2( , , , )TnW ϖ ϖ ϖ=  is the corresponding weight 

vector of j
hsθ , jϖ denotes the significance level of j

hsθ , which satisfies 1 1n
j jϖ= = , [0,1]jϖ ∈ . Thus the 

DHHFL weighted generalized power aggregation (DHHFLWGPA) operator is shown as below,  

( )1 2

1

1
( , , , )

n i

n

i
i

DHHFLWGPA hs hs hs hs
ηη

θ θ θ θξ
=

 = ⊗ 
 



  (15) 

with the parameter ( , )η ∈ −∞ ∞ , 0η ≠ . And 
( )

†

1,
†

† 1

1 ( )
, ( ) ( , )

(1 ( ))

j

j j

nj

j n

j

T hs
T hs Sup hs hs

T hs
χ

θ
θ χ θ θ

χ
χθ

ϖ
ξ ϖ

ϖ =
≠

=

+
= =

+



 

Theorem 3. Given a group of DHHFLEs ( )1, 2, ,
c

hs c nθ =  , the aggregated value acquired by Equation (15) 
remains a DHHFLE, then 

( ) ( )1 2

1

1

1

1 ( )
( , , , )

(1 ( ))

i

n i

t

n i

n
i

t
t

T hs
DHHFLWGPA hs hs hs hs

T hs

η

ηθ
θ θ θ θ

θ

ϖ

ϖ=

=

 
 +
 = ⊗
 + 
 







( )
( )1 ( )

(1 ( ))
1

1

1

1( )
1 1

T hsi i
n

T hst tt

i i

n

i
iH hs

H

ϖ θ

ϖ θ

θ

η

η

+

+
=

−

=∂ ∈

         = − − ∂           

∏  

(16) 

where 
1,

( ) ( , )
c c z

n

z
z
z c

T hs Sup hs hsθ θ θϖ
=
≠

= . 

The proof is omitted here for it is analogous to that of Theorem 1. 
Several representative cases of DHHFLWGPA can be given as below when η  takes different 

values. 

Case 1. If 1η = , the DHHFLWGPA operator degenerates into DHHFL weighted power arithmetic operator 
(DHHFLGPA) as follows,  

1 2
1

( , , , )
n i

n

i
i

DHHFLGPA hs hs hs hsθ θ θ θξ
=

= ⊗



1 2

( , , , )
n

DHHFLWPA hs hs hsθ θ θ=  . 

Furthermore, let all the support degrees are equal and 
( , )

j m
Sup hs hs eθ θ =

, for all j m≠ , then the 
DHHFLWGPA further reduce to the DHHFL arithmetic (DHHFLWA) operator as below,  

1 2
1

( , , , )
n i

n

i
i

DHHFLWGPA hs hs hs hsθ θ θ θξ
=

= ⊗



1

i

n

i
i

hsθϖ
=

= ⊗


1 2
( , , , ).

n
DHHFLWA hs hs hsθ θ θ=   
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Case 2. If 2η = , on account of Equation (14), we can obtain 

( )1 2

1
22

1
( , , , )

n i

n

i
i

DHHFLWGPA hs hs hs hsθ θ θ θξ
=

 = ⊗ 
 



 ( )

1
2

1 2

1( )
1 1 i

i i

n

i
iH hs

H
θ

ξ−

=∂ ∈

     = − − ∂       
∏

1 2
( , , , )

n
DHHFLWPQ hs hs hsθ θ θ=  . 

Then the DHHFLWGPA operator reduces to the DHHFL weighted power quadratic (DHHFLWPQ) 
operator. 

3.2. DHHFLGPG Operator and its Weight Form 

Definition 11. Given a collection of DHHFLEs ( )1, 2, ,
c

hs c nθ =  , the definition of the DHHFLGPG 

operator with such parameter ( , )η ∈ −∞ ∞ , 0η ≠  is given as follows,  

( )1 2
1

1( , , , )
j

n j

n

j
DHHFLGPG hs hs hs hs

ξ

θ θ θ θη
η =

 
= ⊗ 

 
∏


  (17) 

Where,  

†

1,

† 1

1 ( )
, ( ) ( , )

(1 ( ))

j

j j

n

j n

j

T hs
T hs Sup hs hs

T hs
χ

θ
θ θ θ

χ
χθ

ξ
=
≠

=

+
= =

+



 

( , )
j m

Sup hs hsθ θ  denotes the support for j
hsθ  from m

hsθ , which satisfies three characteristics mentioned in 
Definition 9.  

Theorem 4. Suppose ( )1, 2, ,
c

hs c nθ =   is a group of DHHFLEs, the aggregated value acquired from 
Equation (17) remains as DHHFLE, and 

( )1 2
1

1( , , , ) i

n i

n

i
DHHFLGPG hs hs hs hs

ξ

θ θ θ θη
η =

 = ⊗ 
 
∏




( )( )
1

1

1( )
1 1 1 1

i

i i

n

i
iH hs

H
θ

ηξη−

=∂ ∈

     = − − − − ∂       
∏  

(18) 

Proof of Theorem 4. On account of those algorithms of DHHFLEs, we have, 

( ) ( )( ){ }1

( )
1 1

ii

i

i i

i
H hs

hs H
θ

ξξ η
θη −

∂ ∈

 
⊗ = − − ∂  

 


 ; 

And, 

( ) ( )( )1

1 1( )
1 1

ii

i

i i

n n

i
i iH s

hs H
θ

ξξ η
θη −

= =∂ ∈

  ⊗ = − − ∂     
∏ ∏




 ; 

Then we can obtain, 

( ) ( )( )
1

1

1 1( )

1 1 1 1 1
ii

i

i i

n n

i
i iH s

hs H
θ

ηξξ η
θη

η
−

= =∂ ∈

       ⊗ = − − − − ∂           
∏ ∏




 . □ 

It is apparent that the DHHFLGPG operator is commutative. 

Theorem 5 (Commutativity). Given a set of DHHFLEs { }1 2
, , ,

n
hs hs hsθ θ θ , presume that { }

1 2
, , ,

nS S Sh h h
θ θ θ
    

is a set obtained through swapping the position of elements contains in{ }1 2
, , ,

n
hs hs hsθ θ θ
   , then, 

1 2 1 2
( , , , ) ( , , , )

n n
DHHFLGPG hs hs hs DHHFLGPG hs hs hsθ θ θ θ θ θ=     . 
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Proof of Theorem 5. Because { }
1 2
, , ,

nS S Sh h h
θ θ θ
   is a substitution of { }

1 2
, , ,

nS S Sh h h
θ θ θ

 , on account of 

Theorem 5, we can obtain, 

( )1 2
1

1( , , , ) i

n i

n

i

DHHFLGPG hs hs hs hs
ξ

θ θ θ θη
η =

 = ⊗ 
 
∏


 ( )

1

1 i

i

n

i

hs
ξ

θη
η =

 = ⊗ 
 
∏

 

1 2
( , , , )

n
DHHFLGPG hs hs hsθ θ θ=    □ 

Definition 12. Suppose ( )1, 2, ,
c

hs c nθ =   is an assembly of DHHFLEs, its homologous weight vector of j
hsθ

is 1 2W ( , , , )Tnϖ ϖ ϖ=  , jϖ  represents the significance level j
hsθ satisfying [0,1]jϖ ∈  and 1 1n

j jϖ= = . 
Thus the DHHFL weighted generalized power geometric (DHHFLWGPG) operator is given as below,  

( )1 2
1

1( , , , ) i

n i

n

i

DHHFLWGPG hs hs hs hs
ξ

θ θ θ θη
η =

 = ⊗ 
 
∏


  (19) 

where, the parameter ( , ), 0η η∈ −∞ ∞ ≠ . And 
( )

†

1,
†

† 1

1 ( )
, ( ) ( , )

(1 ( ))

c

c c

nc
c n

c

T hs
T hs Sup hs hs

T hs
χ

θ
θ χ θ θ

χ
χθ

ϖ
ξ ϖ

ϖ =
≠

=

+
= =

+



 

Theorem 6. Suppose ( )1, 2, ,
c

hs c nθ =   is an assembly of DHHFLEs, then the aggregated value acquired from 
Equation (19) remains a DHHFLE, then 

( )1 2
1

1( , , , ) i

n i

n

i

DHHFLWGPG hs hs hs hs
ξ

θ θ θ θη
η =

 = ⊗ 
 
∏




( )( )
1

1

1( )
1 1 1 1

i

i i

n

i
iH hs

H
θ

ηξη−

=∂ ∈

     = − − − − ∂       
∏  

(20) 

where 
( )
† †

† 1

1 ( )

(1 ( )) 1,
, ( ) ( , )c c

n c j

nT hs
c

T hs
c

T hs Sup hs hsθ

χ
θ

ϖ
θ χ θ θ

ϖ χ
χ

ξ ϖ
=

+

+ =
≠

= =


 . 

The proof process is analogous to that of Theorem 4, hence we leave it out here. 

4. The MADM Method based on the Proposed Operator 

Through this chapter, a novel approach for dealing with actual MADM issue on account of the 
given operators will be presented as below.   

Assume a MADM issue with DHHFLEs, Let { }1 2, , , mχδ χδ χδ χδ=   be a given set of actions, 
{ }1 2, , , nP P P P=   indicate a set of attributes, { }1 2, , , nW ϖ ϖ ϖ=   be the significance level of the 

attribute ( 1,2, , )jP j n=  , [0,1]jϖ ∈ , 1
1n

jj
ϖ

=
= . The DHHFL evaluation information matrix is 

provided as ijS m n
H hs

θ θ ×
 =  


 with ij
hsθ  being a DHHFLE, which is made up of all of the values taken 

into account of project iχδ  among the index jP . 
In what follows, the DHHFLGPA and DHHFLWGPA operator would be applied to handle this 

MADM problems, then the detailed procedures are presented as below,  

Step 1. Normalize the decision matrix. 
For consistency, cost type attributes ought to be switched into benefit type attributes of 

ijS m n
H hs

θ θ ×
 =  


 to bring an adjusted DHHFL evaluation information matrix ijS m n
H hs

θ θ ×
 =    through 

the following approach, 
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( )
, for benefit type attribute 

= .
, for cost type attribute

ij

ij

ij

j

c

j

hs P
hs

hs P

θ

θ
θ






 (21) 

where ( )ij
c

hsθ  indicates the complementary set of ij
hsθ . 

Step 2. Obtain the support degrees. 

( ) ( ), 1 , ,
ij ig ij ig

Sup hs hs d hs hsθ θ θ θ= −  

which meets all standards in Definition 8. ( , )
ij zj

d hs hsθ θ is the distance between  and , 
which can be obtained through the function shown in Definition 7. 

Step 3. Obtain 
( )

ij
T hsθ  and the significance coefficient ijξ  or ijξ . 

†

1,

† 1

1 ( )
, ( ) ( , )

(1 ( ))

c

c c

n

c n

c

T hs
T hs Sup hs hs

T hs
χ

θ
θ θ θ

χ
χθ

ξ
=
≠

=

+
= =

+


 , 

†

1,
†

† 1

(1 ( ))
, ( ) ( , )

(1 ( ))

c

c c

n
c

c n

c

T hs
T hs Sup hs hs

T hs
χ

θ
θ θ θ

χ
χθ

ϖ
ξ

ϖ =
≠

=

+
= =

+


 . 

Step 4. Employ the DHHFLGPA operator (Equation (13)), 

( ) ( )
1 2

11

1

1 1( )
( , , , ) 1 1 i

n i

i i

nn

i i
i iH hs

DHHFLGPA hs hs hs hs H
θ

ηηη ξη
θ θ θ θξ −

= =∂ ∈

       = ⊗ = − − ∂           
 ∏


   

or the DHHFLWGPA operator (Equation (15)), 

( ) ( )
1 2

11

1

1 1( )
( , , , ) 1 1 i

n i

i i

nn

i i
i iH hs

DHHFLWGPA hs hs hs hs H
θ

ηηη ξη
θ θ θ θξ −

= =∂ ∈

       = ⊗ = − − ∂           
 ∏


   

to aggregate the element ij
hsθ  in evaluation information matrix and acquire the comprehensive 

evaluation value i
hsθ  of the action iχδ . 

Step 5. Calculate such expected values ( )
i

Me hsθ


 and variance ( )
i

De hsθ


 of a certain DHHFLE i
hsθ . 

Step 6. Rank alternatives through values ( )
i

Me hsθ


 and ( )
i

Me hsθ


 in descending order.  

5. Numerical Example 

In order to improve office efficiency, a university finance department wants to choose a new 

network accounting software. After preliminary filtration, four alternatives were obtained, 1χδ , 

Schindler Software, 2χδ , UFSOFT, 3χδ , QUEENDEE, 4χδ , Inspire software. The DM take the 

following four criteria into consideration, 1C , The costs of the software, which is a cost type attribute, 

obviously. 2C , The fluency of the software, 3C , Reliability, 4C , Functional completeness. The given 

significance levels of these evaluation indexes is ( )0.2,0.3,0.1,0.4W = . The DM evaluates the given 
actions through the form of DHHFL among the above four attributes, where the first hierarchy LTS 

is { }1 2 3 4 5 6 7, , , , , ,S ς ς ς ς ς ς ς= { }, , , , , ,worst very poor poor medium fine very fine perfect=  and the 
corresponding second hierarchy LTS are shown in Figure 1. Then the evaluation matrix 

ijS m n
H hs

θ θ ×
 =  


 is shown as,  

1 1 2 0 1 2 3

1 0 3 2 1 2 -1

1 -1 2 3 2 0 2

1 0 1 3

1 0 0 2 2 1 1

-1 1 1 2 2 2 3

0 1 1 1 1 2 2

2 2 2 1

{ , } { } { , } { , }

{ , } { , } { , } { }

{ , } { , } { } { , }

{ } { , } {

SH θ

ϑ ϑ ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ

ς ς ς ς ς ς ς
ς ς ς ς ς ς ς
ς ς ς ς ς ς ς

ς ς ς ς

−

−

−

− < > < > < > < > < > < > < >

< > < > < > < > < > < > < >

< > < > < > < > < > < > < >

< > < > < > <

=


2 -1 02 2 2, } { , }ϑ ϑ ϑς ς ς> < > < > < >

 
 
 
 
 
 
 

. 

ij
hsθ zj

hsθ
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5.1. Decision Steps 

In the following, we utilize our above-presented approach to make a comparison of the alternatives 
and choose the optimum scheme. 

Step 1. Normalize the evaluation matrix and then we have, 

-1 1 2 0 1 2 3

-3 1 3 2 1 2 -1

-2 -1 2 3 2 0 2

-2 0 1 3

0 1 0 2 2 1 1

0 1 1 2 2 2 3

0 0 1 1 1 2 2

-1 2 2 1

{ , } { } { , } { , }
{ , } { , } { , } { }
{ , } { , } { } { , }

{ } { , } {

SH θ

ϑ ϑ ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ

ς ς ς ς ς ς ς
ς ς ς ς ς ς ς
ς ς ς ς ς ς ς

ς ς ς ς

< > < > < > < > < > < > < >

< > < > < > < > < > < > < >

< > < > < > < > < > < > < >

< > < > < > <

=


2 -1 02 2 2, } { , }ϑ ϑ ϑς ς ς> < > < > < >

 
 
 
 
 
 
 

 

Step 2. Calculate the support degrees, shown in Tables 1–4, we can obtain,  

Table 1. Support degree of 1i
hsθ  form izhsθ . 

1
( , )

i iz
Sup hs hsθ θ  2z =  3z =  4z =  

1χδ  0.2583 0.0722 0.3111 
2χδ  0.1917 0.0611 0.2333 
3χδ  0.1833 0.0639 0.2111 
4χδ  0.1083 0.0333 0.1667 

Table 2. Support degree of 3i
hsθ  form izhsθ . 

2
( , )

i iz
Sup hs hsθ θ  1z =  3z =  4z =  

1χδ  0.1722 0.0750 0.3222 

2χδ  0.1278 0.0972 0.3778 

3χδ  0.1222 0.0972 0.3667 

4χδ  0.0722 0.0972 0.3778 

Table 3. Support degree of 3i
hsθ  form izhsθ . 

3
( , )

i iz
Sup hs hsθ θ  1z =  2z =  4z =  

1χδ  0.1444 0.2250 0.3778 

2χδ  0.1222 0.2917 0.3889 

3χδ  0.1278 0.2917 0.3556 

4χδ  0.0667 0.2917 0.3667 

Table 4. Support degree of 4i
hsθ  form izhsθ . 

4
( , )

i iz
Sup hs hsθ θ  1z =  2z =  3z =  

1χδ  0.1556 0.2417 0.0944 
2χδ  0.1167 0.2833 0.0972 
3χδ  0.1056 0.2750 0.0889 
4χδ  0.0833 0.2833 0.0917 

Step 3. On account of the support degrees given above, obtain the weighted support ( )
ij

T hsθ  of 

DHHFLE j
hsθ by the rest of DHHFLEs ( 1,2, , ; )

iz
hs z n z jθ = ≠ . The matrix 

4 4
( )

ij
T hsθ ×
 
   we obtained 

are shown as below, 
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0.6417 0.5694 0.7472 0.4917
0.4861 0.6028 0.8028 0.4972
0.4583 0.5861 0.7750 0.4694
0.3083 0.5472 0.7250 0.4583

 
 
 Τ =
 
 
 

 

We can further figure out the following power weight matrix 4 4
= ijξ ×
 Γ   ,  

0.8362 1.1992 0.4449 1.5196
0.7635 1.2351 0.4631 1.5384
0.7612 1.2418 0.4632 1.5339
0.7064 1.2531 0.4657 1.5748

 
 
 Γ =
 
 
 

. 

Step 4. Utilize the DHHFLWGPA operator (Equation (15)) with =2η , and the result is as follows,  
{ }
{ }
{ }

0.9652, 0.9766,0.9707, 0.9802,0.9776, 0.9849, 0.9811, 0.9872
0.9983 0.9988 0.9996 0.9997 0.9989 0.9992, 0.9997,0.9998
0.9852, 0.9970, 0.9893,0.9978 0.9858 0.9971 0.9897 0.9979
0.9853, 0.9902, 0.9909,0.

, , , , ,
, , , ,

9939, 0.990

Ζ =

{ }9, 0.9939, 0.9943, 0.9962

 
 
 
 
 
 
 

 

Step 5. Calculate the expected values of i
hsθ . 

( ) ( ) ( ) ( )1 2 3 4
0.97794; 0.99925; 0.99248; 0.99199.Me hs Me hs Me hs Me hsθ θ θ θ= = = =

   
 

Step 6. Then rank the alternatives by values ( )
i

Me hsθ


 in descending order,  

2 3 4 1χδ χδ χδ χδ    
As a result, 2χδ  is the most available alternative. 

5.2. Sensitivity Analysis 

Furthermore, the variation of η  may have distinct effect on the ranking, and we can possibly 
make a discussion about the sensitivity of the ultimate choice to parameter η . The aggregation results 
under different parameter  are presented in Table 5. 

From the following table, it can be concluded that the ranking result might be different under 

the various value of η  in Equation (15). When 47η < , the ultimate sorting is 2 3 4 1χδ χδ χδ χδ   , 

but the result turns into 2 3 4 1χδ χδ χδ χδ    when 47η > . Nonetheless, the best alternative 

remains unchanged, always 2χδ . In addition, we can see that the expected values reached by the 
DHHFLWGPA get smaller with the augment of η . η  can be used to depict the emotion tendency of 
DMs, the bigger the η  is, the more optimistic DMs are. By contrast, the pessimistic DMs are prone to 
use a smaller η  in the process of information infusion. Therefore, DMs can make an adjustment about 
the values of η  on account of the risk preference of their own. Classically, when DMs are risk neutral, 
we can deem that η  is 1or 2.  

Table 5 The results under different values of η . 

η  Expected value ( )
i

Me hsθ


 Ranking  

1η =  
1 2

3 4

0.994857; 0.999886;

0

( ) (

.99

)

8549; 0.9( ) 98 4( 4 6.)

Me hs Me hs

Me hs Me hs
θ θ

θ θ

= =

= =

 

 
 

2 3 4 1χδ χδ χδ χδ    

2η =  
1 2

3 4

0.97794; 0.999248;

0

( ) (

.99

)

2484; 0.9( ) 91 9( 9 4.)

Me hs Me hs

Me hs Me hs
θ θ

θ θ

= =

= =

 

 
 

2 3 4 1χδ χδ χδ χδ    

5η =  
1 2

3 4

0.925217; 0.995829;

0.970512; 0.

( ) ( )

( ) ( 9) 69439

Me hs Me hs

Me hs Me hs
θ θ

θ θ

= =

= =

 

 
 

2 3 4 1χδ χδ χδ χδ    

η
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7η =  
1 2

3 4

0.902284; 0.992726;

0.95742; 0.95505

( ) ( )

( ) ( ) 9.

Me hs Me hs

Me hs Me hs
θ θ

θ θ

= =

= =

 

 
 

2 3 4 1χδ χδ χδ χδ    

15η =  
1 2

3 4

0.864854; 0.981233;

0

( ) (

.92

)

6689; 0.9( ) 20 3( 9 9.)

Me hs Me hs

Me hs Me hs
θ θ

θ θ

= =

= =

 

 
 

2 3 4 1χδ χδ χδ χδ    

23η =  
1 2

3 4

0.855485; 0.973321;

0

( ) (

.91

)

3584; 0.9( ) 08 3( 1 8.)

Me hs Me hs

Me hs Me hs
θ θ

θ θ

= =

= =

 

 
 

2 3 4 1χδ χδ χδ χδ    

30η =  
1 2

3 4

0.853149; 0.968522;

0

( ) (

.90

)

7629; 0.9( ) 03 8( 6 8.)

Me hs Me hs

Me hs Me hs
θ θ

θ θ

= =

= =

 

 
 

2 3 4 1χδ χδ χδ χδ    

46η =  
 

1 2

3 4

0.853018; 0.961603;

0

( ) (

.90

)

0954; 0.9( ) 00 5( 8 8.)

Me hs Me hs

Me hs Me hs
θ θ

θ θ

= =

= =

 

 
 

2 3 4 1χδ χδ χδ χδ    

47η =  
1 2

3 4

0.853087; 0.96129;

0.900693

( ) ( )

( ; 0.90( ) 081.)

Me hs Me hs

Me hs Me hs
θ θ

θ θ

= =

= =

 

 
 

2 4 3 1χδ χδ χδ χδ    

55η =  
1 2

3 4

0.853709; 0.959111;

0

( ) (

.89

)

8955; 0.9( ) 00 3( 6 2.)

Me hs Me hs

Me hs Me hs
θ θ

θ θ

= =

= =

 

 
 

2 4 3 1χδ χδ χδ χδ    

5.3. Comparative Analysis 

In this part, we carry out a comparative analysis among our neo-operators proposed above and 
other operators, including hesitant fuzzy linguistic WA (HFLWA) operator as well as hesitant fuzzy 
linguistic weighted geometric (HFLWG) operator raised by Zhang [39], through which we can stress 
the advantages and effectiveness of the new method.  

In the Table 6 the sorting results reached through the newly proposed operators are not exactly 
coincident with that reached by those presented by Zhang. The ranking result obtained by 

DHHFLWGPA operator is 2 3 4 1χδ χδ χδ χδ   , whereas the ranking consequence obtained by 

HFLWA operator is 2 4 3 1χδ χδ χδ χδ   . We can find out that the optimal and the worst alternative 
are identical, nonetheless the suboptimal and the secondary inefficient alternatives are reversed. 
Similarly, we can find out that the optimal and the worst alternative obtained by DHHFLWGPG and 
HFLWG are identical, nevertheless, the suboptimal and the secondary inefficient alternatives are 
reversed. Two probable reasons for such differences are shown as follows:  

(1) The DHHFLTS is made up of two hierarchy LTSs, in which the SHLTS indicates a further 
explanation or elaborate presentation of a given LT contained in the first hierarchy LTS. In other 
words, several buttons are installed to the LT contained in the first hierarchy LTS to depict its 
true extent. Therefore, compared with HFLTS, the DHHFLTS can express information more 
comprehensively and accurately. For instance, when the DMs want to express their view 
“Between far from poor and much fine”, it is more precise to use the DHHFLTS 3 1-1 0 1{ , , }ϑ ϑς ς ς< > < >

than the HFLTS 1 0 1{ , , }ς ς ς− . Obviously, the DHHFLTS can depict the DM’s complex cognition 
and information more accurately. 

(2) The proposed operators take the support degree between any two inputs into consideration. 
When the evaluation value of alternatives under a certain attribute is closer, the attribute should 
be given a greater weight. Hence, the approaches can weaken the impact of unjustified 
extremum on the aggregation results. Additionally, the newly proposed operators are related to 
the parameterη , which is given by the DMs on account of the extent of their adventure appetite. 
Nonetheless the HFLWA and HFLWG operators with the absence of any parameter thus fail to 
imitate the DM’s adventure preference. For the sake of further showing this advantage of 
proposed method, an example can be given as follows. 

Table 6. Ranking results obtained by different methods. 
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Operator Expected/Score values Ranking 

DHHFLWGPA  
1 2

3 4

0.97794; 0.99925;

0.99248; 0.991

( ) ( )

( ) ) 99.(

Me hs Me hs

Me hs Me hs
θ θ

θ θ

= =

= =

 

 
 

2 3 4 1χδ χδ χδ χδ    

HFLWA  
1 2

3 4

( ) ( )3.7; 4.85;
4.1; 4.15.( ) ( )

S hs S hs

S hs S hs
θ θ

θ θ

= =

= =  
2 4 3 1χδ χδ χδ χδ    

DHHFLWGPG  
1 2

3 4

0.43645; 0.54699;

0.41843; 0.273

( ) ( )

( ) ) 45.(

Me hs Me hs

Me hs Me hs
θ θ

θ θ

= =

= =

 

 
 

2 1 3 4χδ χδ χδ χδ    

HFLWG  
1 2

3 4

3.64716; 4.65486;
3.96811; 3.58391

( ) ( )
( ) ( ) .
S hs S hs

S hs S hs
θ θ

θ θ

= =

= =  
2 3 1 4χδ χδ χδ χδ    

Example 2. Based on the normalized matrixError! Objects cannot be created from editing 
field codes., we can easily find out that there are fine distinction among the evaluation values of 
Error! Objects cannot be created from editing field codes. under the four attributes, which 
areError! Objects cannot be created from editing field codes.Error! Objects cannot 
be created from editing field codes. Error! Objects cannot be created from editing 
field codes.. Therefore, we can only change the attribute valueError! Objects cannot be 
created from editing field codes.fromError! Objects cannot be created from editing 
field codes.to the maximal valueError! Objects cannot be created from editing field 
codes.. The corresponding ranking result are present in Table 7. 

Table 7. The results obtained from different operators. 

Operators Expected/Score values Ranking 

DHHFLWGPA  1 2

3 4

0.99109; 0.99925;

0.99248; 0.991

( ) ( )

( ) ) 99.(

Me hs Me hs

Me hs Me hs
θ θ

θ θ

= =

= =

 

 
 

2 3 4 1χδ χδ χδ χδ    

HFLWA  1 2

3 4

( ) ( )4.1; 4.85;
4.1; 4.15.( ) ( )

S hs S hs

S hs S hs
θ θ

θ θ

= =

= =  
2 4 3 1χδ χδ χδ χδ    

From Table 7, it is easy to find out that the expected and score values of alternative 1χδ  for two 
operators are both becoming higher with the increase of the value of the beneficial attribute. 
Nevertheless, the ranking result remains unchanged by the proposed method, while it is changed by 
the method proposed by Zhang. This can justify the strength of the proposed approach in relieving 
the effect of extreme values. 

5.4. Availability Verification 

Next, we will further verify the availability of the newly presented approach from the 
perspective of the approach itself. Wang et al. indicated that an effective MADM approach requires 
to meet the following three standards,  

Standard 1 (Optimality), In the case of the weight vector of decision attribute remains the same, 
the optimum action remains unchanged when we replaced the action less than optimal with a more 
terrible one. 

Standard 2 (Transitivity), If the alternative Z1 is superior to the alternative Z2, and the alternative 
Z2 is superior to the alternative Z3, then we can obtain Z1 is superior to Z3.  

Standard 3 (Detachability), Suppose a MADM problem is split into several sub-issues and rank 
the alternatives of these sub-issues by the same MADM method, then the comprehensive ranking 
result ought to be in accordance with the initial sorting of the original problem. 

Now, we will prove the validity of our newly-presented approach under the aforesaid standards 
respectively. 

(1) Verification on Standard 1. 
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To prove the effectiveness under the Standard 1, we change the evaluation values of the 

suboptimal alternative ( 3χδ ) and the penultimate alternative ( 4χδ ) without changing the attribute 

weight, and the adjusted decision matrix SH θ


is given as follows,  

-1 1 2 0 1 2 3

-3 1 3 2 1 2 -1

-2 -1 1 0 2 0 2

-2 1 0

0 1 0 2 2 1 1

0 1 1 2 2 2 3

0 0 1 1 1 2 2

-1 2 2 1

{ , } { } { , } { , }
{ , } { , } { , } { }
{ , } { , } { } { , }

{ } { , } {

SH θ

ϑ ϑ ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ

ς ς ς ς ς ς ς
ς ς ς ς ς ς ς
ς ς ς ς ς ς ς

ς ς ς ς
−

−

< > < > < > < > < > < > < >

< > < > < > < > < > < > < >

< > < > < > < > < > < > < >

< > < > < > <

=

3 2 -1 02 2 2, } { , }ϑ ϑ ϑ ϑς ς ς> < > < > < >

 
 
 
 
 
 
   

Then utilize our above-proposed approach to deal with the assessment values and sort the 
alternatives with 2η = , and the results are present as below,  

1 2 3 4
0.97794; 0.999248; 0( ) ( .98) 5042; 0.9( ) 88 7( 1 5.)Me hs Me hs Me hs Me hsθ θ θ θ= = = =

   
 

Thus we get the new ranking result as 2 4 3 1χδ χδ χδ χδ   . We can find out that the optimal 

alternative is still 2χδ , in other words, the worsening of the suboptimal alternative has no effect on 
the priority of the optimal alternative. Therefore, our proposed method is valid under the Standard 1. 
(2) Verification on and Standard 2 and Standard 3. 

To prove the validity under the Standard 2 and Standard 3, we divide the initial MADM method 

into three sub-problems with the alternatives 3 4{ , }χδ χδ , 2 3{ , }χδ χδ , 1 4{ , }χδ χδ , 2 4{ , }χδ χδ , 1 3{ , }χδ χδ

and 1 2{ , }χδ χδ . On the basis of the decision procedure of newly proposed approach, the ranking 

results of sub-issues are 3 4χδ χδ , 2 3χδ χδ , 4 1χδ χδ , 2 4χδ χδ , 3 1χδ χδ and 2 1χδ χδ . Then we 

combined these ranking result into the comprehensive ranking 2 3 4 1χδ χδ χδ χδ   , which is the 
initial ranking result before splitting. Accordingly, our presented approach is in accord with the 
Standard 2 and Standard 3. 

In conclusion, the proposed method satisfies all of the three validity standards, which proves 
that the method is effective.  

6. Conclusions 

For the sake of combining the strength of GPA operator and DHHFLTS, in this thesis, we have 
defined four novel operators, such as the DHHFLGPA, DHHFLGPG, DHHFLWGPA and 
DHHFLWGPG operators. Then several attractive properties, as well as representative cases of such 
operators, are demonstrated. On the basis of newly-presented operators, an effective approach is 
introduced to handle MADM problems under DHHFL environment. The strengths of presented 
operators and the novel decision-making method have been verified via a comparison analysis. 
Finally, according to three standards present by Wang and Triantaphyllou [40], we have justified the 
availability of the proposed approach.  

Our proposed method has the following advantages: On one hand, for the DMs, they can express 
their views among the performance of alternatives more clearly and accurately by using DHHFLEs. 
In addition, the parameter  can be given according to their levels of risk appetite. On the other hand, 
taking the support degree into account, the proposed approach can weaken the impact of unjustified 
extremum on the aggregation results, which makes the decision results more reasonable and 
effective. Therefore, our research is meaningful and worthy of further expansion and application. 

In further research, we will extend some MADM approaches to the DHHFL environment, such 
as TOPSIS, TODIM and GRA, to fully combine the characteristics of approaches themselves and the 
linguistic dominance of DHHFLTS. In addition, there is an embryonic project to ameliorate the 
proposed approach to handle incomplete weight information by combining various weight 
processing methods. Moreover, we will further apply the proposed method to other research 
domains, such as big data analysis, comprehensive ecological improvement, project management, 
and collaborative logistics networks [41], etc.  
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