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Abstract: Automatic Classification of Wireless Signals (ACWS), which is an intermediate step between
signal detection and demodulation, is investigated in this paper. ACWS plays a crucial role in several
military and non-military applications, by identifying interference sources and adversary attacks,
to achieve efficient radio spectrum management. The performance of traditional feature-based (FB)
classification approaches is limited due to their specific input feature set, which in turn results in poor
generalization under unknown conditions. Therefore, in this paper, a novel feature-based classifier
Neural-Induced Support Vector Machine (NSVM) is proposed, in which the features are learned
automatically from raw input signals using Convolutional Neural Networks (CNN). The output
of NSVM is given by a Gaussian Support Vector Machine (SVM), which takes the features learned
by CNN as its input. The proposed scheme NSVM is trained as a single architecture, and in this
way, it learns to minimize a margin-based loss instead of cross-entropy loss. The proposed scheme
NSVM outperforms the traditional softmax-based CNN modulation classifier by managing faster
convergence of accuracy and loss curves during training. Furthermore, the robustness of the NSVM
classifier is verified by extensive simulation experiments under the presence of several non-ideal
real-world channel impairments over a range of signal-to-noise ratio (SNR) values. The performance
of NSVM is remarkable in classifying wireless signals, such as at low signal-to-noise ratio (SNR), the
overall averaged classification accuracy is > 97% at SNR = −2 dB and at higher SNR it achieves overall
classification accuracy at > 99%, when SNR = 10 dB. In addition to that, the analytical comparison
with other studies shows the performance of NSVM is superior over a range of settings.

Keywords: Convolutional Neural Networks; Support Vector Machine; Automatic Classification of
Wireless Signals; feature learning

1. Introduction

With the development of new technologies, such as extreme mobile broadband (eMBB), multimedia
terminals in cellular networks has triggered the need of providing higher bandwidth and reliable links
in wireless environments. However, the available radio spectrum is limited and the current technologies
have been shown to have low spectrum efficiency. Therefore, there is a need to design self-organizing,
adaptive, and non-cooperative wireless technologies to enable efficient radio resource utilization.

Automatic Classification of Wireless Signals (ACWS), which is an intermediate step in signal
detection and demodulation, is used for identifying interference sources and efficient radio spectrum
management in several military and non-military applications. ACWS is an essential process in
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achieving higher data rates by enabling adaptive transmission settings across varying channel
conditions without any prior knowledge of the received signal [1]. In several military applications, it is
used for surveillance of adversary attacks and electronic warfare purposes. Automatic Classification of
Wireless Signals generally involves two steps: pre-processing of received signals and classification
algorithm design. In the literature, ACWS techniques are broadly categorized into two main approaches:
likelihood-based (LB) and feature-based (FB). Likelihood-based approaches are based on hypothesis
testing, comparing the likelihood functions of received signals to classify different modulations by
employing an average likelihood ratio test ALRT [2–5], a generalized likelihood ratio test (GLRT) [2–4]
and a hybrid likelihood ratio test (HLRT) [2–4]. These decision theoretic approaches achieve optimal
performance, but at the cost of high computational complexity. Therefore, feature-based approaches
are preferred in practice as suboptimal classifiers. In FB approaches, feature extraction is performed at
a pre-processing unit followed-by a classification algorithm that classifies the received signal based on
the features extracted at the pre-processing step. A general block-wise architecture of the feature-based
classifier is given in Figure 1. In Reference [6], Azzoz and Nandi proposed a decision tree-based
classifier for automatic classification of digital and analogue modulation signals with spectral features,
such as instantaneous amplitude, phase and frequency as its input feature vectors. Swami and
Sandler [7] proposed a hierarchal decision tree-based classifier with fourth order cumulants as their
input features. In Reference [8], Wang combines the instantaneous spectral features and fourth order
cumulants of received signals as input features for a PSO-based support vector machine. The use of
cyclostationay features for signal classification has been reported by Reference [9] in detail. Machine
Learning classifiers such as decision tree (DT) [10], Support Vector Machine (SVM) [11], and k-nearest
neighbor (KNN) [12] have been used widely as shallow classifiers to classify wireless signals based-on
the aforementioned feature set. However, these conventional FB approaches mainly rely on expert
knowledge which may perform well on the proposed solution but suffers from a lack of generality and
time-consumption with high computational complexity. This is due to their primary dependence on
handcrafted specific features, which may not be suitable for different modulation sets and various
adaptive channel conditions.
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To obviate manual feature engineering, deep learning (DL) [13], which is a sub-field of machine
learning, has been used in several studies. A DL model has the ability to learn the features automatically
without relying on any mathematical model or expert knowledge. A fully connected neural network
and the hyperparameters can be tuned by conducting engineering experiments over the underlying task.
Deep learning [14] has shown remarkable performance in several fields (not limited to), such as image
classification [15–17], natural language processing (NLP) [18] and drug discovery [19,20]. Recently,
these deep learning-based approaches such as Convolutional Neural Networks (CNNs) [21,22], stack
autoencoders [23] and deep belief networks [24] have been applied for modulation classification
as well as performing physical layer low-level tasks in wireless communication. Since these deep
learning-based methods enable the receiver to learn different features automatically from the input
received signal latent space, in several studies, neural networks have been employed as decision
classifiers for a pre-processed received signal. For example, Wong and Nandi, in Reference [6],
used an artificial neural network (ANN) with a genetic algorithm (GA) for automatic modulation
classification. In their study, the GA was used to select the best features from a statistical and spectral
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feature set. In Reference [25], cumulants are used for classification features with Convolutional Neural
Networks (CNN). Oshea [21] used CNN directly for modulation classification and achieved a promising
performance compared to previous feature-based neural network approaches. In Reference [26], CNN
was used to learn features separately, which are then used as input for a Support Vector Machine
classifier. However, all of the aforementioned methods based on Convolutional Neural Networks
(CNN) used the softmax activation function (multinomial logistic regression) for the classification
decision. An alternative to softmax is the Support Vector Machine (SVM), which has been applied
to several classification tasks [27]. The use of SVMs in combination with Convolutional Neural
Networks (CNN) have been proposed in the past as part of a multistage process, mainly for image
classification [28]. In which, a deep Convolutional Neural Network was first trained using supervised
objectives to learn good invariant hidden latent representations. Then, these corresponding hidden
features of data samples are treated as input to SVMs [29]. This technique usually improves the
performance slightly, but in such settings, the low-level features have not been fine-tuned with respect
to the Support Vector Machine’s objective. Therefore, in this paper, a novel feature-based algorithm
Neural-Induced Support Vector Machine (NSVM) is proposed, in which we replace the softmax layer of
the CNN model with a SVM. The objective function of the Support Vector Machine (SVM) is rewritten
to train CNN and SVM as a combined architecture. In this way, the proposed scheme learns to minimize
margin loss rather than cross-entropy loss. The proposed schemes show remarkable improvement in
the performance, as compared to the traditional CNN-based model for classification of wireless signals.

The remainder of the paper is organized as follows: Section 2 introduces the system model.
A detailed explanation of Convolutional Neural Networks, the Support Vector Machine and the
proposed scheme NSVM for Automatic Classification of Wireless Signals is presented in Section 3.
Section 4 outlines the simulation experiment results and discussion. Finally, the overall study is
concluded in Section 5.

2. Signal Model and Problem Statement

The classification of wireless signals can be generally formulated as an n-class classification
problem, where n is the number of different modulation schemes. In this study, only digital modulation
schemes are considered, these are BPSK, 4ASk, QPSK, 8PSK, QAM16, QAM64.

A general description of a wireless communication system is given as a system that transmits
information from one point to another point via a wireless medium. The received baseband signal at
the output of the matched filter can be expressed as:

r =
∑

k∈Z
sm(k)·h(t− kT), m = 1, . . . , M, 1 ≤ t ≤ T (1)

where, sm is the i.i.d symbol stream carried by constellation m ∈M, and T is the period of the received
signal r. The physical link between each transmitter and receiver is classically modeled as a delayed
tapped channel model, expressed as:

h(t) = A(t)·ei(2π fc+ϕ)·δ(t− τ) (2)

where, v(t) stands for additive white Gaussian noise (AWGN) with unknown variance σ2
v. The received

signal whose modulation type and symbol energy are unknown is pre-processed blindly by assuming
to be drawn from a minimum-energy constellation, which is true in the case of almost all the modulation
types. The discrete-time samples r(n), at the output of the pre-processing unit are given as:

r(n) =
∑U

u=1
yu(n) + v(n) (3)
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where, A(t) is the amplitude, fc represents the carrier frequency, ϕ is the phase and τ is the delay. We
can rewrite the received multipath signal at the receiver as follows:

r(t) =
L−1∑
k=0

r(t− k)·h(k) + v(t) (4)

where, ru(n) is the uth component of the signal.

ru(n) = A(t)·ei(2π frcn+ϕ)
∑

k∈Z
su(k)·h(nTs − kT − τ) (5)

Ts denotes the sampling period and frc is the residual carrier frequency offset (CFO) for the
received signal u.

3. Convolutional Neural Networks (CNN), Support Vector Machine (SVM) and Neural-Induced
Support Vector Machine (NSVM)

In this section, the Convolutional Neural Networks are briefly described first, followed by the
Support Vector Machine details. The focus is to inspect their internal structures to provide insights into
their respective strengths and weaknesses on the present modulation classification task. This analysis
will lead to proposing NSVM, which combines the strengths of the two methods. For example, SVMs
can produce good decision surfaces if the input representation is reasonably well-behaved, but, with
their fixed architecture, they cannot learn to extract relevant features so as to handle complicated
invariances in the input. Conversely, Convolutional Neural Networks can learn invariant local features
that are appropriate for wireless signal classification, but the top layers seem to produce suboptimal
classification surfaces.

3.1. Convolutional Neural Networks

In 1988, LeCun and Bottou proposed LeNet 5 [30] for recognizing handwritten digits which lay
out the foundations for modern Convolutional Neural Networks. The study carried out by Hubel and
Wiesel in Reference [19] explains how mammals visually perceive by using the layer architecture of
neurons in the brain. Similar to that, a typical CNN is also composed of layered architecture, which is
why CNN are called biological-inspired networks. A basic architecture of a Convolutional Neural
Network is shown in Figure 2.
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The layered CNN architecture consists of several layers in which each layer transforms the input
into a meaningful representation. The detailed description of Input layer, Convolutional Layer, pooling
layer, fully connected layer and SoftMax are discussed below.
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3.1.1. Input Layer

The raw images can be directly fed to the network via the Input layer. The images are represented
by its pixel values at the input layer.

3.1.2. Convolutional Layer

The convolutional layer is also called the up-sampling layer as it extracts features from the input
data. The features extraction is performed by several convolutional filters, as different kernels represent
different features of the input data. The number of extracted features is directly related to the number
of convolutional kernels in the up-sampling layer. One can always learn better hidden representation
of input data by increasing the depth of the convolutional layer. A convolutional operation can be
expressed as:

hm
k = f (xm

∗wk
m + bm

k ) (6)

xm
∗wm

k (i) =
∑+∞

l=−∞
x(l)wm

k (i− l) (7)

where, x ∈ R is the set of inputs and w represents the kernel. To achieve the nonlinear mapping of
the kernel outputs, an activation function f (.) is employed in Equation 6. There are many activation
functions such as Sigmoid, tanh and Rectified Linear Unit (ReLU). In this study, ReLU is used as the
activation function with the convolutional Layer.

f (x) =
{

x i f x > 0
0 i f x ≤ 0

(8)

3.1.3. Pooling Layer

The pooling layer is also called the down-sampling layer as it sums up information and maps the
dominant response within the specific local region of the respective field. Max pooling is used in this
study, which can be represented as:

hm+1
k (i) = max

(
hk

m

(
nm+1(i− 1) + 1

)
, hk

m

(
nm+1(i− 1) + 2

)
. . . hk

m

(
nm+1(i− 1) + N

))
(9)

where, N is the length of pooling windows and nm+1 is called stride and represents the margin between
two pooling windows.

3.1.4. Fully Connected Layer

The feature maps learned by the convolutional or pooling layer is flattened to a one-dimensional
array of values. It is also called the dense layer, in which each neuron is connected to the output layer
by a learnable parameter.

3.1.5. SoftMax Layer

The final output layer has a number of neurons and an equal number of classes in a classification
task. It specifies the probability distribution of each class. The Input to the SoftMax layer can be
written as:

an =
∑

m
hmwmn (10)

The probability of each class is specified as:

Pi =
exp(an)

k∑
i

exp(ai)

(11)
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The input sample is predicted by taking the maximum overall probabilities.

∼

i = argmaxPi (12)

3.1.6. Loss Function

The loss function or objective function of CNN is defined as J(.). In supervised learning we are to
optimize this loss function by minimizing the difference between the output prediction and the true
labels. This can be written as:

argmin
W,b

J(W, b) (13)

This is done by a gradient descent algorithm, with the following updates moving backwards in
the network during training.

W := W − α
dJ(W, b)

dW
(14)

b := b− α
dJ(W, b)

db
(15)

where, α is the learning rate.

3.2. Support Vector Machine

The basic idea of the SVM classifier is to transform the input space into a higher dimensional
space by non-linear transformation, then use the risk minimization criteria to construct an optimal
separating hyperplane in the new space. SVM optimizes the following optimization problem:

P1 : min
w, b, ξ

1
2 w2 + C

n∑
i=1

ξi

s.t. yi
(
wT
·Φ(xi) + b

)
≥ 1− ξi

ξi ≥ 0, i = 1, . . . , n

(16)

where, ((x1, y1), . . . , (xM, yM)(x1, y1), . . . , (xM, yM)) are M samples for xi ∈ R, in which the class
labels y ∈ (+1,−1)l are either positive or negative, which can be separated by the hyper-plane
(wT
·Φ(xi) + b), Φ : RN

→ RF is the mapping function of the input data into some higher
dimensional Hilbert spaceH , whereW ∈ H is orthogonal to the separating hyper-plane in that space,
C is a positive number and ξi is the error in the soft margin. ξi ≥ 0 are the non-zero slack variables
introduced to enable the learning algorithm to deal with data that could not be precisely separated,
such as data with noise. b ∈ R is the bias and C ∈ R is a penalty factor used to establish a trade-off

between maximizing the margin and minimizing the classification error. By taking the Lagrangian of
P1, we have:

L(w, b,α, ξ) =

1
2 w2 + C

n∑
i=1

ξi −
l∑

i=1
αi

[
yi
(
wT
·Φ(xi) + b

)
− 1 + ξi

] (17)

Minimizing L(w, b,α, ξ) w.r.t to w, b,α, ξ respectively, we get the dual form of P1 given as:

D1 : arg max
αi ≥0

M∑
i=1

αi −
1
2

M∑
i=1

M∑
j=1

αiα jyiy jΦ
T(xi), Φ

(
x j

)
= arg max

αi ≥0

M∑
i=1

αi −
1
2

M∑
i=1

M∑
j=1

αiα jyiy jκ
(
xi, x j

)
s.t 0 ≥ αi ≥ C ∀i,

M∑
i=1

αiyi = 0

(18)
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where, κ(.) is a positive defined kernel, representing the dot product κ
(
xi, xj

)
= Φ(xi), Φ

(
x j

)
of the

data point inH . The strategy of a kernel is to map the training data into the feature space xi → Φ( xi)

to separate them from the origin with maximum margin, which map the features to higher space, a
Gaussian kernel is being employed in this paper. The Gram matrix of the Gaussian kernel is given as:

G =
(
yiy jκ

(
xi, x j

))l

i, y=1
(19)

Which is a positive semi-definite that ensures that the maximal margin optimization has a unique
solution that could be found efficiently. This effectively rules out the problem of being stuck in local
minima that has been mostly encountered while training neural networks. Because of the optimality
relations between the primal and dual problem, the hyperplane that separates the data in the high
dimensional space, determined by the normal w∗ and the intersection with the axis, b∗, satisfies
the following:

w∗ =
M∑

i=1
α∗iyiΦ

(
xi
)

b∗ = 1−max{y j=1}(w∗)
t
Φ

(
xi
) (20)

A SVM separating the hyperplane for binary classification is shown in Figure 3. The function
used to classify a new point X can be written as:

f(X) = sign

 M∑
i=1

α∗i yik
(
xi
)
+ b∗

 (21)
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3.3. Neural-Induced Support Vector Machine (NSVM)

In this paper, the NSVM is introduced for the automatic classification of wireless signals based
on their modulation formats by combining Convolutional Neural Networks and the Support Vector
Machine. The architecture of NSVM is shown in Figure 4. As it can be seen from Figure 4, the softmax
layer of the Convolutional Neural Networks is replaced by the Support Vector Machine. The Support
Vector Machine takes the entire feature layer as input and outputs the label of the input sample. The
output expression can be written as:

f (x) =
l∑

i=1

(α∗i − α)K(ϕ(xi
∣∣∣θ),ϕ(x∣∣∣θ)) + b (22)

where K(., .) is the kernel function of the Support Vector Machine.
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To find a suitable f , the system must find a representation of the input data in z that codes the
feature most relevant for estimating the desired output. The training samples xi is replaced by the
feature vector ϕ(xi

∣∣∣θ) . The primal problem of SVM can be written as:

P1 : min
w, b, ξ

1
2 w2 + C

n∑
i=1

ξi

s.t. yi
(
wT.ϕ(xi|θ) + b

)
≥ 1− ξi

ξi ≥ 0, i = 1, . . . , n

(23)

Corresponding to the dual problem formulates as:
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αiα jyiy jK
(
xi
∣∣∣θ, x j

∣∣∣θ)
s.t 0 ≥ αi ≥ C ∀i,

M∑
i=1

αiyi = 0

(24)

The two goals of training are to find α∗ that maximizes the above problem and also the weights θ of
the neural network which minimizes Equation (24). This hybrid model is trained as single architecture
rather than training them separately and then combining them offline for classification.

4. Simulation Results and Discussion

In this section, the performance of the proposed scheme is investigated against several non-ideal
channel conditions such as frequency offset, phase offset, timing offset, varying symbol number as
well as different Doppler shifts. An analytical comparison is also provided with previously proposed
different learning-based modulation classifiers.

4.1. Dataset

In this paper, the following M = (BPKS, 4ASK, QPSK, 16QAM, 64QAM) modulation schemes
were considered. The transmitted bit-stream was generated randomly to ensure each has equal
probability. The received signal was pre-processed at the receiver end to obtain a complex based-band
signal. The In-Phase-Quadrature (I-Q) samples of the received signal were sampled simultaneously to
a frame of length N. They are combined later in a 2 X N matrix and input to CNN for feature extraction.
In this study, the value of N is 2048 but some experiments are performed with N = 1024, 512. This is
done by varying the number of symbols in the frame. A segment has the same results as that of a full
observation. In this way, the proposed classifier would be independent of N. The range of AWGN noise
with signal-to-noise ratio (SNR) = −8 dB to +8 dB in the dataset. For each modulation scheme and
SNR values, 10,000 realizations of the received signal are generated according to the model described
in Section 2. The rest of the parameters are summarized in Table 1 in detail.
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Table 1. Dataset Parameters.

Parameters Symbols Values

Carrier Frequency fc 10 MHz
Number of Samples per input frame N 2048

SNR −10 dB to 8 dB
Symbols per Frame N f 256
Samples per Symbol Ns 8

4.2. Training and Validation Performance

In the following experiment, the proposed classifier NSVM, which is a hybrid combination of CNN
and SVM is trained and validated by using offline deployment. In order to analyze the performance, the
accuracy and loss curves of training and cross-validation are plotted in Figure 5. Similar experiments
are performed with a traditional CNN model with the softmax classifier in its last layer, and the results
are plotted in Figure 6. The CNN settings used here are the same in both cases, as shown in Figure 4,
expect one is trained with Gaussian SVM and the other one is trained with softmax as the decision
classifier. The performance of NSVM is better than the traditional CNN model as the accuracy and loss
converges to their minima and maxima quickly. Along with that, these results show that it smoothens
as training progresses, which shows the effectiveness of the proposed scheme. This also reduces the
cost of training for the proposed model. However, in the case of CNN with softmax, the classifier
performance is hardly stable and satisfactory, as can be seen in Figure 6.
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4.3. Basic Classification Performance

The performance of NSVM under ideal channel conditions for individual modulation schemes
are shown by Figure 6. The confusion matrix at SNR = −4 dB and SNR = 0 dB is given by Table 2.
One-dimensional modulation schemes 4ASK and BPSK are easily recognizable even at low SNR.
However, the performance NSVM for higher dimensional modulation types in the dataset requires
a high signal-to-noise ratio (SNR) to achieve satisfactory performance. The performance of QAM
16, QPSK and 8-PSK is lower than QAM64 in the low SNR region. Similar results were reported in
Reference [6], in which QAM64 achieves better performance than QAM16 with different learning-based
modulation classifier methods based on machine learning techniques. This is due to the fact that the
distinctive features learned by CNN hidden layers are increased in the case of high modulation, such
as QAM64. The performance of QPSK and 8PSK degrades with a decrease in the SNR of received
signals. However, at SNR > 3 dB, the algorithm manages to achieve classification accuracy of <98%. In
this experiment, the performance of NSVM in classifying individual modulation schemes has been
analyzed. The receiver is assumed to have the information of all the parametric information about
the signal (e.g., if there is any phase offset, symbol timing offset, frequency offset, etc.), except the
modulation format needs to be inferred. In our experiments, by default, the value of N is 2048, in
case a change will be mentioned. The result of classifying six different modulation schemes is given
Figure 7. The modulation schemes 4Ask and BPSK can be easily classified by our model in the dataset.
However, the distinctive features learned by CNN are increased in the case of QAM 64. Therefore,
it achieved performance much better than QPSK, 8PSK, and QAM 16. The performance of QAM
16 is misclassified at low SNR due to its similar constellation map with QAM64. However, similar
behavior has been seen in QPSK, as they required higher SNR to be classified correctly. Therefore,
in this section, confusion matrices at SNR = −4 dB and SNR = 0 dB are given in Tables 2 and 3,
respectively. As it is clear from the tables, more misclassification occurs in higher order modulation
due to low SNR. In the low SNR regime, QPSK is often misclassified as the 8PSK, this can be explained
by the assumption in which QPSK is taken as subset 8PSK. In order to improve the performance of the
proposed scheme, more MPSK/M-ary QAM modulation schemes can be considered, which will enable
the CNN model to gather more information about the same constellation but different symbol order
sequences. The following experiment was conducted with a fixed number of symbols in the frame.
In the next section, the different symbol length effect is discussed.

Table 2. Confusion Matrix of NSVM at SNR = −4 dB.

SNR = −4 dB True Class

Predicted
Class

BPSK 4-ASK QPSK 16-QAM 64-QAM 8-PSK

BPSK 100
4-ASK 100
QPSK 91.18 8.82

16-QAM 79.90 7.67 12.43
64-QAM 1.83 98.17

8-PSK 18.87 12.26 68.87

Table 3. Confusion Matrix of NSVM at SNR = 0 dB.

SNR = 0 dB True Class

Predicted Class

BPSK 4-ASK QPSK 16-QAM 64-QAM 8-PSK

BPSK 100
4-ASK 100
QPSK 95.57 2.43

16-QAM 94.49 1.28 4.23
64-QAM 0.54 99.46

8-PSK 5.87 0.85 93.28
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4.4. Performance of NSVM with Different N

The performance of the proposed schemes with different numbers of symbols is analyzed in this
section. The overall averaged accuracy with symbol Number N = 2048, 1024 and 512 is plotted in
Figure 8. The performance achieved reasonable degradation in classification accuracy as the number
of space decreased. Another observation made here is to relate the performance of the proposed
algorithm NSVM with higher order modulation. It can be seen from Figure 9 that the performance
of the proposed QAM16 and QAM64 is compared with different symbol numbers. The proposed
scheme performed better for higher order modulation due to more information being extracted from
the constellation map by CNN, as well as a greater number of symbols.Information 2019, 10, x FOR PEER REVIEW 12 of 17 
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4.5. Performance of NSVM with Different Channel Impairments

Signal classifiers don’t have any prior knowledge of when and where a transmission will occur.
Hence, a wide signal is pre-processed to a based-band type, which is then considered for classification.
There might be many channel variations still there due to the estimation error at the pre-processing.
Therefore, to analyze the robustness of NSVM, the experiments are carried out on the test data with four
different channel impairments, e.g., Carrier Frequency Offset, Timing Offset, Phase Offset and Velocity.
The test set for each of these parts is generated separately, which consists of 2000 test realizations for
each channel variation at each SNR value being generated for this section.

Effect of Carrier Frequency Offset: The performance of NSVM due to different carrier frequency
offset is shown in Figure 10. It can be observed that with the increase in carrier frequency, the
performance of the proposed classifier degrades significantly. However, the performance is worse
at a low SNR. This is due to the fact that the model is not using that data with offset. However, the
performance of the proposed scheme at higher SNR manages to achieve reasonable performance. This
is due to the fact that the higher order modulations are insensitive to offset in the carrier. To compensate
the performance at a lower order, the proposed model can be retrained on the data, having random
frequency offsets.

Effect of Phase Offset: In this section, the effect of phase offset observed is investigated. Since
the prior knowledge of the phase offset is symmetric; therefore, the influence of positive and negative
deviations is the same. The performance of NSVM is observed for the test with the following
∆P = (0◦, 7 · 5◦, 15◦, 22 · 5◦, 30◦) phase offsets in the received signal. The performance of NSVM with
∆P is given by Figure 11. The algorithm generalizes better despite different phase offsets, as the
performance remains the same; however, there are slight changes in the performance at low SNR values.

Effect of Timing Offset: Next, the performance of timing offset in the received symbol is discussed
in Figure 12. Since, the proposed architecture considers 256 input symbols in a frame as an input,
therefore, this effect can easily be compensated. However, this may not compensate for the bit-error
rate due to the loss of information despite the correct signal classification.

Effect of Velocity: In the real world, the signal is highly distorted due to small scale fading effects
such as, multipath fading, scattering and Doppler shifts. Here, the performance of NSVM is observed
under different Doppler shifts. The algorithm performance degrades with the increase in the Doppler
shift caused by high velocity, which is given by Figure 13. Therefore, to overcome this, similarly to
countering carrier frequency, offset can be used.
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4.6. Comparative Study of Related Works

In this section, the performance of previous reported wireless signal classification algorithms at
specific values of signal-to-noise ratio (SNR) are summarized and compared with NSVM. The analytical
analysis performed in this section is given in Table 4, which shows that the proposed scheme NSVM
achieves higher performance than its counterpart in both low and high SNR scenarios.
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Table 4. Comparison with other works.

Classifier Modulations SNR Accuracy

Artificial Neural Networks Based on
spectral features [6]

NSVM

BPSK, QPSK, 8PSK,
QAM16,
QAM 64

−5 dB
−5 dB

83.7%
86.3%

Deep BeliefNetworks (DBN)-SVM [24],
KNNAdaBoost [24]

NSVM

BPSK, QPSK, QAM16,
QAM 64

8 dB
8 dB
8 dB

75.5%
89.9%
99.8%

Convolution Neural Networks [31]
NSVM

2FSK, DQPSK, 16AM,
MSK, GMSK

0 dB
0 dB

83.5%
98.2%

GPKNN [12]
NSVM

BPSK, QPSK, QAM16,
QAM 64

10 dB
10 dB

97%
99.9%

Convolutional Neural Networks with
Cumulants [25]

NSVM

BPSK, QPSK, 8PSK,
4ASK, QAM16, QAM 64

6 dB
6 dB

90%
99%

5. Conclusions

In this paper, a novel feature-based classifier NSVM has been proposed for Automatic Classification
of Wireless Signals, in which the features were learned automatically from raw input signals by using
Convolutional Neural Networks (CNN). The output of NSVM is given by a Gaussian Support Vector
Machine (SVM), which takes the features learned by CNN as its input. Therefore, the proposed schemes
NSVM learned to minimize a margin-based loss instead of a cross-entropy loss. The proposed scheme
outperformed the traditional softmax-based CNN classifier by achieving faster convergence of accuracy
and loss curves during training/validation. Furthermore, the robustness of the NSVM classifier was
verified by extensive simulation experiments under the presence of several non-ideal real-world
channel impairments over a range of signal-to-noise values. The performance of the NSVM was
remarkable in classifying wireless signals, for example, at a low signal-to-noise ratio (SNR), the overall
averaged classification accuracy was >97% at SNR = −2 dB, and at a high SNR, it achieved an overall
classification accuracy of >99% at SNR = 10 dB. In addition to that, in the analytical comparison with
other studies, the results showed that the performance of NSVM is superior over a range of settings.

Although, the proposed approach may not always perform well for all modulations under
different conditions, so there is still room for improvement. As NSVM is not dependent on N, a parallel
computation can be introduced to train deeper models because the classifier performance is greatly
dependent on the architecture and the depth of the feature extraction module. Extended implications
of the proposed scheme also include increasing the number of modulation schemes to classify.
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