
 information

Article

SOOCP: A Platform for Data and Analysis of Space
Object Optical Characteristic

Wanjie Lu *, Qing Xu and Chaozhen Lan

Institute of Geospatial Information, Information Engineering University, Zhengzhou 450052, China;
13937169139@139.com (Q.X.); 13014511234@163.com (C.L.)
* Correspondence: lwj285149763@163.com; Tel.: +86-185-3990-8814

Received: 8 August 2019; Accepted: 24 September 2019; Published: 25 September 2019
����������
�������

Abstract: With the advancement of various technologies, the research and application of space object
optical characteristic (SOOC), one of the main characteristics of space objects, are faced with new
challenges. Current diverse structures of massive SOOC data cannot be stored and retrieved effectively.
Moreover, SOOC processing and application platforms are inconvenient to build and deploy, while
researchers’ innovative algorithms cannot be applied effectively, thereby limiting the promotion of the
research achievements. To provide a scaffolding platform for users with different needs, this paper
proposes SOOCP, a SOOC data and analysis service platform based on microservice architecture.
Using the hybrid Structured Query Language (SQL)/NoSQL service, the platform provides efficient
data storage and retrieval services for users at different levels. For promoting research achievements
and reusing existing online services, the proposed heterogeneous function integration service assists
researchers and developers in independently integrating algorithmic modules, functional modules,
and existing online services to meet high concurrency requests with a unified interface. To evaluate
the platform, three research cases with different requirement levels were considered. The results
showed that SOOCP performs well by providing various data and function integration services for
different levels of demand.

Keywords: space object; optical characteristic; SQL; NoSQL; microservice; function integration

1. Introduction

The optical characteristic is one of the basic characteristics of space objects. As an important
strategic resource [1], space object optical characteristic (SOOC) data can be used for state estimation,
auxiliary identification, early detection, and calculation of the optical scattering cross section of space
objects [2,3]. The establishment of an SOOC database is a key aspect of space object characteristic
research. To effectively analyze the SOOC and achieve the objective of transforming data and
algorithms into practical applications, it is necessary to not only establish stable and reliable SOOC data
services [1,4–7] but also study different algorithms and applications for a comprehensive analysis [8,9].
However, with the increasing number of space objects and data acquisition methods as well as rapidly
growing data volumes, users are imposing higher requirements on data services and applications
of SOOC.

Owing to current technological advancements, the management of massive SOOC data is a major
challenge. Multi-source heterogeneous SOOC data, such as radiant data, optical images, and infrared
spectral data of materials, can be categorized into structured and unstructured data. The current
mainstream solution to meet the data retrieval requirements of SOOC experiments and simulations is
based on mature structured query language (SQL) databases, such as Oracle [1,4,10], Microsoft SQL
Server [7,11], and MySQL [12], that manage the structured data and the metadata of the unstructured
data [5,6]. Users can query structured SOOC data with different conditions through the application

Information 2019, 10, 296; doi:10.3390/info10100296 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
http://dx.doi.org/10.3390/info10100296
http://www.mdpi.com/journal/information
http://www.mdpi.com/2078-2489/10/10/296?type=check_update&version=2

Information 2019, 10, 296 2 of 22

programming interface (API) provided by different databases. However, unstructured SOOC data, such
as videos, images, and text, are usually serialized and stored in the local file system [13]. Although the
storage scheme based on SQL databases can effectively reduce data redundancy and efficiently process
complex data queries for structured data [14], it is not only inconvenient for the management and
retrieval of unstructured SOOC data but also faces difficulties in maintaining the association between
the structured data in the SQL database and the unstructured data. As a solution to this problem,
the SQL database was used to store structured data and the metadata of unstructured data while the
Hadoop Distributed File System (HDFS) and Apache HBase were used to store unstructured SOOC
files of different sizes [15]. Although this solution alleviates the challenges of storage and management
of unstructured data to a certain extent, it actually regards unstructured data as an integral part of
structured data; hence, it provides neither direct access to unstructured data nor a unified access
interface for users unfamiliar with SQL or Not only SQL (NoSQL) databases.

The processing of massive SOOC data imposes higher requirements on experimental platforms
and applications. Many existing platforms and applications have been developed and deployed
using monolithic architecture [16–18], which is a tightly coupled architecture. In such systems or
platforms, different modules are integrated and developed using a single programming language.
When modifying existing functions or adding new modules, the compatibility between different
modules must be considered. The maintenance and development of an application based on monolithic
architecture require sufficient human and material resources; hence, such an application cannot meet the
needs of continuous delivery. The characteristics of monolithic architecture have led to expansion and
deployment difficulties, especially in the cloud computing environment [9,19]. Repeated deployments
of applications based on monolithic architecture in different hardware platforms requires a complete
operating environment, which leads to higher costs in terms of human, material, and financial resources.
Furthermore, users cannot share SOOC data, algorithms, or functional modules under monolithic
architecture easily and efficiently. Based on Software as a Service (SAAS), various simulation and
experiment software were integrated [17] for optoelectronic testing. The deployment of each software
based on SAAS requires professionals, which leads to the need for further improvement in flexibility.

The latest algorithms and research achievements related to SOOC require efficient experimentation,
popularization, and practical application. In the context of rapid technological advancements,
to accelerate such experimentation and application, different industries have built various scaffolding
platforms. For example, Sino-InSpace [20], a platform proposed for geographical environment,
provides a virtual space environment for users and researchers to build visualization scenarios and test
algorithms. Songshan et al. [21] constructed a service-oriented model encapsulation strategy that allows
users to share and integrate different heterogeneous geo-analysis models. Based on service-oriented
architecture (SOA), the Geosciences Network (GEON) project [22] facilitates data sharing by integrating
a variety of standard services and modules to meet different needs. For X-ray free electron laser
(XFEL) applications, Liubov et al. [9] built a cross-platform wave optics software environment to
solve a wide set of XFEL optics problems; this platform can be accessed by a variety of programming
languages (e.g., MATLAB, Python, and C++). In terms of SOOC data experiments and analyses,
researchers have mainly tested algorithms using existing simulation software [23]. In optical-related
research, a platform was proposed [17] to integrate various software based on SAAS for on-demand
requirements; however, the deployment of these software requires professionals, whereas researchers
are only users, not participants. Various algorithms have been developed for processing SOOC data,
such as image enhancement and contour extraction to obtain information from optical images of space
objects and attitude estimation methods based on a sequence of photometric image data. Nevertheless,
technologies related to the integration of modules and online services have not attracted much research
attention from researchers. Therefore, the integration of existing algorithms and research achievements
into existing platforms faces several obstacles. Moreover, current SOOC simulation systems can only
load a small amount of data and they require a high data reading speed during experiments. These
factors hinder the testing and application of algorithms.

Information 2019, 10, 296 3 of 22

In view of the challenges discussed above and considering the concept of X as a Service (XaaS),
this paper proposes SOOCP, a service platform for SOOC data and analysis based on the microservice
architecture (MSA). The objectives of this study are to provide efficient and convenient SOOC data
services, algorithm experimentation services, and functional module integration services considering
the rapid increase in space objects and SOOC data. Through the basic services provided, researchers
can conveniently store and retrieve SOOC data, test algorithms, and transform research achievements
into online services to promote the application of scientific research.

The remainder of this paper is organized as follows. Section 2 describes the architecture and
orientation of the platform. Section 3 introduces the key technologies of the platform for the orientation
and user requirements. To facilitate the use of the platform by different application levels, three levels
of application models are designed and the corresponding case studies are presented in Section 4.
Finally, Section 5 states the conclusions and explores directions for future work.

2. Platform Architecture and Orientation

SOOCP is orientated as a scaffolding platform that provides efficient storage solutions for
SOOC data of different structures. In addition, it allows the integration and testing of heterogeneous
algorithms, functional modules, and online services. The overall architecture of the platform is based on
MSA. MSA can split a complex software system into single-function and small-grained services [24–26].
Each service can be independently developed, tested, and deployed, with a lightweight communication
mechanism to exchange data [27]. MSA allows a team to build services by using appropriate
programming languages and tools according to the business context; thus, it is advantageous compared
to monolithic architecture [28] and SOA [29].

The platform architecture and orientation of SOOCP are shown in Figure 1. The clients (e.g.,
Desktop Computer, Browser, and Mobile Device) request services through the APIs in a representational
state transfer (REST) architectural style [30]. The clients can use a series of display methods for the
processing results, such as three-dimensional (3D) visualization. Service Gateway provides a unified
RESTful API access interface, and all requests from the clients need to go through Service Gateway; thus,
exposure of the internal APIs of services is avoided. Users need not be concerned with the interaction
between internal services, and the cases of service upgrade, modification, and expansion do not affect
user experience. Load Balancing is responsible for assigning requests, preventing excessive load on
the background services, and improving the response speed and overall performance. When new
instances of a service are added, Load Balancing can reasonably allocate requests to the newly added
instances. All services are registered in Service Registry, through which each service finds the others.
Service Configuration stores the attribute configurations of all services.

Information 2019, 10, x FOR PEER REVIEW 3 of 22

In view of the challenges discussed above and considering the concept of X as a Service (XaaS),
this paper proposes SOOCP, a service platform for SOOC data and analysis based on the microservice
architecture (MSA). The objectives of this study are to provide efficient and convenient SOOC data
services, algorithm experimentation services, and functional module integration services considering
the rapid increase in space objects and SOOC data. Through the basic services provided, researchers
can conveniently store and retrieve SOOC data, test algorithms, and transform research achievements
into online services to promote the application of scientific research.

The remainder of this paper is organized as follows. Section 2 describes the architecture and
orientation of the platform. Section 3 introduces the key technologies of the platform for the
orientation and user requirements. To facilitate the use of the platform by different application levels,
three levels of application models are designed and the corresponding case studies are presented in
Section 4. Finally, Section 5 states the conclusions and explores directions for future work.

2. Platform Architecture and Orientation

SOOCP is orientated as a scaffolding platform that provides efficient storage solutions for SOOC
data of different structures. In addition, it allows the integration and testing of heterogeneous
algorithms, functional modules, and online services. The overall architecture of the platform is based
on MSA. MSA can split a complex software system into single-function and small-grained services
[24–26]. Each service can be independently developed, tested, and deployed, with a lightweight
communication mechanism to exchange data [27]. MSA allows a team to build services by using
appropriate programming languages and tools according to the business context; thus, it is
advantageous compared to monolithic architecture [28] and SOA [29].

The platform architecture and orientation of SOOCP are shown in Figure 1. The clients (e.g.,
Desktop Computer, Browser, and Mobile Device) request services through the APIs in a representational
state transfer (REST) architectural style [30]. The clients can use a series of display methods for the
processing results, such as three-dimensional (3D) visualization. Service Gateway provides a unified
RESTful API access interface, and all requests from the clients need to go through Service Gateway;
thus, exposure of the internal APIs of services is avoided. Users need not be concerned with the
interaction between internal services, and the cases of service upgrade, modification, and expansion
do not affect user experience. Load Balancing is responsible for assigning requests, preventing
excessive load on the background services, and improving the response speed and overall
performance. When new instances of a service are added, Load Balancing can reasonably allocate
requests to the newly added instances. All services are registered in Service Registry, through which
each service finds the others. Service Configuration stores the attribute configurations of all services.

Database and functional services are two essential services of a data and analysis service
platform. As shown in Figure 1, the platform is oriented as an opened scaffolding platform, and only
Hybrid SQL/NoSQL Service and Heterogeneous Function Integration Service are provided.

Applications

Service
Gateway

Load
Balancing

Service Registry

Service Configurtion

Data Level
Algorithm Level

Development Level

Application Level
Desktop

Computer

Broswer

Mobile
Device

Functional ServiceDatabases

Hybrid SQL/NoSQL Service

Data Storage Data Caching

Data Retrieval and Integration

Heterogeneous Function Integration Service
Modules Management

Modules LoaderParameters Parser

SQL

NoSQL

……

……

Figure 1. Platform architecture and orientation. All functional services are built on top of databases,
and provide different levels of applications for different requirements and users.

Information 2019, 10, 296 4 of 22

Database and functional services are two essential services of a data and analysis service platform.
As shown in Figure 1, the platform is oriented as an opened scaffolding platform, and only Hybrid
SQL/NoSQL Service and Heterogeneous Function Integration Service are provided.

Efficient and convenient data services can not only enable researchers to share and obtain data
more effectively but also facilitate experiments on algorithmic and functional modules. Therefore, for
SOOC data of different structures, the platform constructs Hybrid SQL/NoSQL Service, which provides
efficient storage and retrieval for data of different structures. This service includes data storage, data
caching, and data retrieval and integration. Data Storage is mainly responsible for importing data that
meets the system’s predefined format and for storing data in appropriate databases. Data Caching
manages cached data in various processing situations and temporally stores data that need to be
preserved in a persistent database. Data Retrieval and Integration queries data of different structures from
databases on the basis of external requests and integrates the data obtained into a simple data structure
that can be used directly. Data Retrieval and Integration avoids direct operation of the database by users
as well as the writing of complex SQL statements, especially query statements for NoSQL databases.

Practitioners in the field of SOOC include data users, algorithm researchers, and development
engineers, and the levels of user requirements vary considerably. For example, data users need data
for analysis and visualization. Algorithm researchers study different innovative algorithms to process
data. Development engineers mainly construct various business functions that can be actually used by
the data users and algorithm researchers. Therefore, it is necessary to provide basic services that can
meet different levels of custom requirements. Heterogeneous Function Integration Service is a built-in
service of the platform, which allows the integration of user-defined SOOC processing and analysis
functions, including algorithmic modules, functional modules, and online services; thus, users can
avoid additional repetitive work by concentrating on researching the algorithms without considering
how to implement the distributed deployment and high availability of online services. Owing to the
loose coupling and easy deployment features of MSA, development engineers can integrate existing
online services into the platform.

3. Key Technologies

3.1. SOOC Hybrid SQL/NoSQL Service

The storage scheme based on an SQL database (i) is not suitable for storing unstructured data,
which leads to difficulties in data management and retrieval, (ii) does not have good scalability, resulting
in complex and expensive data service clusters, and (iii) can satisfy data consistency requirements
but cannot provide higher efficiency or availability for massive concurrent access. NoSQL databases,
which can meet the requirement of high concurrent access, overcome the shortcomings of SQL
databases to some extent. Owing to their excellent features, NoSQL databases have been used in many
successful Internet applications [14,31]. NoSQL databases have many data storage models, and the
most commonly used categories of data models are key-value store, wide-column store, document store
and graph store [32]. Key-value databases can store data in memory and guarantee the low latency of
data acquisition, which means that key-value databases are often used to handle high access loads of
data, such as data cache [33]. Document databases store semi-structured and unstructured data and
can handle complex data formats very well, regardless of the data schema. In document databases,
each document can be formatted differently, and new structured data can be added without changing
the existing documents [33]. Data can have a nested structure and document stores often use internal
notations, which can be processed directly in applications [34]. For the diversity of data structures
of SOOC and the frequent access of users to the same data when testing algorithms, databases of
the key-value model and document model, which are used in the proposed service architecture, are
suitable for storing data of various structures and formats. However, although the NoSQL databases
selected [35] (i) can meet the requirements of large transaction volumes, low-latency access, and high
service availability of massive data, (ii) have flexible data models, suitable for storing data of various

Information 2019, 10, 296 5 of 22

structures, and (iii) can update the data without affecting the existing data structure, they cannot
provide better consistency, and in contrast to SQL databases, they cannot support complex data queries.

To meet the storage requirements of structured and unstructured SOOC data, the platform
builds a SOOC hybrid SQL/NoSQL service based on the advantages of SQL and NoSQL databases in
respective fields.

3.1.1. SOOC Hybrid SQL/NoSQL Service Architecture

The data model of the proposed hybrid SQL/NoSQL service is shown in Figure 2. The SQL
database mainly stores structured data (e.g., object data, equipment data, environment data, and task
data), the metadata of unstructured data, and partial processing results. The metadata of unstructured
data are mainly used for retrieving data, fusing information, and building relationships with structured
data. Unstructured data mainly include images, models, text, and cached data. Cached data, which
were not considered in [15], include intermediate data and results generated in data processing for
real-time access, or frequently accessed data for improving the access performance and reducing the
load on the back-end databases. The SOOC data model can be formalized as follows:

OpticalCharacteristicEntity = {ObjectID, Object, Equipment, Environment, Task, Condition,
[Metadata of Unstructured data, Unstructured data], [Cached data]},

where [-] represents the optional parameter; OpticalCharacteristicEntity represents the SOOC data object;
ObjectID is the unique identifier, i.e., the association index of different data of the same space object;
Object contains basic information such as name, description, type, size, and ephemeris data; Equipment,
Environment, Task, and Condition are parameters that mainly record the equipment, test environment,
task-related information, and experimental parameters used for acquiring SOOC data, respectively;
Metadata of Unstructured Data is the metadata of unstructured data; Unstructured Data includes various
SOOC unstructured data, such as images, models, and text; and Cached data is the frequently accessed
data, including processing results that need to be stored in persistent databases or data that need to be
shared between different processes in real time.

Information 2019, 10, x FOR PEER REVIEW 5 of 22

without affecting the existing data structure, they cannot provide better consistency, and in contrast
to SQL databases, they cannot support complex data queries.

To meet the storage requirements of structured and unstructured SOOC data, the platform
builds a SOOC hybrid SQL/NoSQL service based on the advantages of SQL and NoSQL databases in
respective fields.

3.1.1. SOOC Hybrid SQL/NoSQL Service Architecture

The data model of the proposed hybrid SQL/NoSQL service is shown in Figure 2. The SQL
database mainly stores structured data (e.g., object data, equipment data, environment data, and task
data), the metadata of unstructured data, and partial processing results. The metadata of
unstructured data are mainly used for retrieving data, fusing information, and building relationships
with structured data. Unstructured data mainly include images, models, text, and cached data.
Cached data, which were not considered in [15], include intermediate data and results generated in
data processing for real-time access, or frequently accessed data for improving the access
performance and reducing the load on the back-end databases. The SOOC data model can be
formalized as follows:

OpticalCharacteristicEntity = {ObjectID, Object, Equipment, Environment, Task, Condition, [Metadata of

Unstructured data, Unstructured data], [Cached data]},

where [-] represents the optional parameter; OpticalCharacteristicEntity represents the SOOC data
object; ObjectID is the unique identifier, iei.e.i.i.e., the association index of different data of the same
space object; Object contains basic information such as name, description, type, size, and ephemeris
data; Equipment, Environment, Task, and Condition are parameters that mainly record the equipment,
test environment, task-related information, and experimental parameters used for acquiring SOOC
data, respectively; Metadata of Unstructured Data is the metadata of unstructured data; Unstructured
Data includes various SOOC unstructured data, such as images, models, and text; and Cached data is
the frequently accessed data, including processing results that need to be stored in persistent
databases or data that need to be shared between different processes in real time.

Data Model

Object
Data

Equipment
Data

Environment
Data

Task
Data

Condition
Data

Intermediate
Data

Processing
Result

Frequently
Accessed

Data
Image Model Text …

SQL Database NoSQL Database

Structured Data Metadata of
Unstructured Data Unstructured DataCached Data

Figure 2. Data model. The storage formats of structured data and the metadata of unstructured data
are predefined and fixed. The cached data changes according to requirements and the format is
variable.

Through the full utilization of SQL and NoSQL databases, the data management architecture for
storage and access requirements in different scenarios is designed as shown in Figure 3. The database
in the architecture can be divided into three types:

1. Cache Database primarily stores the cached data. During the processing of SOOC data, different
data need to be obtained from various databases for testing, while intermediate data and results

Figure 2. Data model. The storage formats of structured data and the metadata of unstructured data are
predefined and fixed. The cached data changes according to requirements and the format is variable.

Through the full utilization of SQL and NoSQL databases, the data management architecture for
storage and access requirements in different scenarios is designed as shown in Figure 3. The database
in the architecture can be divided into three types:

1. Cache Database primarily stores the cached data. During the processing of SOOC data, different
data need to be obtained from various databases for testing, while intermediate data and results

Information 2019, 10, 296 6 of 22

that need to be shared or stored in databases are generated. During experiments on algorithms,
researchers mainly improve and iterate the internal processing of the algorithms, and the input
data of the algorithms usually remain unchanged. Retrieving raw data from databases each
time will lead to lower efficiency and exert pressure on the databases and servers; moreover,
such data need to be organized and integrated to meet the requirements each time. By storing
frequently accessed data in Cache Database, the testing data can be obtained in real time. By storing
intermediate data in Cache Database, data sharing can be realized between multiple modules.
In addition, the processing results can not only be stored in Cache Database temporarily but also
be transferred to different persistent databases.

2. SQL Database provides multiple patterns of query strategies to satisfy the storage and retrieval
requirements of structured data. When the data requested do not exist in Cache Database, they
can be obtained from SQL Database. The metadata of unstructured data in SQL Database can be
used as an intermediate bridge to retrieve unstructured data. SQL Database can also store the
processing results.

3. Unstructured Database provides high-performance queries for unstructured data, which can be
not only retrieved through the metadata in SQL databases but also queried directly from NoSQL
databases. For processing results, such as images and text, Unstructured Database can effectively
meet the storage requirements for the subsequent processing of these data.

Information 2019, 10, x FOR PEER REVIEW 6 of 22

that need to be shared or stored in databases are generated. During experiments on algorithms,
researchers mainly improve and iterate the internal processing of the algorithms, and the input
data of the algorithms usually remain unchanged. Retrieving raw data from databases each time
will lead to lower efficiency and exert pressure on the databases and servers; moreover, such
data need to be organized and integrated to meet the requirements each time. By storing
frequently accessed data in Cache Database, the testing data can be obtained in real time. By
storing intermediate data in Cache Database, data sharing can be realized between multiple
modules. In addition, the processing results can not only be stored in Cache Database temporarily
but also be transferred to different persistent databases.

2. SQL Database provides multiple patterns of query strategies to satisfy the storage and retrieval
requirements of structured data. When the data requested do not exist in Cache Database, they
can be obtained from SQL Database. The metadata of unstructured data in SQL Database can be
used as an intermediate bridge to retrieve unstructured data. SQL Database can also store the
processing results.

3. Unstructured Database provides high-performance queries for unstructured data, which can be
not only retrieved through the metadata in SQL databases but also queried directly from NoSQL
databases. For processing results, such as images and text, Unstructured Database can effectively
meet the storage requirements for the subsequent processing of these data.

NoSQL : Cache DatabaseCached data Temporary and real-time read
and write

Structured data
&

Metadata of unstructured data

Raw and processing results storage and
retrieval by providing the multi-model query

Unstructured data Raw and processing results storage and
retrieval by providing the high performance

Hybrid SQL/NoSQL Service

SQL : Relational Database

NoSQL : Unstructured Database

Legend

Data request
Operation between databases

Figure 3. Hybrid storage architecture. Different types of databases store data for different structures
and purposes. It should be noted that different types of NoSQL databases can be used to store
different data. For example, Redis can be used as Cache Database, while MongoDB as Unstructured
Database.

The hybrid SQL/NoSQL logical model and cases are shown in Figure 4. In the platform, MySQL
[12] is the SQL database, MongoDB [35] is the unstructured database, and Redis [36] is the cache
database. MySQL stores structured data (e.g., table ObjectInformation) and the metadata of
unstructured data (e.g., table MetaData). Table ObjectInformation and MetaData associate with each
other through the fields id and object_id. Each object in table ObjectInformation is unique and
corresponds to none, one, or more of the metadata in the table MetaData. MongoDB is used to store
the unstructured data, which can be linked to the data in MySQL through the field collection stored
in the table MetaData. For the data obtained from MySQL and MongoDB, Redis is used as the cache
database for caching the repeatedly accessed data to not only improve the reading and writing speed
but also reduce the load on the back-end databases.

Figure 3. Hybrid storage architecture. Different types of databases store data for different structures
and purposes. It should be noted that different types of NoSQL databases can be used to store different
data. For example, Redis can be used as Cache Database, while MongoDB as Unstructured Database.

The hybrid SQL/NoSQL logical model and cases are shown in Figure 4. In the platform, MySQL [12]
is the SQL database, MongoDB [35] is the unstructured database, and Redis [36] is the cache database.
MySQL stores structured data (e.g., table ObjectInformation) and the metadata of unstructured data
(e.g., table MetaData). Table ObjectInformation and MetaData associate with each other through the fields
id and object_id. Each object in table ObjectInformation is unique and corresponds to none, one, or more
of the metadata in the table MetaData. MongoDB is used to store the unstructured data, which can
be linked to the data in MySQL through the field collection stored in the table MetaData. For the data
obtained from MySQL and MongoDB, Redis is used as the cache database for caching the repeatedly
accessed data to not only improve the reading and writing speed but also reduce the load on the
back-end databases.

Information 2019, 10, 296 7 of 22
Information 2019, 10, x FOR PEER REVIEW 7 of 22

……

Redis is used to store data retrieved from the
other databases to avoid the repeated access to
the same data or the intermediate result during
processing.

MySQL is used to store structured data and
metadata of the unstructured data.

MongoDB is used to store unstructured data,
such as images, videos, models, etc. The
schema of unstructured data is different, for
example, here shows the magnitude values and
images under different angle of light pitch,
light azimuth, sensor pitch and sensor azimuth.

"key 1": value 1,
"key 2": value 2,
"key 3": value 3,
"key 4": value 4,

……
"key n": value n……

……

ObjectInformation

PK id

 name
 owner
 purpose
 type
 users
 description

MetaData

PK id

FK1 object_id
 collection
 file_name
 file_type
 method
 mesh_file
 field_horizontal
 field_vertical
 description

Metadata of the
unstructured data

Structured data

Cached Data

Unstructured data

Figure 4. Hybrid SQL/NoSQL logical model and cases. Different databases store different data and
collaborate with each other to provide a unified data service.

3.1.2. SOOC Hybrid SQL/NoSQL Data Access Flow

By building an appropriate data access flow, the platform can provide efficient and convenient
data services for various requirements. The hybrid SQL/NoSQL data access flow is shown in Figure
5. As a part of the hybrid SQL/NoSQL service, Data Retrieval and Integration provides data integration
as well as a unified access interface for the data in different databases. The data access flow is divided
into the following parts:

Figure 4. Hybrid SQL/NoSQL logical model and cases. Different databases store different data and
collaborate with each other to provide a unified data service.

3.1.2. SOOC Hybrid SQL/NoSQL Data Access Flow

By building an appropriate data access flow, the platform can provide efficient and convenient
data services for various requirements. The hybrid SQL/NoSQL data access flow is shown in Figure 5.
As a part of the hybrid SQL/NoSQL service, Data Retrieval and Integration provides data integration as
well as a unified access interface for the data in different databases. The data access flow is divided
into the following parts:

Part 1 Retrieve cached data. When the module Data Retrieval and Integration receives the data query
request (1: Request), it first queries data from the cache database (2: Request cached data),
returns the result (3: Return), and judges whether cached data exists (4: Cached data exists?).
If the cached data exists, the result will be returned to the user (5: Return cached data) without
requesting data from MySQL or MongoDB; otherwise, Part 2 will be executed.

Part 2 Retrieve structured data and metadata of structured data. When the user requests structured
data, these data can be obtained from MySQL (6: Query structured data and metadata) and
returned to the module Data Retrieval and Integration (7: Return). The frequently accessed raw
data can be stored in the cache database (8: Store result in cache database) to ensure data
access efficiency. Owing to different user requirements, it is necessary to judge whether to
retrieve unstructured data in Data Retrieval and Integration. When it is not necessary to obtain
unstructured data, the result is directly returned to the users (12: Return); otherwise, Part 3
will be executed on the basis of the user requirements or the metadata of the unstructured data.

Information 2019, 10, 296 8 of 22

Part 3 Retrieve unstructured data. When unstructured data are requested, the query parameters
can be obtained according to the user requirements or the metadata of the unstructured data
acquired from Part 2. The unstructured data obtained from MongoDB (9: Query unstructured
data) will be processed in Data Retrieval and Integration (10: Return) for ease of use and
returned to the users (12: Return). The frequently accessed raw data can be stored in the
cache database (11: Store result in cache database) to ensure data access efficiency.Information 2019, 10, x FOR PEER REVIEW 8 of 22

Request Data Retrieval
and Integration Redis

1: Request
2: Request cached data

7: Return

MySQL MongoDB

[does not exist]

[exists]

6: Query structured data and metadata

9: Query unstructured data

10: Return

3: Return

8: Store result in
cache database

4: Cached data exists?

11: Store result in
cache database

Cached data exists or not?

12: Return

5: Return cached data

Retrieve structured data
[conditions]

Retrieve unstructured data
[conditions]

Part 1:
Retrieve cached data

Part 2:
Retrieve structured data and
metadata of unstructured
data

Part 3:
Retrieve unstructured data

Figure 5. Hybrid SQL/NoSQL access flow. [conditions] represents the parameters for retrieving
different data from MySQL or MongoDB.

Part 1 Retrieve cached data. When the module Data Retrieval and Integration receives the data query
request (1: Request), it first queries data from the cache database (2: Request cached data),
returns the result (3: Return), and judges whether cached data exists (4: Cached data exists?). If
the cached data exists, the result will be returned to the user (5: Return cached data) without
requesting data from MySQL or MongoDB; otherwise, Part 2 will be executed.

Part 2 Retrieve structured data and metadata of structured data. When the user requests
structured data, these data can be obtained from MySQL (6: Query structured data and metadata)
and returned to the module Data Retrieval and Integration (7: Return). The frequently accessed
raw data can be stored in the cache database (8: Store result in cache database) to ensure data
access efficiency. Owing to different user requirements, it is necessary to judge whether to
retrieve unstructured data in Data Retrieval and Integration. When it is not necessary to obtain
unstructured data, the result is directly returned to the users (12: Return); otherwise, Part 3 will
be executed on the basis of the user requirements or the metadata of the unstructured data.

Part 3 Retrieve unstructured data. When unstructured data are requested, the query parameters
can be obtained according to the user requirements or the metadata of the unstructured data
acquired from Part 2. The unstructured data obtained from MongoDB (9: Query unstructured
data) will be processed in Data Retrieval and Integration (10: Return) for ease of use and returned
to the users (12: Return). The frequently accessed raw data can be stored in the cache database
(11: Store result in cache database) to ensure data access efficiency.

The final query results, especially those from structured and unstructured data, need to be
integrated by Data Retrieval and Integration according to the format of OpticalCharacteristicEntity.

3.1.3. Comparison of Different SOOC Data Services

Many SOOC data services are based on SQL databases, and Yanqi et al. [15] used Oracle to store
structured data and metadata of unstructured data, Hadoop (Apache Hbase and HDFS) to store

Figure 5. Hybrid SQL/NoSQL access flow. [conditions] represents the parameters for retrieving different
data from MySQL or MongoDB.

The final query results, especially those from structured and unstructured data, need to be
integrated by Data Retrieval and Integration according to the format of OpticalCharacteristicEntity.

3.1.3. Comparison of Different SOOC Data Services

Many SOOC data services are based on SQL databases, and Yanqi et al. [15] used Oracle to store
structured data and metadata of unstructured data, Hadoop (Apache Hbase and HDFS) to store
unstructured SOOC files, and Redis to provide cache service. As analyzed previously, services based
on SQL databases cannot meet research requirements. The service based on Oracle and Hadoop is not
easy to deploy and maintain. As a commercial database, Oracle has higher hardware requirements,
and Apache Hbase or HDFS are not flexible enough for different data formats. By contrast, MySQL is
a lightweight database, and MongoDB can handle complex data formats regardless of the data schema.
Simultaneously, MySQL and MongoDB are easy to deploy and maintain. The detailed comparisons
between hybrid SQL/NoSQL service and the service based on RDBMS and Hadoop proposed in
Reference [15] are as shown in Table 1. Since SQL databases cannot meet the requirements, the solutions
based on SQL databases are no longer listed. For hybrid SQL/NoSQL service and service based on
RDBMS and Hadoop, only the different items are compared. The comparison results in Table 1 indicate
that hybrid SQL/NoSQL service is more suitable for researchers and research institutions.

Information 2019, 10, 296 9 of 22

Table 1. Comparison of different SOOC data services.

Item Service Based on RDBMS and Hadoop Hybrid SQL/NoSQL Service

Deployment Not easy to deploy and not user-friendly Easy to deploy and user-friendly

Maintenance Difficult and the updates of Oracle and
Hadoop are complex Easy to maintain and update

Data Support Support data of different structures, but
unable to support variable data schemas

Support data of different structures
and schemas, and also support new

formats in existing documents

Access Interface
Do not provide a direct or unified access
interface for users unfamiliar with SQL or

NoSQL databases

Support to access all data through a
unified interface or data of different

structures separately

Cost May need more money and time Based on opensource software with
less money and time

Purpose
Mainly for enterprise business

applications and medium or large
companies

Mainly for startup or smaller scientific
research teams and companies

Flexibility Moderate High

3.2. SOOC Heterogeneous Function Integration Service

As a scaffolding platform, SOOCP does not provide specific SOOC analysis functions; instead,
it provides the ability to integrate multi-source heterogeneous functions. Using this platform,
researchers can concentrate on the innovation and experimentation of algorithms. The heterogeneous
function integration service provided by the platform mainly (i) integrates algorithmic and functional
modules developed by researchers in different programming languages and (ii) offers online service
integration for development engineers.

3.2.1. SOOC Algorithmic and Functional Module Integration

The algorithms built by researchers in different programming languages and operating
environments are multi-source heterogeneous algorithms. By using the integration service, researchers
can integrate the multi-source heterogeneous algorithmic and functional modules into the platform
and thus test and practically apply the algorithms. To assist researchers in integrating multi-source
heterogeneous modules autonomously, the platform adopts algorithmic and functional module
integration, which mainly consists of Module Manager, Module Loader, and Parameter Parser, as shown in
Figure 6.Information 2019, 10, x FOR PEER REVIEW 10 of 22

Module
Manager

Module Loader

Parameter
Parser

Heterogeneous
Algorithmic

and Functional
Modules

Integration

Module Registry

Information Management

Parameter Mapping Rule
Definition

Module Distribution

Language Runtime Loading

Module Eager Loading

Object Instantiation

Input Parameters Parser

Output Parameters Parser

Manage submitted modules uniformly

Distribute modules in a distributed environment

Map user input parameters to module needed
parameters

Store and retrieve module information

Different language runtime are used to
implement eager loading and unloading of
modules, and objects are instantiated after

modules have been loaded.

Use parameter mapping rules to parse input and
output parameters

Figure 6. Heterogeneous algorithmic and functional module integration. The combination of module
manager, module loader, and parameter parser completes the integration.

Module Manager manages the modules submitted by various researchers. The submitted
modules need to be registered and the related information needs to be stored in databases to facilitate
data retrieval for use of the modules. High concurrency requests from researchers require the
construction of distributed applications. Module Manager can distribute each module on different
platforms to meet the high concurrency requirements through load balancing. Different algorithms
require ordered input and output parameters, and the user input parameters need to match with the
required parameters of these modules on the basis of the parameter mapping rule. Module Manager
also provides information management, i.e., it manages the basic information about each module as
well as the requirements for the input and output parameters. On the basis of the required
information, researchers can construct corresponding parameters to drive different modules for data
analysis. Usually, the heterogeneous algorithmic and functional modules are stored in the functional
server, and the input and output parameters of each module are stored in the database, as shown in
Figure 7.

store modules
…… C/C++ C Sharp

Python MatlabJava

store parameters

Database

Functional
Server

Class
Method

Output parameters
Input parameters

Method

Output parameters
Input parameters

……

Class
Method

Output parameters
Input parameters

Method

Output parameters
Input parameters

……

……

Different modules include
various class and each class

includes several methods

Figure 7. Storage of algorithmic and functional modules, components, and parameters. The various
modules are stored on the functional server ready to be called, and the corresponding parameters are
stored in the database for retrieving.

Through Module Loader, different algorithmic and functional modules implement eager loading,
as shown in Figure 8. To support modules developed in different languages, Module Loader provides
language runtime loading for different programming languages. Before different modules are

Figure 6. Heterogeneous algorithmic and functional module integration. The combination of module
manager, module loader, and parameter parser completes the integration.

Information 2019, 10, 296 10 of 22

Module Manager manages the modules submitted by various researchers. The submitted modules
need to be registered and the related information needs to be stored in databases to facilitate data
retrieval for use of the modules. High concurrency requests from researchers require the construction
of distributed applications. Module Manager can distribute each module on different platforms to meet
the high concurrency requirements through load balancing. Different algorithms require ordered input
and output parameters, and the user input parameters need to match with the required parameters of
these modules on the basis of the parameter mapping rule. Module Manager also provides information
management, i.e., it manages the basic information about each module as well as the requirements for
the input and output parameters. On the basis of the required information, researchers can construct
corresponding parameters to drive different modules for data analysis. Usually, the heterogeneous
algorithmic and functional modules are stored in the functional server, and the input and output
parameters of each module are stored in the database, as shown in Figure 7.

Information 2019, 10, x FOR PEER REVIEW 10 of 22

Module
Manager

Module Loader

Parameter
Parser

Heterogeneous
Algorithmic

and Functional
Modules

Integration

Module Registry

Information Management

Parameter Mapping Rule
Definition

Module Distribution

Language Runtime Loading

Module Eager Loading

Object Instantiation

Input Parameters Parser

Output Parameters Parser

Manage submitted modules uniformly

Distribute modules in a distributed environment

Map user input parameters to module needed
parameters

Store and retrieve module information

Different language runtime are used to
implement eager loading and unloading of
modules, and objects are instantiated after

modules have been loaded.

Use parameter mapping rules to parse input and
output parameters

Figure 6. Heterogeneous algorithmic and functional module integration. The combination of module
manager, module loader, and parameter parser completes the integration.

Module Manager manages the modules submitted by various researchers. The submitted
modules need to be registered and the related information needs to be stored in databases to facilitate
data retrieval for use of the modules. High concurrency requests from researchers require the
construction of distributed applications. Module Manager can distribute each module on different
platforms to meet the high concurrency requirements through load balancing. Different algorithms
require ordered input and output parameters, and the user input parameters need to match with the
required parameters of these modules on the basis of the parameter mapping rule. Module Manager
also provides information management, i.e., it manages the basic information about each module as
well as the requirements for the input and output parameters. On the basis of the required
information, researchers can construct corresponding parameters to drive different modules for data
analysis. Usually, the heterogeneous algorithmic and functional modules are stored in the functional
server, and the input and output parameters of each module are stored in the database, as shown in
Figure 7.

store modules
…… C/C++ C Sharp

Python MatlabJava

store parameters

Database

Functional
Server

Class
Method

Output parameters
Input parameters

Method

Output parameters
Input parameters

……

Class
Method

Output parameters
Input parameters

Method

Output parameters
Input parameters

……

……

Different modules include
various class and each class

includes several methods

Figure 7. Storage of algorithmic and functional modules, components, and parameters. The various
modules are stored on the functional server ready to be called, and the corresponding parameters are
stored in the database for retrieving.

Through Module Loader, different algorithmic and functional modules implement eager loading,
as shown in Figure 8. To support modules developed in different languages, Module Loader provides
language runtime loading for different programming languages. Before different modules are

Figure 7. Storage of algorithmic and functional modules, components, and parameters. The various
modules are stored on the functional server ready to be called, and the corresponding parameters are
stored in the database for retrieving.

Through Module Loader, different algorithmic and functional modules implement eager loading,
as shown in Figure 8. To support modules developed in different languages, Module Loader provides
language runtime loading for different programming languages. Before different modules are loaded,
the language runtime of each module will be run, and each module will execute eager loading after the
running environment is established. Each module usually includes at least one class, and each class
includes at least one method. Module Loader constructs the instantiated objects by the class name of the
module and calls methods through these instantiated objects.

Different modules have different input and output parameters. The input parameters from
researchers need to be in one-to-one correspondence with the input parameters of the module, which
can be completed by the input parameter parser in Parameter Parser, and the process results of the
modules can be parsed by the output parameter parser in Parameter Parser.

Information 2019, 10, 296 11 of 22

Information 2019, 10, x FOR PEER REVIEW 11 of 22

loaded, the language runtime of each module will be run, and each module will execute eager loading
after the running environment is established. Each module usually includes at least one class, and
each class includes at least one method. Module Loader constructs the instantiated objects by the class
name of the module and calls methods through these instantiated objects.

Requests

Language Runtime Loading

Module Eager Loading

Object Instantiation

Information Management

DatabaseFunctional
Server

Runtime Components

……

Python

 Matlab

 C/C++

C Sharp

Java

Prepare method and wait for input
parameters

Module Loader

Providing information
of modules, classes
and parameters for

module loader

Figure 8. Work flow of Module Loader. The runtime components include different language running
environments.

Different modules have different input and output parameters. The input parameters from
researchers need to be in one-to-one correspondence with the input parameters of the module, which
can be completed by the input parameter parser in Parameter Parser, and the process results of the
modules can be parsed by the output parameter parser in Parameter Parser.

3.2.2. SOOC Online Service Integration

Existing online services need to be split by functions or even re-programmed to use the
integration method described in Section 3.2.1, which is difficult and expensive. Therefore, for
development engineers with relevant online service development capabilities, SOOCP provides the
integration of various independent online services on the basis of the sidecar model [37] in MSA.

Based on the sidecar model, the platform can add services for different languages in separate
processes without affecting other services. By attaching different services to the platform using the
sidecar model, the functions of the platform can be extended and enhanced. All the integrated online
services can share the basic services, such as service registry, load balancing, and service gateway,
provided by the platform. Each heterogeneous online service is not only loosely coupled to the
platform but also developed and deployed independently and autonomously using the sidecar
model. The sidecar model can exploit existing online services, while reducing the duplication of
components and increasing service availability. The online service integration method based on the
sidecar model is shown in Figure 9. Each existing online service needs (i) to provide a status link for
the platform to check its health status and (ii) a dedicated integration service (e.g., C/C++ Service,
Nodejs Service in Figure 9). The online service can be accessed normally through the unified access
interface provided by the service gateway when the health check meets the requirements. By load
balancing, the online services can be easily scaled horizontally.

Figure 8. Work flow of Module Loader. The runtime components include different language
running environments.

3.2.2. SOOC Online Service Integration

Existing online services need to be split by functions or even re-programmed to use the integration
method described in Section 3.2.1, which is difficult and expensive. Therefore, for development
engineers with relevant online service development capabilities, SOOCP provides the integration of
various independent online services on the basis of the sidecar model [37] in MSA.

Based on the sidecar model, the platform can add services for different languages in separate
processes without affecting other services. By attaching different services to the platform using the
sidecar model, the functions of the platform can be extended and enhanced. All the integrated online
services can share the basic services, such as service registry, load balancing, and service gateway,
provided by the platform. Each heterogeneous online service is not only loosely coupled to the
platform but also developed and deployed independently and autonomously using the sidecar model.
The sidecar model can exploit existing online services, while reducing the duplication of components
and increasing service availability. The online service integration method based on the sidecar model
is shown in Figure 9. Each existing online service needs (i) to provide a status link for the platform to
check its health status and (ii) a dedicated integration service (e.g., C/C++ Service, Nodejs Service in
Figure 9). The online service can be accessed normally through the unified access interface provided
by the service gateway when the health check meets the requirements. By load balancing, the online
services can be easily scaled horizontally.Information 2019, 10, x FOR PEER REVIEW 12 of 22

Service Registery Service Gateway

……

C/C++ Service

status service

Nodejs Service

status service

PHP Service

statusservice

Java Service

statusservice

Online Service
Integration

Online Service
Integration

Online Service
Integration

Online Service
Integration

Legend
status Service status for health check services URL of online services

Figure 9. Sidecar model of the platform. Each service can be accessed after passing the health status
check.

4. Platform Application Modes and Case Study

Different levels of users in the field of SOOC have diverse requirements. As a scaffolding
platform, the proposed platform provides appropriate services to meet the needs of each level. As
shown in Figure 10, the design orientation of this platform mainly aims to meet the requirements of
data level, algorithm level, and development level.

• Data input and retrieve
• Data integration
• Data visualization
• Data analysis and experiment

Data Level

• Algorithms integration and
experiment

• Providing online services
• Personalization

Algorithm Level

• Existing services integration
• Providing unified access API
• Load balancing and service

discovery

Development Level

Figure 10. Design of platform application modes. Different levels have different requirements and
application modes.

4.1. Data Level

At this level, the platform stores various SOOC data in the databases, which can be accessed
through the network. Thus, it is convenient for users to store and retrieve SOOC data. For SOOC
data, users are mainly concerned with data input and retrieval. Therefore, data input and retrieval
experiments are conducted for testing, and some applications of the data level are presented.

4.1.1. Data input and retrieval efficiency

The experimental data are the historical orbital ephemeris data and the simulated optical
characteristic data of the Worldview 1 satellite, as shown in Figure 11. Historical orbit ephemeris
data, current as of May 19, 2019, 00:00:00 UTC, are obtained from Space-Track.org [38] in the format
of two line element (TLE). The optical characteristic data are the full-angle simulated data, which
include four angles: optical source pitch, optical source azimuth, detector pitch, and detector
azimuth. The sampling interval of the four angles is 2°. The experimental data include 180 magnitude
data files and the corresponding optical image files for each set of the four angles at an equivalent
distance of 500 km. The data volume of the magnitude data files is 5.58 GB, including approximately
260 million pieces of magnitude data, and the data volume of the optical image files is 1245.6 GB,
including approximately 260 million image files. The experimental hardware platform is a PC with
an Intel® 8-core CPU and 32 GB of memory. The operating system was Ubuntu 16.04 LTS and the
databases are MySQL (version: 8.0.15), MongoDB (version: 4.0.6), and Redis (Version: 4.0.13). Redis
is a real-time cache database and is used only in the cases of temporary data reading and writing,
which will not be compared here.

Figure 9. Sidecar model of the platform. Each service can be accessed after passing the health
status check.

Information 2019, 10, 296 12 of 22

4. Platform Application Modes and Case Study

Different levels of users in the field of SOOC have diverse requirements. As a scaffolding platform,
the proposed platform provides appropriate services to meet the needs of each level. As shown in
Figure 10, the design orientation of this platform mainly aims to meet the requirements of data level,
algorithm level, and development level.

Information 2019, 10, x FOR PEER REVIEW 12 of 22

Service Registery Service Gateway

……

C/C++ Service

status service

Nodejs Service

status service

PHP Service

statusservice

Java Service

statusservice

Online Service
Integration

Online Service
Integration

Online Service
Integration

Online Service
Integration

Legend
status Service status for health check services URL of online services

Figure 9. Sidecar model of the platform. Each service can be accessed after passing the health status
check.

4. Platform Application Modes and Case Study

Different levels of users in the field of SOOC have diverse requirements. As a scaffolding
platform, the proposed platform provides appropriate services to meet the needs of each level. As
shown in Figure 10, the design orientation of this platform mainly aims to meet the requirements of
data level, algorithm level, and development level.

• Data input and retrieve
• Data integration
• Data visualization
• Data analysis and experiment

Data Level

• Algorithms integration and
experiment

• Providing online services
• Personalization

Algorithm Level

• Existing services integration
• Providing unified access API
• Load balancing and service

discovery

Development Level

Figure 10. Design of platform application modes. Different levels have different requirements and
application modes.

4.1. Data Level

At this level, the platform stores various SOOC data in the databases, which can be accessed
through the network. Thus, it is convenient for users to store and retrieve SOOC data. For SOOC
data, users are mainly concerned with data input and retrieval. Therefore, data input and retrieval
experiments are conducted for testing, and some applications of the data level are presented.

4.1.1. Data input and retrieval efficiency

The experimental data are the historical orbital ephemeris data and the simulated optical
characteristic data of the Worldview 1 satellite, as shown in Figure 11. Historical orbit ephemeris
data, current as of May 19, 2019, 00:00:00 UTC, are obtained from Space-Track.org [38] in the format
of two line element (TLE). The optical characteristic data are the full-angle simulated data, which
include four angles: optical source pitch, optical source azimuth, detector pitch, and detector
azimuth. The sampling interval of the four angles is 2°. The experimental data include 180 magnitude
data files and the corresponding optical image files for each set of the four angles at an equivalent
distance of 500 km. The data volume of the magnitude data files is 5.58 GB, including approximately
260 million pieces of magnitude data, and the data volume of the optical image files is 1245.6 GB,
including approximately 260 million image files. The experimental hardware platform is a PC with
an Intel® 8-core CPU and 32 GB of memory. The operating system was Ubuntu 16.04 LTS and the
databases are MySQL (version: 8.0.15), MongoDB (version: 4.0.6), and Redis (Version: 4.0.13). Redis
is a real-time cache database and is used only in the cases of temporary data reading and writing,
which will not be compared here.

Figure 10. Design of platform application modes. Different levels have different requirements and
application modes.

4.1. Data Level

At this level, the platform stores various SOOC data in the databases, which can be accessed
through the network. Thus, it is convenient for users to store and retrieve SOOC data. For SOOC
data, users are mainly concerned with data input and retrieval. Therefore, data input and retrieval
experiments are conducted for testing, and some applications of the data level are presented.

4.1.1. Data Input and Retrieval Efficiency

The experimental data are the historical orbital ephemeris data and the simulated optical
characteristic data of the Worldview 1 satellite, as shown in Figure 11. Historical orbit ephemeris
data, current as of May 19, 2019, 00:00:00 UTC, are obtained from Space-Track.org [38] in the format
of two line element (TLE). The optical characteristic data are the full-angle simulated data, which
include four angles: optical source pitch, optical source azimuth, detector pitch, and detector azimuth.
The sampling interval of the four angles is 2◦. The experimental data include 180 magnitude data
files and the corresponding optical image files for each set of the four angles at an equivalent distance
of 500 km. The data volume of the magnitude data files is 5.58 GB, including approximately 260
million pieces of magnitude data, and the data volume of the optical image files is 1245.6 GB, including
approximately 260 million image files. The experimental hardware platform is a PC with an Intel®

8-core CPU and 32 GB of memory. The operating system was Ubuntu 16.04 LTS and the databases are
MySQL (version: 8.0.15), MongoDB (version: 4.0.6), and Redis (Version: 4.0.13). Redis is a real-time
cache database and is used only in the cases of temporary data reading and writing, which will not be
compared here.

The experimental data are divided into two parts: (i) numerical data and (ii) numerical and image
data. The numerical data include the historical orbit ephemeris data and the magnitude data, and the
image data include the optical image files. The contrasting storage strategies are shown in Table 2.

Table 2. Storage strategies and experimental data.

Experiment
Storage Strategy

MySQL Hybrid SQL/NoSQL Service

Data input of numerical
data

Storing all the numerical
data

MySQL stores the historical orbit ephemeris data and
MongoDB stores the magnitude data

Data input of numerical
and image data

Storing all the numerical
data and image files

MySQL stores the historical orbit ephemeris data and
MongoDB stores the magnitude data and image files

Information 2019, 10, 296 13 of 22
Information 2019, 10, x FOR PEER REVIEW 13 of 22

Historical orbit ephemeris data Magnitude data file Image filesThe magnitude data
in the file

Figure 11. Experimental data. Each magnitude data file includes the magnitude data under different
directions of the optical source and detector. Similarly, the image files are the optical images under
different directions of the optical source and detector. Historical orbit ephemeris data is used to
calculate the position of the satellite, and the direction of the optical source and detector can be
obtained by the relative position of the satellite, the detector, and the sun. The corresponding
magnitude data and image file can be retrieved by the angle of the optical source and detector, for
example, when the optical source pitch is −90°, the optical source azimuth is −10°, the detector pitch
is −68°, and the detector azimuth is −0°, the value of magnitude is 0.0231561 and the image file is
“−90_10_−68_0.jpg”.

The experimental data are divided into two parts: (i) numerical data and (ii) numerical and
image data. The numerical data include the historical orbit ephemeris data and the magnitude data,
and the image data include the optical image files. The contrasting storage strategies are shown in
Table 2.

Table 2. Storage strategies and experimental data.

Experiment
Storage Strategy

MySQL Hybrid SQL/NoSQL Service
Data input of

numerical data
Storing all the
numerical data

MySQL stores the historical orbit ephemeris data and
MongoDB stores the magnitude data

Data input of
numerical and

image data

Storing all the
numerical data
and image files

MySQL stores the historical orbit ephemeris data and
MongoDB stores the magnitude data and image files

(1) Efficiency comparison of data input
Figure 12 compares the data input efficiency of MySQL and the hybrid SQL/NoSQL service

under different data volume inputted each time. The results show that the data input efficiency of
MySQL is significantly lower than that of the hybrid SQL/NoSQL service when the same data volume
is inserted each time. The hybrid SQL/NoSQL service is at least 17 (resp. 34) times more efficient than
MySQL in the case of input numerical data (resp. input numerical data and image files) as shown in
Figure 12a (resp. Figure 12b). Thus, Figure 12 shows the excellent performance of the hybrid
SQL/NoSQL service when storing massive heterogeneous data. In particular, when storing
unstructured data, such as image files, the hybrid SQL/NoSQL service shows better performance than
MySQL.

Figure 11. Experimental data. Each magnitude data file includes the magnitude data under different
directions of the optical source and detector. Similarly, the image files are the optical images under
different directions of the optical source and detector. Historical orbit ephemeris data is used to calculate
the position of the satellite, and the direction of the optical source and detector can be obtained by the
relative position of the satellite, the detector, and the sun. The corresponding magnitude data and
image file can be retrieved by the angle of the optical source and detector, for example, when the optical
source pitch is −90◦, the optical source azimuth is −10◦, the detector pitch is −68◦, and the detector
azimuth is −0◦, the value of magnitude is 0.0231561 and the image file is “−90_10_−68_0.jpg”.

(1) Efficiency comparison of data input

Figure 12 compares the data input efficiency of MySQL and the hybrid SQL/NoSQL service under
different data volume inputted each time. The results show that the data input efficiency of MySQL is
significantly lower than that of the hybrid SQL/NoSQL service when the same data volume is inserted
each time. The hybrid SQL/NoSQL service is at least 17 (resp. 34) times more efficient than MySQL in
the case of input numerical data (resp. input numerical data and image files) as shown in Figure 12a
(resp. Figure 12b). Thus, Figure 12 shows the excellent performance of the hybrid SQL/NoSQL service
when storing massive heterogeneous data. In particular, when storing unstructured data, such as
image files, the hybrid SQL/NoSQL service shows better performance than MySQL.Information 2019, 10, x FOR PEER REVIEW 14 of 22

0 200000 400000 600000 800000 1000000
0

2000

4000

6000

8000

10000

12000

Ti
m

e
Co

ns
um

in
g

(s
)

Data volume inserted each time

 MySQL
 Hybrid SQL/NoSQL service

0 200000 400000 600000 800000 1000000

0

10000

20000

30000

40000

50000

60000

Ti
m

e
Co

ns
um

in
g

(s
)

Data volumes inserted each time

 MySQL
 Hybrid SQL/NoSQL service

(a) (b)

Figure 12. Efficiency comparison of data input: (a) numerical data; (b) numerical data and image files.

(2) Efficiency comparison of data retrieval
The main purpose of storing SOOC data in databases is to provide data services for application

scenarios such as experiments, analyses, and simulations. Therefore, meeting the data access
requirements, especially in high concurrency situations, is extremely important. Apache JMeter [39]
was used to test the retrieval efficiency of MySQL and the hybrid SQL/NoSQL service; their
efficiencies in terms of responses to concurrent requests are compared in Figure 13. The comparison
shows that with an increase in concurrent requests, the response time of MySQL increases rapidly
and exceeds that of the hybrid SQL/NoSQL service. Thus, the proposed hybrid SQL/NoSQL service
can meet the data retrieval requirements in a highly concurrent environment.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

5000

10000

15000

20000

25000

30000

Re
sp

on
se

 T
im

e
(m

s)

Concurrent Count

 MySQL
 Hybrid SQL/NoSQL service

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

0

5000

10000

15000

20000

25000

30000

35000

40000

Re
sp

on
se

 T
im

e
(m

s)

Concurrent Count

 MySQL
 Hybrid SQL/NoSQL service

(a) (b)

Figure 13. Efficiency comparison of responses to concurrent requests: (a) data retrieval of numerical
data; (b) data retrieval of numerical data and image files.

4.1.2. SOOC data visualization

The platform uses Echarts [40], an advanced visualization component, to provide visualization
of the data level cases. Users obtain different visualization results, such as optical scattering
magnitude, optical scattering intensity, and optical scattering images, by selecting different data and
parameters. By taking the visualization of optical scattering magnitude as an example, users need to
select one object from the object list as well as the data file of the selected object that needs to be
visualized. The object list and the data file name of each object are retrieved from the database. The
selected data in the following cases are the simulated photometric data of the Worldview 1 at the
equivalent distance of 500 km.

Figure 12. Efficiency comparison of data input: (a) numerical data; (b) numerical data and image files.

(2) Efficiency comparison of data retrieval

The main purpose of storing SOOC data in databases is to provide data services for application
scenarios such as experiments, analyses, and simulations. Therefore, meeting the data access
requirements, especially in high concurrency situations, is extremely important. Apache JMeter [39]

Information 2019, 10, 296 14 of 22

was used to test the retrieval efficiency of MySQL and the hybrid SQL/NoSQL service; their efficiencies
in terms of responses to concurrent requests are compared in Figure 13. The comparison shows that
with an increase in concurrent requests, the response time of MySQL increases rapidly and exceeds
that of the hybrid SQL/NoSQL service. Thus, the proposed hybrid SQL/NoSQL service can meet the
data retrieval requirements in a highly concurrent environment.

Information 2019, 10, x FOR PEER REVIEW 14 of 22

0 200000 400000 600000 800000 1000000
0

2000

4000

6000

8000

10000

12000

Ti
m

e
Co

ns
um

in
g

(s
)

Data volume inserted each time

 MySQL
 Hybrid SQL/NoSQL service

0 200000 400000 600000 800000 1000000

0

10000

20000

30000

40000

50000

60000

Ti
m

e
Co

ns
um

in
g

(s
)

Data volumes inserted each time

 MySQL
 Hybrid SQL/NoSQL service

(a) (b)

Figure 12. Efficiency comparison of data input: (a) numerical data; (b) numerical data and image files.

(2) Efficiency comparison of data retrieval
The main purpose of storing SOOC data in databases is to provide data services for application

scenarios such as experiments, analyses, and simulations. Therefore, meeting the data access
requirements, especially in high concurrency situations, is extremely important. Apache JMeter [39]
was used to test the retrieval efficiency of MySQL and the hybrid SQL/NoSQL service; their
efficiencies in terms of responses to concurrent requests are compared in Figure 13. The comparison
shows that with an increase in concurrent requests, the response time of MySQL increases rapidly
and exceeds that of the hybrid SQL/NoSQL service. Thus, the proposed hybrid SQL/NoSQL service
can meet the data retrieval requirements in a highly concurrent environment.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

5000

10000

15000

20000

25000

30000

Re
sp

on
se

 T
im

e
(m

s)

Concurrent Count

 MySQL
 Hybrid SQL/NoSQL service

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

0

5000

10000

15000

20000

25000

30000

35000

40000

Re
sp

on
se

 T
im

e
(m

s)

Concurrent Count

 MySQL
 Hybrid SQL/NoSQL service

(a) (b)

Figure 13. Efficiency comparison of responses to concurrent requests: (a) data retrieval of numerical
data; (b) data retrieval of numerical data and image files.

4.1.2. SOOC data visualization

The platform uses Echarts [40], an advanced visualization component, to provide visualization
of the data level cases. Users obtain different visualization results, such as optical scattering
magnitude, optical scattering intensity, and optical scattering images, by selecting different data and
parameters. By taking the visualization of optical scattering magnitude as an example, users need to
select one object from the object list as well as the data file of the selected object that needs to be
visualized. The object list and the data file name of each object are retrieved from the database. The
selected data in the following cases are the simulated photometric data of the Worldview 1 at the
equivalent distance of 500 km.

Figure 13. Efficiency comparison of responses to concurrent requests: (a) data retrieval of numerical
data; (b) data retrieval of numerical data and image files.

4.1.2. SOOC Data Visualization

The platform uses Echarts [40], an advanced visualization component, to provide visualization of
the data level cases. Users obtain different visualization results, such as optical scattering magnitude,
optical scattering intensity, and optical scattering images, by selecting different data and parameters.
By taking the visualization of optical scattering magnitude as an example, users need to select one
object from the object list as well as the data file of the selected object that needs to be visualized.
The object list and the data file name of each object are retrieved from the database. The selected data
in the following cases are the simulated photometric data of the Worldview 1 at the equivalent distance
of 500 km.

Figure 14 shows the planar heatmap of the magnitude under different detector pitch and azimuth
values to better display the relationship between various angles and magnitudes, and the 3D heatmap
is shown in Figure 15. By moving the mouse on the 3D heatmap, the magnitude under different
detector pitch and azimuth values can be intuitively perceived when the optical angle is fixed; thus,
the cognitive level of users is improved. Figure 16 shows how the magnitude changes with the detector
azimuth when the optical source pitch, optical source azimuth, and detector pitch are fixed.

In addition to the visualization results discussed above, users can obtain richer visualization
results based on the comprehensive data retrieval interface provided, and they can use the retrieved
data for SOOC analyses in different algorithms and applications.

Information 2019, 10, 296 15 of 22

Information 2019, 10, x FOR PEER REVIEW 15 of 22

Figure 14 shows the planar heatmap of the magnitude under different detector pitch and
azimuth values to better display the relationship between various angles and magnitudes, and the
3D heatmap is shown in Figure 15. By moving the mouse on the 3D heatmap, the magnitude under
different detector pitch and azimuth values can be intuitively perceived when the optical angle is
fixed; thus, the cognitive level of users is improved. Figure 16 shows how the magnitude changes
with the detector azimuth when the optical source pitch, optical source azimuth, and detector pitch
are fixed.

In addition to the visualization results discussed above, users can obtain richer visualization
results based on the comprehensive data retrieval interface provided, and they can use the retrieved
data for SOOC analyses in different algorithms and applications.

Optical characteristic
types

Selected equivalent distance, and the pitch and
azimuth angle of the optical source.

Selected space object and data file name

Heatmap of magnitude under the
detector pitch and azimuth angle.

Figure 14. Home page of the visualization. The visualization displayed is the planar heatmap of the
magnitude of the Worldview 1 satellite. The data of the space object needed to be visualized are
obtained by selecting the space object and the data file name. By selecting the optical source pitch and
azimuth, the planar heatmap under different optical sources can be obtained. In the heatmap, the x-
axis is the detector azimuth, the y-axis is the detector pitch, and the value is the magnitude value. In
this figure, the selected space object and the data file name are “Worldview 1” and
“Worldview_1_20190420” respectively; the values of optical source pitch, optical source azimuth, and
equivalent distance are −90°, 100°, and 500 km, respectively.

Input parameter list

The relationship of the magnitude, the detector azimuth angle and detector elevation
angle in the 3D globe in the case of a constant optical source.

Figure 14. Home page of the visualization. The visualization displayed is the planar heatmap of
the magnitude of the Worldview 1 satellite. The data of the space object needed to be visualized are
obtained by selecting the space object and the data file name. By selecting the optical source pitch and
azimuth, the planar heatmap under different optical sources can be obtained. In the heatmap, the x-axis
is the detector azimuth, the y-axis is the detector pitch, and the value is the magnitude value. In this
figure, the selected space object and the data file name are “Worldview 1” and “Worldview_1_20190420”
respectively; the values of optical source pitch, optical source azimuth, and equivalent distance are
−90◦, 100◦, and 500 km, respectively.

Information 2019, 10, x FOR PEER REVIEW 15 of 22

Figure 14 shows the planar heatmap of the magnitude under different detector pitch and
azimuth values to better display the relationship between various angles and magnitudes, and the
3D heatmap is shown in Figure 15. By moving the mouse on the 3D heatmap, the magnitude under
different detector pitch and azimuth values can be intuitively perceived when the optical angle is
fixed; thus, the cognitive level of users is improved. Figure 16 shows how the magnitude changes
with the detector azimuth when the optical source pitch, optical source azimuth, and detector pitch
are fixed.

In addition to the visualization results discussed above, users can obtain richer visualization
results based on the comprehensive data retrieval interface provided, and they can use the retrieved
data for SOOC analyses in different algorithms and applications.

Optical characteristic
types

Selected equivalent distance, and the pitch and
azimuth angle of the optical source.

Selected space object and data file name

Heatmap of magnitude under the
detector pitch and azimuth angle.

Figure 14. Home page of the visualization. The visualization displayed is the planar heatmap of the
magnitude of the Worldview 1 satellite. The data of the space object needed to be visualized are
obtained by selecting the space object and the data file name. By selecting the optical source pitch and
azimuth, the planar heatmap under different optical sources can be obtained. In the heatmap, the x-
axis is the detector azimuth, the y-axis is the detector pitch, and the value is the magnitude value. In
this figure, the selected space object and the data file name are “Worldview 1” and
“Worldview_1_20190420” respectively; the values of optical source pitch, optical source azimuth, and
equivalent distance are −90°, 100°, and 500 km, respectively.

Input parameter list

The relationship of the magnitude, the detector azimuth angle and detector elevation
angle in the 3D globe in the case of a constant optical source.

Figure 15. 3D heatmap of the magnitude of the Worldview 1 satellite. In this figure, the values of optical
source pitch, optical source azimuth, and equivalent distance are −90◦, 100◦, and 500 km, respectively.

Information 2019, 10, x FOR PEER REVIEW 16 of 22

Figure 15. 3D heatmap of the magnitude of the Worldview 1 satellite. In this figure, the values of
optical source pitch, optical source azimuth, and equivalent distance are −90°, 100°, and 500 km,
respectively.

Input parameter list

Line chart of the
relationship between the
magnitude and one of the
optical source pitch angle,

optical source azimuth
angle, detector pitch angle

and detector azimuth angle.

Figure 16. Line chart of magnitude changes of the Worldview 1 satellite with the detector azimuth
when the optical source pitch, optical source azimuth, and detector pitch are fixed. In this figure, the
values of optical source pitch, optical source azimuth, detector pitch, and equivalent distance are −90°,
100°, −90°, and 500 km, respectively. In the heatmap, the x-axis is the detector azimuth and the y-axis
is the magnitude value.

4.2. Algorithm Level

Researchers in the field of SOOC often place greater emphasis on the research and
experimentation of algorithms, while they are not proficient in sharing the research achievements
externally. In general, professional developers are required to build and integrate the algorithms and
research achievements; thus, the promotion of the latest innovative algorithms is restricted. Based on
the proposed SOOC heterogeneous function integration service, researchers can conveniently build
distributed online services for publishing the algorithms and research achievements externally.

In the case of the algorithm level, the SOOC data analysis algorithm developed in MATLAB is
taken as an example to illustrate algorithm integration and application. The test images, which have
been converted into grayscale images, are obtained from the observed video of the International
Space Station (ISS) [41], and the tested algorithms are image enhancement and contour extraction.

The purpose of image enhancement is to improve the visual effect of images, highlight the
meaningful information for human or machine analysis, and suppress useless information. To
highlight the grayscale interval of interest and relatively suppress other grayscale intervals, three-
stage linear transformation is used, as shown in Figure 17. In contour extraction, based on the
threshold determination algorithm [42], the grayscale image is converted into a binary image, and a
two-dimensional eight-connected neighborhood is then constructed to determine the contour.

L/4 L/2 3L/4 L00

L/4

L/2

3L/4

L

Output Grayscale: r

O
ut

pu
t G

ra
ys

ca
le

: s

1 1(,)r s

2 2(,)r s

T(r)

Figure 17. Three-stage linear transformation. As a typical linear transformation, the position of the
points can control the shape of the transformation function.

Figure 16. Line chart of magnitude changes of the Worldview 1 satellite with the detector azimuth
when the optical source pitch, optical source azimuth, and detector pitch are fixed. In this figure, the
values of optical source pitch, optical source azimuth, detector pitch, and equivalent distance are −90◦,
100◦, −90◦, and 500 km, respectively. In the heatmap, the x-axis is the detector azimuth and the y-axis is
the magnitude value.

Information 2019, 10, 296 16 of 22

4.2. Algorithm Level

Researchers in the field of SOOC often place greater emphasis on the research and experimentation
of algorithms, while they are not proficient in sharing the research achievements externally. In general,
professional developers are required to build and integrate the algorithms and research achievements;
thus, the promotion of the latest innovative algorithms is restricted. Based on the proposed SOOC
heterogeneous function integration service, researchers can conveniently build distributed online
services for publishing the algorithms and research achievements externally.

In the case of the algorithm level, the SOOC data analysis algorithm developed in MATLAB is
taken as an example to illustrate algorithm integration and application. The test images, which have
been converted into grayscale images, are obtained from the observed video of the International Space
Station (ISS) [41], and the tested algorithms are image enhancement and contour extraction.

The purpose of image enhancement is to improve the visual effect of images, highlight
the meaningful information for human or machine analysis, and suppress useless information.
To highlight the grayscale interval of interest and relatively suppress other grayscale intervals,
three-stage linear transformation is used, as shown in Figure 17. In contour extraction, based on the
threshold determination algorithm [42], the grayscale image is converted into a binary image, and
a two-dimensional eight-connected neighborhood is then constructed to determine the contour.

Information 2019, 10, x FOR PEER REVIEW 16 of 22

Figure 15. 3D heatmap of the magnitude of the Worldview 1 satellite. In this figure, the values of
optical source pitch, optical source azimuth, and equivalent distance are −90°, 100°, and 500 km,
respectively.

Input parameter list

Line chart of the
relationship between the
magnitude and one of the
optical source pitch angle,

optical source azimuth
angle, detector pitch angle

and detector azimuth angle.

Figure 16. Line chart of magnitude changes of the Worldview 1 satellite with the detector azimuth
when the optical source pitch, optical source azimuth, and detector pitch are fixed. In this figure, the
values of optical source pitch, optical source azimuth, detector pitch, and equivalent distance are −90°,
100°, −90°, and 500 km, respectively. In the heatmap, the x-axis is the detector azimuth and the y-axis
is the magnitude value.

4.2. Algorithm Level

Researchers in the field of SOOC often place greater emphasis on the research and
experimentation of algorithms, while they are not proficient in sharing the research achievements
externally. In general, professional developers are required to build and integrate the algorithms and
research achievements; thus, the promotion of the latest innovative algorithms is restricted. Based on
the proposed SOOC heterogeneous function integration service, researchers can conveniently build
distributed online services for publishing the algorithms and research achievements externally.

In the case of the algorithm level, the SOOC data analysis algorithm developed in MATLAB is
taken as an example to illustrate algorithm integration and application. The test images, which have
been converted into grayscale images, are obtained from the observed video of the International
Space Station (ISS) [41], and the tested algorithms are image enhancement and contour extraction.

The purpose of image enhancement is to improve the visual effect of images, highlight the
meaningful information for human or machine analysis, and suppress useless information. To
highlight the grayscale interval of interest and relatively suppress other grayscale intervals, three-
stage linear transformation is used, as shown in Figure 17. In contour extraction, based on the
threshold determination algorithm [42], the grayscale image is converted into a binary image, and a
two-dimensional eight-connected neighborhood is then constructed to determine the contour.

L/4 L/2 3L/4 L00

L/4

L/2

3L/4

L

Output Grayscale: r

O
ut

pu
t G

ra
ys

ca
le

: s

1 1(,)r s

2 2(,)r s

T(r)

Figure 17. Three-stage linear transformation. As a typical linear transformation, the position of the
points can control the shape of the transformation function.
Figure 17. Three-stage linear transformation. As a typical linear transformation, the position of the
points can control the shape of the transformation function.

The algorithmic module can be packaged using the library compiler provided by MATLAB and
integrated using the heterogeneous function integration service. As shown in Figure 18, the version
needs to be set, and the component needs to be selected initially. Furthermore, it is important to list the
input and output parameters in detail. Function submission can be performed when all the parameters
are correct.

Information on the various algorithmic and functional modules submitted can be retrieved
from the databases. By selecting the information in the module information list shown in Figure 19,
the format of the access link and result can be obtained. The format of the access link is as follows:

http://ip:port/{language}/{runtime-version}/{module}/{version}/{class}/{method}/{input-parameters},

where ip and port are the IP address and port of the platform, respectively; {language} and {runtime-version}
are the developing language and the runtime version used for the algorithm; {module} is the name of
the module selected; {version} is the version of the currently selected function; {class} and {method} build
the specific algorithm to be implemented; and {input-parameters} is the list of parameters required to
execute the algorithm. As shown in Figure 19, the format of the result indicates the content of the
processing result by accessing the link of the selected algorithm.

Information 2019, 10, 296 17 of 22

Information 2019, 10, x FOR PEER REVIEW 17 of 22

The algorithmic module can be packaged using the library compiler provided by MATLAB and
integrated using the heterogeneous function integration service. As shown in Figure 18, the version
needs to be set, and the component needs to be selected initially. Furthermore, it is important to list
the input and output parameters in detail. Function submission can be performed when all the
parameters are correct.

Module version Packaged module

Input parameter
information

Input parameter
list

Output parameter
information

Output parameter
list Parameter list

Class name Method nameRuntime version

Figure 18. Submission of algorithmic and functional modules. Each parameter includes the name,
index, and type of parameter. As the order of each parameter, the index is crucial.

Information on the various algorithmic and functional modules submitted can be retrieved from
the databases. By selecting the information in the module information list shown in Figure 19, the
format of the access link and result can be obtained. The format of the access link is as follows:

http://ip:port/{language}/{runtime-version}/{module}/{version}/{class}/{method}/{input-parameters},
where ip and port are the IP address and port of the platform, respectively; {language} and {runtime-
version} are the developing language and the runtime version used for the algorithm; {module} is the
name of the module selected; {version} is the version of the currently selected function; {class} and
{method} build the specific algorithm to be implemented; and {input-parameters} is the list of
parameters required to execute the algorithm. As shown in Figure 19, the format of the result
indicates the content of the processing result by accessing the link of the selected algorithm.

Figure 18. Submission of algorithmic and functional modules. Each parameter includes the name,
index, and type of parameter. As the order of each parameter, the index is crucial.

Information 2019, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/information

Correction 1

Correction: Lu, W. et al. SOOCP: A Platform for Data 2

and Analysis of Space Object Optical Characteristic 3
Information. 2019, 10, 296 4
Wanjie Lu*, Qing Xu and Chaozhen Lan 5

Institute of Geospatial Information, Information Engineering University, Zhengzhou 450052, China; 6
13937169139@139.com(Q.X.); 13014511234@163.com(C.L.). 7
* Correspondence: lwj285149763@163.com(W.L.); Tel.: +86-185-3990-8814 8
Received: date; Accepted: date; Published: date 9

 10
After publication of the research paper [1], two identical figures were pointed 11

out: Figure 18 and Figure 19. In fact, the wrong figure was Figure 19. 12
We addressed this point by cooperative revision. The correct Figure 19 is as 13

follows. 14

 15
Figure 1. Module list and information retrieval. The format of the access link and the processing result 16
of the selected algorithm can be obtained. 17

These changes have no impact on the conclusions of our paper. The manuscript 18
will be updated on the article page. We apologize for any inconvenience this has 19
caused. 20
References 21
1. Lu, W.; Xu, Q.; Lan, C. SOOCP: A Platform for Data and Analysis of Space Object Optical 22

Characteristic. Information. 2019, 10, 296. 23
 24

© 2019 by the authors. Submitted for possible open access publication under the
terms and conditions of the Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/).

 25

Figure 19. Module list and information retrieval. The format of the access link and the processing
result of the selected algorithm can be obtained.

Based on the SOOC algorithmic module and the format of the access link and processing result,
the SOOC processing web page shown in Figure 20 is constructed as a case. In the web page, the target
image, 3D model, image list, and selected image are displayed. By selecting the processing algorithm
from the algorithm list, the selected image will be processed in the functional server and the results of
image enhancement and contour extraction will be displayed on the web page. The applications of
various algorithms are not limited to the displayed case, which simply serves as a reference.

Information 2019, 10, 296 18 of 22

Information 2019, 10, x FOR PEER REVIEW 18 of 22

Module version Packaged module

Input parameter
information

Input parameter
list

Output parameter
information

Output parameter
list Parameter list

Class name Method nameRuntime version

Figure 19. Module list and information retrieval. The format of the access link and the processing
result of the selected algorithm can be obtained.

Based on the SOOC algorithmic module and the format of the access link and processing result,
the SOOC processing web page shown in Figure 20 is constructed as a case. In the web page, the
target image, 3D model, image list, and selected image are displayed. By selecting the processing
algorithm from the algorithm list, the selected image will be processed in the functional server and
the results of image enhancement and contour extraction will be displayed on the web page. The
applications of various algorithms are not limited to the displayed case, which simply serves as a
reference.

Image list Target image Selected image Target 3D model

Algorithm list Result of image enhancement Result of image contour extraction

Figure 20. Web page of the algorithm level case. Based on the MATLAB algorithms of image
enhancement and contour extraction, various online services can be proposed.

Figure 20. Web page of the algorithm level case. Based on the MATLAB algorithms of image
enhancement and contour extraction, various online services can be proposed.

4.3. Development Level

Existing online services provide specific functions separately, and to integrate existing online
services, advanced unified service integration is required. Using the service registry and service
gateway in SOOCP, the development level can integrate services and provide unified management and
standard formatted access links. In addition, based on load balancing, the service accesses in a high
concurrency environment can be fulfilled well with satisfactory responses. At the same time, a unified
workflow can be built by seamlessly connecting functions between different integrated services.

At the development level, the integration of online services into the platform requires the services
to provide a health status check interface. The uniform resource locator (URL) of the health status
check interface and the check result provided by the online service are shown in Table 3.

Table 3. URL of health check interface and check result.

Item Content

Health status check URL http://address/health.json

Result
{

"status": "UP"
}

An online service developed in C++ is considered for the case study. As shown in Figure 21,
the online service provides the health check link, the result of the health status, and the server port.
The service instance of the online service can be discovered in the service registry by integrating the
health check link and the server port into the sidecar model. As seen in the configuration file of the
service instance, the service has maintained the access link of the online service, which means that the
heterogeneous online service has been integrated into the platform.

http://address/health.json

Information 2019, 10, 296 19 of 22

Information 2019, 10, x FOR PEER REVIEW 19 of 22

4.3. Development Level

Existing online services provide specific functions separately, and to integrate existing online
services, advanced unified service integration is required. Using the service registry and service
gateway in SOOCP, the development level can integrate services and provide unified management
and standard formatted access links. In addition, based on load balancing, the service accesses in a
high concurrency environment can be fulfilled well with satisfactory responses. At the same time, a
unified workflow can be built by seamlessly connecting functions between different integrated
services.

At the development level, the integration of online services into the platform requires the
services to provide a health status check interface. The uniform resource locator (URL) of the health
status check interface and the check result provided by the online service are shown in Table 3.

Table 3. URL of health check interface and check result.

Item Content
Health status check URL http://address/health.json

Result
{

 "status": "UP"
}

An online service developed in C++ is considered for the case study. As shown in Figure 21, the
online service provides the health check link, the result of the health status, and the server port. The
service instance of the online service can be discovered in the service registry by integrating the health
check link and the server port into the sidecar model. As seen in the configuration file of the service
instance, the service has maintained the access link of the online service, which means that the
heterogeneous online service has been integrated into the platform.

Heath check link of online service

The method that builds the health
status and the status is as follows:

Server port

The service instance obtained by
the service registry

By checking the health status of
the registration instance, the

maintained status of the online
service can be discovered.

Online service
developed under
C++ language

Service
integration by
using sidecar

model

The configuration
file of the instance

Figure 21. The integration of online services. Based on the unified access interface provided by the
platform, users can use the instance of the online service through Service Gateway.

5. Conclusions and Future Work

Figure 21. The integration of online services. Based on the unified access interface provided by the
platform, users can use the instance of the online service through Service Gateway.

5. Conclusions and Future Work

Advances in technology have led to a rapid increase in SOOC data. In addition, they have
resulted in higher requirements for the storage and application of SOOC data as well as for the
innovation of algorithms and development of SOOC functions. To meet these diverse requirements,
this paper proposes SOOCP, a microservice-based SOOC data and analysis platform. By exploiting the
advantages of SQL and NoSQL, the hybrid SQL/NoSQL service provides appropriate data storage
and retrieval services for different data storage and application scenarios. By comparing with related
research, the hybrid SQL/NoSQL service can better meet the needs of research teams. Owing to
the different processing methods of massive SOOC data, to promote algorithm application and
research, the proposed platform uses the heterogeneous function integration service, which can
seamlessly integrate and deploy algorithmic and functional modules built in different languages
in the distributed environment and fuse existing online services on the basis of the sidecar model.
The heterogeneous function integration service not only satisfies the requirements of algorithm testing
and highly concurrent requests but also effectively promotes the latest research. To evaluate the
platform for different levels of requirements in the field of SOOC, three cases were considered. The
results confirmed the excellent performance of the proposed platform in terms of providing various
data and function integration services for different levels of demand.

The platform proposed in this paper provides efficient data service and heterogeneous function
integration service for users with different needs, which promotes the dissemination of innovative
research achievements. However, as a scaffolding platform, the proposed platform requires further
improvement. First, the current hybrid SQL/NoSQL service simply stores data that meet the predefined
data formats, especially unstructured data. To better adapt to various requirements, the platform
needs to build a capable service for user-defined data without predefined data formats. The users can
autonomously create formats in the database and input the data, which is a major challenge. Second,
the heterogeneous function integration service requires researchers to package the algorithms and
components supported by the platform. The platform should provide the online packaging function
based on SAAS, which will package the source code of the algorithms created by the researchers.

Information 2019, 10, 296 20 of 22

Third, the analysis of SOOC data is a complex process involving different aspects. In particular,
data processing usually requires a combination of multiple modules. The platform should provide
a complete workflow mode to realize the interconnection of various functional modules. Finally, the
current platform mainly concentrates on the space object optical characteristic; the characteristics of
other related fields, such as the electromagnetic scattering characteristic, electromagnetic radiation
characteristic, and environmental characteristics, need to be considered in the future.

Under the rapid development of technologies, such as cloud computing and artificial intelligence,
users need platforms that can meet more needs to realize innovation and promote the spread of
technologies. Different industries have different requirements, and in the field of space object optical
characteristic, in addition to improving the shortcomings of the platform, there are still several contents
worthy of deep consideration and discussion for future development, such as improving the operation
and computing efficiency of modules in the platform and introducing components and basic algorithms
of artificial intelligence into the platform for users, which are all potential demands that the platform
needs to consider for further requirements. We hope that this paper can promote the development and
dissemination of the technologies of space object optical characteristic and provide some references for
different application requirements.

Author Contributions: W.L. and Q.X. conceived and designed the research; W.L. and C.L. developed the platform
and participated in data collection together; W.L. wrote the paper.

Funding: This research was funded by National Natural Science Foundation of China, grant number 41701463.

Acknowledgments: We would like to thank all individuals who contributed to the development of the platform,
including the students who assisted in improving the platform by testing and reporting bugs. Meanwhile, the
authors would like to thank the organizations and individuals who share the data for free. We would also like to
thank the anonymous reviewers and editors for their constructive comments and suggestions.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Yusheng, J.; Shu, Y.; Hua, Z.; Xiaodan, X. Research on Target characteristic Database Synchronization Method
Based on Thrift. Procedia Comput. Sci. 2019, 147, 542–549. [CrossRef]

2. Yi Ping, Z.; Chang Yin, Z.; Xiao Xiang, Z.; Yi Ding, P.; Chen, Z. Statistics and Analysis of LEO Objects’
Luminosities. Chin. Astron. Astrophys. 2014, 55, 322–337. [CrossRef]

3. Xu, C.; Li, Z.; Zhang, F. A GEO Satellite Working State Detection Method Based on Photometric Characteristics.
In Proceedings of the Optical Design and Testing VIII, Beijing, China, 11–13 October 2018; p. 1081511.
[CrossRef]

4. Zhao Cheng, Y.; Lei, N.; Xiang, L. Design and Retrieval Method for All Attitude RCS Database of Radar
Target. Applic. Res. Comput. 2009, 26. [CrossRef]

5. Dong Ning, L. Study on Photometric of Space Target. Ph.D. Thesis, University of Chinese Academy of
Sciences, Changchun, China, 2015.

6. Jun, X. Creation and Application of the Natural Environment Database in Laser Semi-active Guided
Simulation System. Master’s Thesis, Xidian University, Xi’an, China, 2017.

7. Xue Mei, J. Database Construction of Missile & Satellite and the Abstract of Radar & Infrared Targets RCS
Characteristic. Master’s Thesis, Lanzhou University, Lanzhou, China, 2008.

8. Riddle, R.L.; Burse, M.P.; Law, N.M.; Tendulkar, S.P.; Baranec, C.; Rudy, A.R.; Sitt, M.; Arya, A.;
Papadopoulos, A.; Ramaprakash, A. The Robo-AO Software: Fully Autonomous Operation of a Laser Guide
Star Adaptive Optics and Science System. In Proceedings of the Adaptive Optics Systems III, Amsterdam,
The Netherlands, 1–6 July 2012; p. 84472O. [CrossRef]

9. Samoylova, L.; Buzmakov, A.; Geloni, G.; Chubar, O.; Sinn, H. Cross-platform Wave Optics Software for
XFEL Applications. In Proceedings of the Advances in Computational Methods for X-Ray Optics II, San
Diego, CA, USA, 21–24 August 2011; p. 81410A. [CrossRef]

10. Oracle Database Documentation. Available online: https://docs.oracle.com/en/database/oracle/oracle-
database/index.html (accessed on 13 September 2019).

http://dx.doi.org/10.1016/j.procs.2019.01.226
http://dx.doi.org/10.1016/j.chinastron.2015.01.011
http://dx.doi.org/10.1117/12.2500173
http://dx.doi.org/10.3969/j.issn.1001-3695.2009.10.070
http://dx.doi.org/10.1117/12.925475
http://dx.doi.org/10.1117/12.893044
https://docs.oracle.com/en/database/oracle/oracle-database/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/index.html

Information 2019, 10, 296 21 of 22

11. SQL Server Documentation. Available online: https://docs.microsoft.com/en-us/sql/sql-server/sql-server-
technical-documentation?view=sql-server-2017 (accessed on 13 September 2019).

12. MySQL 8.0 Reference Manual. Available online: https://dev.mysql.com/doc/refman/8.0/en/ (accessed on
13 September 2019).

13. Becla, J.; Hanushevsky, A.; Nikolaev, S.; Abdulla, G.; Szalay, A.; Nietosantisteban, M.; Thakar, A.; Gray, J.
Designing a Multi-petabyte Database for LSST. In Proceedings of the SPIE—The International Society for
Optical Engineering, Orlando, FL, USA, 24–31 May 2006. [CrossRef]

14. Jain, V.; Upadhyay, A. MongoDB and NoSQL Databases. IJCA 2017, 167, 16–20. [CrossRef]
15. Yanqi, W.; Yusheng, J.; Xiaodan, X. Research of Target Characteristics Storage Based on RDBMS and Hadoop.

In Proceedings of the 2016 International Conference on Identification, Information and Knowledge in the
Internet of Things (IIKI), Beijing, China, 20–21 October 2016; pp. 417–420. [CrossRef]

16. Adaptive Optics Softwares & Real Time Computer. Available online: https://www.alpao.com/adaptive-
optics/ao-softwares.html (accessed on 21 May 2019).

17. Webster, S.; Miller, G.; Mayott, G. Software as a Service Approach to Sensor Simulation Software Deployment.
In Proceedings of the Modeling and Simulation for Defense Systems and Applications VII, Baltimore, MD,
USA, 24 April 2012; p. 84030I. [CrossRef]

18. Application-Specific Optical Design. Available online: https://www.synopsys.com/content/dam/synopsys/
optical-solutions/documents/whitepapers/application-specific-design.pdf (accessed on 21 May 2019).

19. Villamizar, M.; Garcés, O.; Castro, H.; Verano, M.; Salamanca, L.; Casallas, R.; Gil, S. Evaluating the monolithic
and the microservice architecture pattern to deploy web applications in the cloud. In Proceedings of the
Computing Colombian Conference, Bogotá, Colombia, 21–25 September 2015. [CrossRef]

20. Lyu, L.; Xu, Q.; Lan, C.; Shi, Q.; Lu, W.; Zhou, Y.; Zhao, Y. Sino-InSpace: A Digital Simulation Platform for
Virtual Space Environments. Isprs. Int. J. Geoinf. 2018, 7, 373. [CrossRef]

21. Yue, S.; Chen, M.; Wen, Y.; Lu, G. Service-oriented model-encapsulation strategy for sharing and integrating
heterogeneous geo-analysis models in an open web environment. Isprs. J. Photogramm. 2016, 114, 258–273.
[CrossRef]

22. Baru, C.; Chandra, S.; Lin, K.; Memon, A.; Youn, C. The GEON service-oriented architecture for Earth Science
applications. Int. J. Digit. Earth 2009, 2, 62–78. [CrossRef]

23. Zhang, L.; Ma, D.; Niu, C. Simulation and Analysis of ACB’S Photometric Signature Based on STK.
In Proceedings of the 5th International Symposium on Advanced Optical Manufacturing and Testing
Technologies: Optoelectronic Materials and Devices for Detector, Imager, Display, and Energy Conversion
Technology, Dalian, China, 26–29 April 2019; p. 76585H. [CrossRef]

24. Microservices a Definition of This New Architectural Term. Available online: https://martinfowler.com/

articles/microservices.html (accessed on 28 April 2019).
25. Alshuqayran, N.; Ali, N.; Evans, R. A Systematic Mapping Study in Microservice Architecture. In Proceedings

of the 2016 IEEE 9th International Conference on Service-Oriented Computing and Applications (SOCA),
Macau, China, 4–6 November 2016; pp. 44–51. [CrossRef]

26. Di Francesco, P.; Lago, P.; Malavolta, I. Architecting with microservices: A systematic mapping study. J. Syst.
Softw. 2019, 150, 77–97. [CrossRef]

27. Pahl, C.; Jamshidi, P. Microservices: A Systematic Mapping Study. In Proceedings of the International
Conference on Cloud Computing & Services Science, Rome, Italy, 23–25 April 2016. [CrossRef]

28. Baškarada, S.; Nguyen, V.; Koronios, A. Architecting Microservices: Practical Opportunities and Challenges.
J. Comput. Inform. Syst. 2018, 1–9. [CrossRef]

29. Dragoni, N.; Lanese, I.; Larsen, S.T.; Mazzara, M.; Mustafin, R.; Safina, L. Microservices: How to make your
application scale. In Proceedings of the International Andrei Ershov Memorial Conference on Perspectives
of System Informatics, Moscow, Russia, 26–29 June 2017; pp. 95–104. [CrossRef]

30. Mazzetti, P.; Nativi, S.; Caron, J. RESTful implementation of geospatial services for Earth and Space Science
applications. Int. J. Digit. Earth 2009, 2, 40–61. [CrossRef]

31. Pokorny, J. NoSQL databases: A step to database scalability in web environment. Int. J. Web Inf. Syst. 2013,
9, 69–82. [CrossRef]

32. Chen, J.-K.; Lee, W.-Z. An Introduction of NoSQL Databases Based on Their Categories and Application
Industries. Algorithms 2019, 12, 106. [CrossRef]

https://docs.microsoft.com/en-us/sql/sql-server/sql-server-technical-documentation?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/sql-server/sql-server-technical-documentation?view=sql-server-2017
https://dev.mysql.com/doc/refman/8.0/en/
http://dx.doi.org/10.1117/12.671721
http://dx.doi.org/10.5120/ijca2017914385
http://dx.doi.org/10.1109/IIKI.2016.33
https://www.alpao.com/adaptive-optics/ao-softwares.html
https://www.alpao.com/adaptive-optics/ao-softwares.html
http://dx.doi.org/10.1117/12.920759
https://www.synopsys.com/content/dam/synopsys/optical-solutions/documents/whitepapers/application-specific-design.pdf
https://www.synopsys.com/content/dam/synopsys/optical-solutions/documents/whitepapers/application-specific-design.pdf
http://dx.doi.org/10.1109/ColumbianCC.2015.7333476
http://dx.doi.org/10.3390/ijgi7090373
http://dx.doi.org/10.1016/j.isprsjprs.2015.11.002
http://dx.doi.org/10.1080/17538940902912445
http://dx.doi.org/10.1117/12.866127
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
http://dx.doi.org/10.1109/soca.2016.15
http://dx.doi.org/10.1016/j.jss.2019.01.001
http://dx.doi.org/10.5220/0005785501370146
http://dx.doi.org/10.1080/08874417.2018.1520056
http://dx.doi.org/10.1007/978-3-319-74313-4_8
http://dx.doi.org/10.1080/17538940902866153
http://dx.doi.org/10.1108/17440081311316398
http://dx.doi.org/10.3390/a12050106

Information 2019, 10, 296 22 of 22

33. Hecht, R.; Jablonski, S. NoSQL evaluation: A use case oriented survey. In Proceedings of the International
Conference on Cloud & Service Computing, Hong Kong, China, 12–14 December 2011.

34. Khazaei, H.; Fokaefs, M.; Zareian, S.; Beigi-Mohammadi, N.; Ramprasad, B.; Shtern, M.; Gaikwad, P.;
Litoiu, M. How Do I Choose the Right Nosql Solution? a Comprehensive Theoretical and Experimental
Survey. Big Data Inf. Analyt. 2017, 1, 185–216.

35. The MongoDB 4.0 Manual. Available online: https://docs.mongodb.com/v4.0/ (accessed on 13 September
2019).

36. Redis Documentation. Available online: https://redis.io/documentation (accessed on 13 September 2019).
37. Spring Cloud Netflix. Available online: https://cloud.spring.io/spring-cloud-netflix/multi/multi_spring-

cloud-netflix.html (accessed on 21 May 2019).
38. Space-Track.org. Available online: https://www.space-track.org (accessed on 19 May 2019).
39. User’s Manual. Available online: http://jmeter.apache.org/usermanual/index.html (accessed on 13 September

2019).
40. Li, D.; Mei, H.; Shen, Y.; Su, S.; Zhang, W.; Wang, J.; Zu, M.; Chen, W. ECharts: A declarative framework for

rapid construction of web-based visualization. Vis. Inf. 2018, 2, 136–146. [CrossRef]
41. The International Space Station Through My Telescope. Available online: https://www.youtube.com/watch?

v=me_fbGVuwy8 (accessed on 21 May 2019).
42. Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9,

62–66. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://docs.mongodb.com/v4.0/
https://redis.io/documentation
https://cloud.spring.io/spring-cloud-netflix/multi/multi_spring-cloud-netflix.html
https://cloud.spring.io/spring-cloud-netflix/multi/multi_spring-cloud-netflix.html
https://www.space-track.org
http://jmeter.apache.org/usermanual/index.html
http://dx.doi.org/10.1016/j.visinf.2018.04.011
https://www.youtube.com/watch?v=me_fbGVuwy8
https://www.youtube.com/watch?v=me_fbGVuwy8
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Platform Architecture and Orientation
	Key Technologies
	SOOC Hybrid SQL/NoSQL Service
	SOOC Hybrid SQL/NoSQL Service Architecture
	SOOC Hybrid SQL/NoSQL Data Access Flow
	Comparison of Different SOOC Data Services

	SOOC Heterogeneous Function Integration Service
	SOOC Algorithmic and Functional Module Integration
	SOOC Online Service Integration

	Platform Application Modes and Case Study
	Data Level
	Data Input and Retrieval Efficiency
	SOOC Data Visualization

	Algorithm Level
	Development Level

	Conclusions and Future Work
	References

