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Abstract: The traveling-salesman problem can be regarded as an NP-hard problem. To better solve the
best solution, many heuristic algorithms, such as simulated annealing, ant-colony optimization, tabu
search, and genetic algorithm, were used. However, these algorithms either are easy to fall into local
optimization or have low or poor convergence performance. This paper proposes a new algorithm
based on simulated annealing and gene-expression programming to better solve the problem. In the
algorithm, we use simulated annealing to increase the diversity of the Gene Expression Programming
(GEP) population and improve the ability of global search. The comparative experiments results,
using six benchmark instances, show that the proposed algorithm outperforms other well-known
heuristic algorithms in terms of the best solution, the worst solution, the running time of the algorithm,
the rate of difference between the best solution and the known optimal solution, and the convergent
speed of algorithms.

Keywords: graph traversal optimization; gene-expression programming; simulated annealing
algorithm; traveling-salesman problem

1. Introduction

With the development of Big Data technology, graphics computing is applied to all kinds of fields.
For example, in power-inspection route planning [1,2], all task points and equipment can be regarded
as nodes in the graph, and path length between each task point or equipment can be regarded as
an edge; thereby, a road graph on power inspection is formed. In another example, an entire social
network [3–5] is a graph in which the user is the vertex of the graph, and the relationship between the
user and another user is regarded as the edge. As can be seen from the above examples, as a storage
or presentation form in a specific application, how to mine the knowledge contained in a graph by
quickly traversing the vertices in the graph is a research hotspot in the field of graphics computing.

Traversing all the vertices in the graph and repeating is an important application direction in
graph-vertex traversal. Traversing all the vertices in the graph is a classical traveling-salesman problem
(TSP) in the shortest time. It is well known that TSP is an NP-hard problem [6,7]. To solve the
problem, besides traditional backtracking algorithms, branch-and-bound algorithms, and greedy
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algorithms, we mainly use heuristic search algorithms to optimize. These heuristic algorithms include
the simulated annealing algorithm [8–12], tabu-search algorithm [13–15], ant-colony optimization
algorithm [16–18], and genetic algorithm [19–24]. However, the optimization time of the simulated
annealing algorithm is very long, the tabu-search algorithm has a strong dependence on the initial
solution and can only be serialized, genetic algorithm is easy to fall into local optimization and has
poor convergence performance, and the ant-colony algorithm also has long optimization time and is
also prone to falling into local optimization [25].

Inspired by the characteristics of genetic expression, Candida Ferreira first proposed the
concept of gene-expression programming (GEP) in 2001 [26–28]. It is a new member of the
evolutionary-computing family based on genetic algorithms and genetic programming with a
strong-function mining ability and high-function mining efficiency. Compared with traditional genetic
algorithms and genetic programming, GEP has the following advantages [29–31]: (1) it uses simple
encoding to solve a complex problem; (2) its convergent speed is improved by 2–4 times in comparison
to genetic algorithms and genetic programming; and (3) it is easy for it to overcome combination
exploration and premature phenomena. This paper proposes a traveling-salesman problem based on
simulated annealing and GEP (TSP-SAGEP) in order to traverse all cities in the shortest time. The
major contributions of our work are listed as follows:

(1) To better improve the ability to global search, we applied a simulated annealing algorithm to
the genetic operation of GEP, and propose an improved GEP algorithm based on simulated
annealing (IGEP-SA).

(2) In order to solve traveling-salesman problems like graph vertex traversal optimization, we present
a traveling-salesman optimization algorithm on the basis of IGEP-SA.

(3) Experimental results show that the proposed algorithm outperforms traditional algorithms in
terms of the best solution, the worst solution, the running time of the algorithm, the rate of
difference between the best solution and the known optimal solution, and the convergent speed
of the algorithms.

The remainder of this paper is organized as follows. Section 2 discusses the related works.
Section 3.1 introduces the improved GEP algorithm based on simulated annealing. Section 4 focuses
on the traveling-salesman problem based on simulated annealing and GEP. Section 5 conducts detailed
comparative experiments. Finally, conclusions are given in Section 6.

2. Related Work

Zhan et al. [8] proposed a new simulated annealing algorithm, called a list-based simulated
annealing algorithm, in order to solve the traveling-salesman problem. Experimental results indicated
that the proposed algorithm in this paper had competitive performance compared with the other
algorithms. Yu et al. [9] presented a hybrid simulated annealing algorithm based on tabu search
to solve the traveling-salesman problem. Experimental results demonstrated that the proposed
algorithms improved accuracy and efficiency. Absalom et al. [10] presented a simulated annealing
algorithm based on symbiotic-organism search in order to better solve the traveling-salesman
problem. Comparative results showed that the proposed algorithm had advantages in terms of
convergence, average execution time, and percentage deviations. Behnck et al. [11] applied a modified
simulated annealing algorithm to SUAVs’ path, planning to find an optimal path that included
most of points. Zhao et al. [12] used an improved simulated annealing algorithm to solve the
traveling-salesman problem. Results indicated that the proposed algorithm in this paper could obtain
the best solutions for most TSPLIB benchmarks. Xu et al. [13] proposed a new tabu-search algorithm
based on the evolutionary and ant-colony algorithms to effectively solve the traveling-salesman
problem. Archetti et al. [14] proposed an integer linear programming model based on the tabu-search
algorithm to solve the vehicle-routing problem. Simulated experiments illustrated that the proposed
algorithm had good performance compared with other algorithms. Chiang et al. [15] used a
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quantum-inspired tabu-search algorithm to optimize the traveling-salesman problem. Experimental
results verified effectiveness of the proposed algorithm. Yang et al. [18] proposed an improved
ant-colony optimization algorithm based on swarm intelligence to obtain the best solution for the
traveling-salesman problem. Comparative results showed that the algorithm had higher accuracy and
efficiency compared with classic optimization algorithms. He et al. [16] put forward an improved
ant-colony algorithm based on new crossover and mutation operations to find the best solution
for the traveling-salesman problem. Simulation results demonstrated that the proposed algorithm
had advantages in terms of stability and optimization capacity. Mohsen et al. [17] proposed a
hybrid ant-colony optimization algorithm based on the simulated annealing algorithm to solve the
traveling-salesman problem. El-Samak et al. [19] applied the affinity propagation clustering technique
to optimize the genetic algorithm for finding the best solutions to the traveling-salesman problem.
Rani et al. [20] proposed the improved genetic algorithm by a roulette-wheel selection operator with
different crossovers and mutation rates to solve the traveling-salesman problem. Experimental results
demonstrated that the algorithm in this paper is better than the existing crossover operator in other
algorithms. Deng et al. [21] presented the improved genetic algorithm by using k-means to generate a
new initial-population strategy for solving the traveling-salesman problem. Wang et al. [22] solved
the traveling-salesman problem by merging two optimization strategies into the traditional genetic
algorithm. Comparative results showed that the proposed algorithm in this paper could find better
solutions than a traditional optimal algorithm. Wang et al. [23] solved the traveling-salesman problem
by means of a multioffspring genetic algorithm according to biological evolutionary and mathematical
ecological theory. Compared with the traditional genetic algorithm, the proposed algorithm in this
paper was faster and decreased the evolutionary time of the best solution. Changdar et al. [24]
introduced a multiobjective genetic algorithm into solving a multiobjective solid traveling-salesman
problem. In order to compare performance of the genetic algorithm and the simulated annealing
ant-colony optimization, Haroun et al. [25] performed a comparative experiment to evaluate the
performance of the three algorithms in terms of computational time and the shortest distance in
solving the traveling-salesman problem.

GEP [26] is also a kind of heuristic algorithm. Many researchers have already applied GEP to
combinatorial optimization. Ferreira et al. [32] applied a new chromosomal organization based on
multigenes in GEP to solve the combinatorial optimization problem. Results demonstrated that the
algorithm had high efficiency and accuracy. Sabar et al. [33] used gene-expression programming to
generate the acceptance criterion for solving an combinational optimization problem. Comparative
results showed that the solution was better than the other results obtained from the existing algorithms.

3. Improved GEP Algorithm Based on Simulated Annealing

Although the GEP algorithm can quickly find the solution for combinatorial optimization
problems, such as the traveling-salesman problem, GEP is still easy to fall into the local optimum.
In order to better solve the problem, this paper proposes an improved GEP algorithm based on
simulated annealing (IGEP-SA) to avoid GEP falling into a local optimum.

3.1. Simulated Annealing

Simulated annealing (SA) is an effective and general form of optimization and is based on
simulating the annealing of solids [34,35]. It is very useful in finding global optima in the presence
of local-optima large numbers. The simulated-annealing algorithm starts from a higher temperature,
which is called the initial temperature. When the temperature gradually decreases, the solution of the
algorithm tends to be stable. However, the solution may be a local optimal solution. Then in SA, such
a local optimal solution is jumped with a certain probability to find the global optimal solution of the
objective function. The flow chart of the simulated-annealing algorithm is shown in Figure 1.
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Figure 1. A flowchart of the simulated-annealing algorithm.

From Figure 1, we can see that the Metropolis rule is very important for SA to find the optimal
solution. Suppose that state xold becomes a state xnew when the system is subject to some disturbance.
Then, in the Metropolis rule, the energy of the system also changes from E(xold) to E(xnew), and the
acceptance probability of the system changing from state xold to state xnew is p:

p =

{
1 if E(xnew) < E(xold)

exp(− E(xnew)−E(xold)
T ) if E(xnew) ≥ E(xold)

The steps of the simulated-annealing algorithm are as follows (Algorithm 1):
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Algorithm 1: SA

Input: initial temperature T0, minimum temperature Tmin, maximum number of iteration Kmax,
probability of temperature drop ρ;
Output: the optimal solution xbest;
1. Generating an initial solution x0;
2. xbest ← x0;
3. Computing the value of the objective function f(x0) and f(xbest);
4. Ti ← T0;
5. while Ti>Tmin do
6. ∆f← f(xnew)−f(xbest);
7. if ∆f < 0 then
8. xbest ← xnew;
9. end if
10. if ∆f ≥ 0 then
11. p← e

∆f
T ;

12. if c← random[0, 1] ≥ p then
13. xbest ← xnew;
14. else
15. xbest ← xbest;
16. end if
17. end if
18. i← i + 1;
19. Ti ← ρ× Ti;
20. end while
21. Return xbest;

3.2. IGEP-SA

Because the simulated-annealing algorithm has the advantage of jumping out of the local
optimum, gene-expression programming was improved by using the simulated-annealing algorithm
in this paper. Firstly, this paper used simulated annealing to dynamically generate a GEP population.
Then, we applied the simulated-annealing algorithm to the mutation operator of GEP to improve the
ability of global search.

3.2.1. New Population Generation Based on Simulated Annealing

In order to improve the diversity of the GEP population, this paper proposes new
population-generation algorithm based on SA (NPG-SA). The steps of NPG-SA are shown as follows
(Algorithm 2):

Algorithm 2: NPG-SA

Input: current temperature T, number of population PopSize, fitness value of previous
generation population f (old), and fitness value of population after genetic operations f (new);
Output: new population NewPop;
1. i← 1;
2. while i < PopSize do
3. ∆f← f(new)[i]−f(old)[i];
4. p← e

∆f
T ;

5. if c← random[0, 1] ≥ p then
6. NewPop.add(i);
7. end if
8. i← i + 1;
9. end while
10. Return NewPop;
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3.2.2. New Mutation Operator Based on Simulated Annealing

We know that it is very important for GEP to have a diverse population. A mutation operator is
the most efficient way. By mutation operator, the best individual of the population in GEP can be found.
However, the existing mutation operator in GEP is implemented according to a certain probability.
The way depends on the initialization of mutation probability so that the mutation operator in GEP is
strongly subjective. This paper proposes a new mutation operator based on SA (NMO-SA). The steps
of NMO-SA are shown in Algorithm 3.

Algorithm 3: NMO-SA

Input: current temperature T, number of population PopSize, fitness value of the previous
generation population f (old), and fitness value of population after genetic operations f (new);
Output: new population NewPop;
1. i← 1;
2. j← SelectPoint(oldPop);
3. while i < PopSize do
4. ∆f← f(new)[i]−f(old)[i];
5. q← e

∆f
T ;

6. p← 0.001; //initial mutation rate
7. if c← random[0, 1] ≥ q then
8. NewPop← Mutation(oldPop, j, c);
9. else
10. NewPop← Mutation(oldPop, j, p);
11. end if;
12. j← SelectPoint(NewPop);
13. i← i + 1;
14. end while
15. Return NewPop;

3.2.3. Description of IGEP-SA

To better improve the evolutional efficiency of traditional GEP and avoid falling into the local
optimum, we applied Algorithms 2 and 3 to IGEP-SA. The steps of IGEP-SA are shown in Algorithm 4.

Algorithm 4: IGEP-SA

Input: current temperature T, number of population PopSize, fitness value of the previous
generation population f (old), fitness value of population after genetic operations f (new), probability
of temperature drop ρ, MaxGen, Pt, and Pr;
Output: new population NewPop;
1. Pop← InitPop(PopSize);
2. f (old)← Evaluate f itness(Pop);
3. while i < MaxGen do
4. f (new)← Evaluate f itness(Pop);
5. Pop← NPG− SA(T,PopSize, f (old), f (new));
6. Pop← NMO− SA(T,PopSize, f (old), f (new));
7. Pop← ISTransposition(Pt, Pop, PopSize);
8. Pop← RISTransposition(Pt, Pop, PopSize);
9. Pop← GeneTransposition(Pt, Pop, PopSize);
10. Pop← OnePointRecombination(Pr, Pop, PopSize);
11. Pop← TwoPointRecombination(Pr, Pop, PopSize);
12. Pop← GeneRecombination(Pr, Pop, PopSize);
13. end while
14. NewPop← Pop;
15. ReturnNewPop;
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4. Traveling-Salesman Problem Based on Simulated Annealing and GEP

The traveling-salesman problem is a kind of classical combinatorial optimization problem.
To simplify the solution of the problem, in this paper, we suppose that the traveling-salesman problem
is symmetric. We know that the traveling-salesman problem is an NP-hard problem. For the TSP
with N cities, there are (N − 1)! solutions. With the increase of N, the number of solutions for TSP
grow exponentially. We propose a traveling-salesman problem based on simulated annealing and GEP
(TSP-SAGEP) in order to better solve the problem.

4.1. TSP-SAGEP Code

The traveling-salesman problem is a kind of combinational optimization problem. For a
combinational optimization problem, a chromosome of GEP is a multigene chromosome composed
of one-element genes. However, in a multigene chromosome, one-element genes are very important
because they can be organized in multigene families (MGFs). These MGFs are composed of clusters of
related-gene encoding. An example is shown as follows:

Example 1. The different cities in the traveling-salesperson problem can be encoded in an MGFs where each
gene code represent a particular city visited by the salesman. Consider the simple chromosome below, composed of
one MGF with nine cities:

The spatial structure of the chromosome, which is shown in Figure 2, is shown in Figure 3. This is the
traveling route of the traveling-salesman problem, where B is both the starting and finishing city and shown
in gray.

Figure 2. Chromosome of a multigene family.

Figure 3. Expression of the above chromosome.

4.2. Fitness Function of the TSP-SAGEP

The fitness function is very important for GEP to solve the traveling-salesman problem. We
know that the objective of the traveling-salesman problem needs to find the shortest route on the
condition that we start and lastly finish the city. The fitness function helps algorithm move in the
correct direction.
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It is obvious that we cannot directly use tour length as a measure of fitness, as the shorter the
tour is, the fitter the individual [26]. So, for each generation, fitness fi of the ith individual in the gth
generation is evaluated by the equation:

fi=Tg − ti + 1 (1)

where Tg is the length of the largest tour is encoded in the chromosomes of the current population,
and ti is the length of the tour encoded in the ith individual. From Equation (1), we know that the
fitness of the worst individual of the population is always equal to one.

4.3. Algorithm Description

In order to better solve graph vertex traversal optimization problems, this paper proposes
a traveling-salesman problem based on TSP-SAGEP. The description of TSP-SAGEP is similar to
Algorithm 4, but the differences between TSP-SAGEP and Algorithm 4 are as follows:

(1) In TSP-SAGEP, the population is initialized according to Figure 1.
(2) In TSP-SAGEP, the fitness value of the individual in the population is evaluated according

to Equation (1).
(3) TSP-SAGEP returns the best graph vertex traversal line.

5. Experiment and Analysis

5.1. Experimental Environment

To better explain the effectiveness and feasibility of the proposed algorithms, we conducted
related experiments in a laboratory environment. All experiments were implemented in Java on an
Intel Core-i7 PC and Windows 10. All experiments were done by using 6 TSP standard benchmark
problems, with different lengths, from TSPLIB [36,37]. Experimental datasets are shown in Table 1.
These datasets can be divided into three groups according to their dimension. The first group includes
four instances that vary in dimension, between 26 and 70 cities. The second group includes four
instances that vary in dimension, between 120 and 442 cities. The last group includes four instances
that vary in dimension, between 666 and 1304 cities. Finally, after conducting the experiments 50 times
for each instance, the best experimental results were obtained.

Table 1. Datasets used in experiments.

Instance Cities Optimal Solution

fri26 26 937
st70 70 675

gr120 120 6942
pcb442 442 50,778
gr666 666 294,358
rl1304 1304 252,948

The optimal solution of each instance is from https://wwwproxy.iwr.uni-heidelberg.de/groups/
comopt/software/TSPLIB95/STSP.html.

As a kind of heuristic algorithm, the performance of TSP-SAGEP is affected by the different values
of the parameters. Table 2 provides the parameters that the proposed algorithm takes.

The length of the chromosome in TSP-SAGEP is especially set according to the dimensions
in Table 1.

https://wwwproxy.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/STSP.html
https://wwwproxy.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/STSP.html
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Table 2. Parameters of traveling-salesman problem based on simulated annealing and gene-expression
programming (TSP-SAGEP).

Parameter Item Value

Initial temperature 100
Minimum temperature 10−8

The probability of temperature drop 0.98
Population size 500

The number of runs 10
The number of generations 1000

IS Transposition rate 0.3
RIS Transposition rate 0.3

Gene Transposition rate 0.1
One-point recombination rate 0.3
Two-point recombination rate 0.3

Gene recombination rate 0.1

5.2. Experimental Analysis

Experiment 1: To verify the effectiveness of IGEP-SA, we compare dTSP-SAGEP with traditional GEP
for all datasets in Table 1. Four measures that include the best solution, the worst solution, number of
generations, and the average running time of two algorithms were used to evaluate two algorithms.
Table 3 shows that TSP-SAGEP algorithm is better than the traditional GEP algorithm in the above
four measures. Meanwhile, we observed the relationship between the number of runs and the tour
length for all datasets in Table 1. Results are shown in Figure 4.

Table 3 shows that the TSP-SAGEP algorithm is superior over a traditional GEP in computational
results for all datasets in Table 1. The best solution based on TSP-SAGEP is better than the solutions
based on a traditional GEP for all test instances. In Experiment 1, we used the rate of difference to
evaluate the advantages and disadvantages of experiment results based on TSP-SAGEP and traditional
GEP. The rate of difference is defined in Equation (2).

ρ=
Pbest − Poptimal

Pbest
(2)

where ρ represents the rate of difference, Pbest represents the best solution based on TSP-SAGEP,
and Poptimal represents the known optimal solution. Rate of difference ρ based on TSP-SAGEP and
traditional GEP is 0, 0, 0, 0.00636, 0.033, and 0.0287 for fri26, st70 and gr120 instances. For pcb442,
gr666 and rl1304 instances, respectively, and the rate of difference based on TSP-SAGEP and traditional
GEP is 0.00065, 0.000207, 0.000616, 0.00615, 0.0535, and 0.1008, respectively. These results illustrate
that the best solution based on TSP-SAGEP is better than traditional GEP. This is mainly because
new population generation policy and mutation operator based on simulated annealing can improve
the diversity of the GEP population and increase the probability of searching for a global solution.
Figure 4 demonstrates that, when the number of runs increases from 1 to 10, tour length based on
TSP-SAGEP is closer to the optimal tour length than traditional GEP for six instances. From Figure 4,
we can also find that, in all 10 runs, the number of solving the best solution based on TSP-SAGEP is 7,
7, 7, 6, 5 and 5 for the fri26, st70, gr120, pcb442, gr666, and rl1304 datasets, respectively.
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Table 3. Comparison of four measures between TSP-SAGEP and a traditional GEP algorithm.

Instances Optimal Algorithm Best Worst Average Generations Time (s)

fri26 937 TSP-SAGEP 937 971 941 150 7.0671
GEP 943 1132 961 800 8.1629

st70 675 TSP-SAGEP 675 699 677 150 12.1135
GEP 698 822 710 800 14.0931

gr120 6942 TSP-SAGEP 6942 7406 6995 200 19.4612
GEP 7147 10,035 7624 900 22.3573

pcb442 50,778 TSP-SAGEP 50,811 52,147 50,878 300 51.0964
GEP 51,092 54,113 51,676 900 57.1428

gr666 294,358 TSP-SAGEP 294,419 305,036 295,542 990 79.7853
GEP 310,982 410,368 328,459 990 85.1204

rl1304 252,948 TSP-SAGEP 253,104 271,582 254,699 990 160.2458
GEP 281,296 334,871 290,611 990 165.5572

Experiment 2: In order to better demonstrate the advantage of the proposed algorithm in this paper,
we compared TSP-SAGEP with Ezugwu2017 [10], Mohsen2016 [17], and Wang 2016 [23] in terms of the
best solution, the worst solution, and rate of difference, which is obtained by the Equation (2). Results
are shown in Table 4. Figure 5 shows the comparison of the number of obtaining the best solution
based on five algorithms for six instances in all 10 runs. Figure 6 shows comparison of convergent
speed between TSP-SAGEP and three other algorithms for six instances. In Experiment 2, we also
used convergent speed to evaluate the performance of four algorithms. Convergent speed is defined
as follows.

Cs=
PG
TG

(3)

where Cs represents the convergent speed of the algorithm, PG represents the current generation
corresponding to the best solution, and TG represents the total number of generations.
From Equation (3), we know that the smaller the Cs value of the algorithm is, the faster the convergence
speed of the algorithm.

Table 4 shows that TSP-SAGEP algorithm is superior over Ezugwu2017, Mohsen2016, and
Wang 2016 in computational results for all datasets in Table 1. The best solution based on TSP-SAGEP
is better than the solutions based on other three algorithms for all test instances. According to
Equation (2), we can see that the rate of difference based on TSP-SAGEP is the same as that of the
other three algorithms for the fri26, st70 and gr120 instances, while the rate of difference based on
TSP-SAGEP is obviously less than the other three algorithms for the pcb442, gr666 and rl1304 instances.
Experimental results illustrate that, in comparison to the other three algorithms, the best solution
obtained by TSP-SAGEP is the closest to the optimal solution.
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Table 4. Comparison of three measures between four algorithms.

Instances Optimal Algorithm Best Worst Average Rate Time (s)

fri26 937

TSP-SAGEP 937 971 941 0 7.0671
Ezugwu2017 937 1204 951 0 8.5247
Mohsen2016 937 1299 955 0 8.5916

Wang2016 937 1151 948 0 8.3103

st70 675

TSP-SAGEP 675 699 677 0 12.1135
Ezugwu2017 675 846 701 0 14.9045
Mohsen2016 675 907 715 0 15.1037

Wang2016 675 831 695 0 14.0985

gr120 6942

TSP-SAGEP 6942 7406 6995 0 19.4612
Ezugwu2017 6942 11,237 7786 0 25.3581
Mohsen2016 6942 11,354 7801 0 27.0433

Wang2016 6942 11,008 7655 0 23.6709

pcb442 50,778

TSP-SAGEP 50,811 52,147 50,878 0.00065 51.0964
Ezugwu2017 51,107 55,723 51,958 0.00644 61.0876
Mohsen2016 51,143 56,098 52,044 0.00714 63.9011

Wang2016 51,097 55,006 51,828 0.00624 59.4571

gr666 294,358

TSP-SAGEP 294,419 305,036 295,542 0.00021 79.7853
Ezugwu2017 311,855 417,702 331,024 0.05611 90.0014
Mohsen2016 312,096 420,809 332,528 0.05684 92.0745

Wang2016 311,003 411,984 329,199 0.05352 88.0163

rl1304 252,948

TSP-SAGEP 253,104 271,582 25,4699 0.00062 160.2458
Ezugwu2017 288,013 340,015 297,813 0.12175 169.0031
Mohsen2016 290,057 341,298 299,305 0.12798 170.1165

Wang2016 286,799 335,990 294,637 0.11803 167.9084

According to Figure 5, we know that the number of the best solutions obtained by TSP-SAGEP is
obviously more than other algorithms for the pcb442, gr666, and rl1304 instances, and the number
of the best solutions obtained by TSP-SAGEP is equal to the number of the best solutions obtained
by other algorithms for the fri26 and st70 instances. Generally, for the pcb442, gr666, and rl1304
instances, the number of the best solutions obtained by TSP-SAGEP is improved by 28.57%, 42.86%,
and 57.14%, respectively, in comparison to Ezugwu2017 and Wang2016; compared with Mohsen2016,
the number of the best solutions obtained by TSP-SAGEP is improved by 28.57%, 42.86%, and 57.14%,
respectively. This illustrates that TSP-SAGEP easily solves the best solution on the condition that the
number of runs is the same. Figure 6 indicates that convergent speed of TSP-SAGEP is superior over
the other three algorithms for six instances. Specifically, compared with Ezugwu2017, Mohsen2016,
and Wang2016, the convergent speed of TSP-SAGEP is improved by 75%, 62.5%, and 57.14% for
the fri26, st70, and gr120 instances, respectively; for pcb442, the convergent speed of TSP-SAGEP is
improved by 62.5%, 58.9%, and 50%, in comparison to Ezugwu2017, Mohsen2016, and Wang2016,
respectively. However, when the number of cities increases to 666 and 1304, the convergent speed of
four algorithms is almost the same. This is mainly because that the increase in the number of cities
cause the increase of solution scale so that it is difficult for the above four algorithms to solve the best
solution in the 1000 generations.
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Figure 4. Comparison of tour length based on TSP-SAGEP and GEP for six datasets with an increase in
the number of runs.
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Figure 5. Comparison of the number of the best solutions obtained by four algorithms for six instances
in all ten runs.

Figure 6. Comparison of convergent speed among four algorithms for six instances.

6. Conclusions

In this paper, we introduce a traveling salesman problem based on TSP-SAGEP in order to traverse
all vertices of a graph in the shortest time. To verify the performance of the proposed algorithm,
two experiments were conducted for six benchmark instances obtained from the TSPLIB, and the
experimental results of TSP-SAGEP were compared with three other heuristic algorithms. Results show
that TSP-SAGEP outperformed the other heuristic algorithms proposed in [10,17,23,26]. Specifically,
compared with traditional GEP, Ezugwu2017, Mohsen2016, and Wang2016, TSP-SAGEP had the best
solution quality, low error between the best solution, a known optimal solution for all instances, and
high convergent speed. In the future, we will enhance the proposed algorithm in this paper by using
other GEP operations in order to better solve the problem of large-scale graph vertex traverse. We will
also introduce the proposed algorithm into the asymmetric application of graph vertex traverse.
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