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Abstract: This article presents and evaluates a method for the detection of DBpedia types and entities
that can be used for knowledge base completion and maintenance. This method compares entity
embeddings with traditional N-gram models coupled with clustering and classification. We tackle
two challenges: (a) the detection of entity types, which can be used to detect invalid DBpedia
types and assign DBpedia types for type-less entities; and (b) the detection of invalid entities in
the resource description of a DBpedia entity. Our results show that entity embeddings outperform
n-gram models for type and entity detection and can contribute to the improvement of DBpedia’s
quality, maintenance, and evolution.

Keywords: semantic web; DBpedia; entity embedding; n-grams; type identification; entity
identification; data mining; machine learning

1. Introduction

The Semantic Web is defined by Berners-Lee et al. [1] as an extension of the current Web in which
information is given a well-defined meaning, in order to allow computers and people to cooperate
better than before. In this context, linked data is about creating typed links between data from different
sources by using the current Web. More precisely, it is a “Web of Data” in Resource Description Format
(RDF) [2,3].

Knowledge bases represent the backbone of the Semantic Web, and they also represent Web
resources [4]. Knowledge bases are being created by the integration of resources like Wikipedia and
Linked Open Data [5,6] and have turned into a crystallization point for the emerging Web of Data [7,8].
Among the main knowledge bases on the Semantic Web, the DBpedia knowledge base represents
structured information from Wikipedia, describes millions of entities, and it is available in more
than a hundred languages [9]. DBpedia uses a unique identifier to name each entity (i.e., Wikipedia
page) and associates it with an RDF description that can be accessed on the Web via the URI dbr:
(http://dbpedia.org/resource/) [10,11]. Similarly, DBpedia is based on an ontology, represented in
the namespace dbo: (http://dbpedia.org/ontology/), that defines various classes that are used to
type available entities (resources). DBpedia refers to and is referenced by several datasets on the LOD
and it is used for tasks as diverse as semantic annotation [12], knowledge extraction [13], information
retrieval [14], querying [15,16] and question answering [17].
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Given the automatic extraction framework of DBpedia, along with its dynamic nature,
several inconsistencies can exist in DBpedia [18–21]. One important quality problem is related
to DBpedia types (classes). In fact, there exist invalid DBpedia types for some entities.
For example, the DBpedia entity “dbr:Xanthine (http://dbpedia.org/resource/Xanthine)” belongs to
three DBpedia types: “dbo:ChemicalSubstance”(http://dbpedia.org/ontology/ChemicalSubstance),
“dbo:ChemicalCompound,” and “dbo:Airport,” though “dbo:Airport” is an invalid type. Furthermore,
given the size of DBpedia, type information is sometimes unavailable for some entities. Several
entities are still un-typed, or not typed with all the relevant classes from the DBpedia ontology.
For instance, one example of the missing type problem is the absence of the types “dbo:Politician” and
“dbo:President” for the entity “dbr:Donald_Trump”. The only available types are “dbo:Person” and
“dbo:Agent” which are not incorrect, but they are not specific enough. As well, another problem is that
some of the available ontology classes still do not have any instances, such as “dbo:ArtisticGenre”,
“dbo;TeamSport”, and “dbo:SkiResort”. Finally, invalid DBpedia entities may exist in the RDF
description of an entity due to erroneous triples [22]. Consequently, some entities are not correctly
linked to other entities. For instance, the description of the DBpedia entity “dbr:Earthquake”
contains the triple <dbr:Vanilla_Ice dbo:genre dbr:Earthquake>, which is an erroneous fact. Thus,
“dbr:Vanilla_Ice” is considered an invalid entity in the resource description of “dbr:Earthquake”.

Identifying these invalid types and entities manually is unfeasible. In fact, the automatic
enrichment and update of DBpedia with new type statements (through rdf:type) is becoming an
important challenge [23,24]. In this paper, we rely on vector-based representations such as word
embeddings and entity embeddings [25,26] to reach these objectives. Word embeddings are vector
representations of word(s) [27–29] that have several applications in natural language processing
tasks, such as entity recognition [30], information retrieval [31], and question answering [32]. Entity
embeddings, as defined in this article, are similar to word embeddings [27–29] but they differ in that
they are based on vectors that describe the entity URIs instead of words [25,26].

In this article, we compare two vector-based representations that emerge from text, that is, n-gram
models and entity embeddings models. Both types of representations are learned from Wikipedia text
and represent n-grams and entities (URIs) using a vector space model. In fact, n-gram models have
long been a strong baseline for text classification. The emergence of entity URIs from one side and
word embeddings models from the other side represents a good opportunity for entity representation
using a vector model and for the comparison of the performance of sparse vector space models with
dense vectors in natural language processing tasks.

Overall, we aim at addressing the following research questions:

RQ1: How do entity embeddings compare with traditional n-gram models for type identification?

RQ2: How do entity embeddings compare with traditional n-gram models for invalid
entity detection?

The article is structured as follows. In Section 1, we discuss the motivation of this work, our goals
and contributions. Section 2 presents background information about automatic type identification
and erroneous information detection. In Section 3, we discuss our work for collecting datasets,
building entity embedding and n-gram models. Then, in Section 4, we propose different clustering
and classification methods to detect invalid DBpedia types, and complete missing types for 358 types
from the DBpedia ontology. In Section 5, we present our approach to detect invalid DBpedia resources
using our own entity embedding and n-gram models. In Section 6, we run our best trained models on
the whole DBpedia, in order to see how many wrong type and invalid entities we find. In Section 7,
we conclude our work and contributions, and we discuss possible directions of work for the future.
This article is an extended version of our published conference paper [33]. In particular, Section 4 of
this article is based on the conference paper [33].

http://dbpedia.org/resource/Xanthine
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2. Background and Related Work

2.1. DBpedia and Linked Data Quality Assessment and Enhancement

Several approaches in the literature aim to enhance the quality of DBpedia and Linked Data.
Paulheim [34] proposed a survey about approaches for knowledge graph refinements, such as methods
for detecting invalid DBpedia types, DBpedia invalid relations, and invalid DBpedia knowledge
graph interlinks, along with the evaluation results. The authors identified two main problems in the
DBpedia knowledge base, namely, the completeness problem and the correctness problems, and they
also pointed out several approaches for the DBpedia knowledge base refinement. The survey by
Färber et al. [35] analyzed the five most popular linked data knowledge graphs: DBpedia, Freebase,
OpenCyc, Wikipedia, and YAGO, and found these knowledge graphs have the following problems:
accuracy, trustworthiness, and consistency. Furthermore, the survey also proposed a framework to
find the most suitable knowledge graph for given settings.

Similarly, Zaveri et al. [36] proposed a user-driven quality evaluation of DBpedia, which assesses
the quality of DBpedia by both manual and semi-automatic processes. The evaluation of DBpedia relies
on the creation of a quality problem taxonomy that is used during crowdsourcing quality assessment.
The quality problem taxonomy has four dimensions: accuracy, relevancy, representational-consistency,
and interlinking. Based on this evaluation, Zaveri et al. [36] identified around 222,298 incorrect triples
and concluded that 11.93% of the tested DBpedia triples were having quality issues.

Other approaches focused on particular aspects of the DBpedia knowledge base. For example,
Font et al. [19,37] performed an in-depth evaluation of domain knowledge representation in DBpedia.
The article confirmed the completeness problems of domain knowledge representation in DBpedia
and the necessity of automatic methods for knowledge base completion.

Finally, some approaches relied on logical reasoning to detect inconsistencies in knowledge
graphs. A rule-based approach to check and handle inconsistencies in DBpedia was proposed by
Sheng et al. [20] using rule-based reasoning with MapReduce. Five different types of inconsistencies
were detected by the approach: undefined class/properties, incompatible ranges of data type
properties, inconsistencies in taxonomical links, and invalid entity definitions.

Similarly, Töpper et al. [21] proposed a DBpedia ontology enrichment approach for inconsistency
detection. The approach uses statistical methods to enrich the DBpedia ontology by identifying and
resolving inconsistencies in DBpedia based on the improved DBpedia ontology. The improved DBpedia
ontology is free of syntactic, logical, and semantic errors. Based on the evaluation results, the system
processed 3.11 million instances, and found 50 thousand inconsistent instances. Likewise, Lehmann
and Bühmann [38] proposed a tool called ORE (Ontology Repairing and Enrichment) for repairing
and enriching knowledge bases. It uses machine learning algorithms to detect ontology modeling
problems, and can guide users to solve the problems. When the tool is applied to DBpedia, it can detect
and guide the user to solve the following problems: incorrect property ranges and incompatibility
problems with external ontologies.

2.2. Automatic Type Detection

There are several cutting-edge related works for automatic type detection [39–44].
Some works rely on the detection of syntactic patterns from definitions to extract type information.

For example the winners of the Open Knowledge Extraction competition [19] extract entity types using
SPARQL patterns on the dependency parses of natural language definitions and align the extracted
textual types (e.g., “oke:Church”) to corresponding classes in the DBpedia ontology (e.g., “oke:Church”
rdfs:subClassOf “dbo:Place”) using disambiguation techniques.

Another approach for automatic typing is CETUS—a baseline approach for type extraction by
Röder et al. [43], which implements a pattern extraction from DBpedia abstracts and creates local type
hierarchies based on the extracted types. The final step maps the structured types to the DOLCE + DnS
ontology (http://stlab.istc.cnr.it/stlab/WikipediaOntology/) classes. Another automatic DBpedia

http://stlab.istc.cnr.it/stlab/WikipediaOntology/
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entity typing approach is proposed by Gangemi et al. [39], which presents a tool called Tipalo. It can
interpret the DBpedia entity’s natural language definition from the Wikipedia page abstract to identify
the most appropriate types for the DBpedia entity.

Other approaches rely on statistical methods on the DBpedia knowledge base rather than syntactic
patterns for automatic type extraction. One approach to link types and instances is called SDType
(Statistical Distribution Typing) by Paulheim and Bizer [41] and Paulheim and Bizer [42]. It uses
a weighted voting approach that exploits links between resources as indicators for types. More
specifically, it uses statistical distributions for each ingoing and outgoing link to an instance as an
indicator for predicting the instances types. SDType evaluated 3.6 million DBpedia instances and
359 DBpedia types, and led to the linking of an average of 5.6 types for each DBpedia instance. It also
led to an average of 38,000 instances per DBpedia type. Furthermore, the SDType approach successfully
added a lot of type statements to DBpedia resources with 3.4 new million types (21% increase) to the
DBpedia 3.9 release.

The most recent approach and the most similar to our work is [44] which combines word
embeddings with external information for entity typing. The vector models represent the word
embeddings learned using Word2vec.

For the automatic typing part of entities, most of the related works presented above rely on
SPARQL patterns, statistical distributions, and knowledge extraction from Wikipedia abstracts for
automatic typing. In contrast, our method uses entity embedding and n-gram models learned on
Wikipedia coupled with clustering and classification algorithms. The most similar work appears to
be [44] but they combine word embeddings with external information while we rely on the information
in Wikipedia to learn entity embeddings for entity typing.

2.3. Outlier Detection in Linked Data

Several approaches for detecting invalid or faulty knowledge in DBpedia have been proposed
in the state of the art [9,11,38], especially by detecting data points that differ significantly from their
neighbors. For example, cross-checked outlier detection techniques were used to detect errors in
numerical linked data in Fleischhacker et al. [18]. The authors proposed a two-step approach to detect
errors in numerical linked data, such as the population in a city, country, or continent. The first step
is to apply outlier detection to the property values from the repository to split the data into relevant
subsets. For example, subsets of “population” are generated as subpopulations, and outlier detection
is applied to these subpopulations. The second step is to exploit the “owl:sameAs” links of the entities,
for the purpose of collecting values from other repositories too. It performs a second outlier detection
for these values.

SDValidate, proposed by Paulheim and Bizer [42], is another outlier detection algorithm, which
aims at detecting faulty statements by using a technique based on statistical distributions in a manner
similar to SDType. The approach consists of three steps: the first step is to compute the relative
predicate frequency to describe the frequency of the combined predicate and object for each statement.
The second step is to find a confidence score for the selected statements based on statistical distributions
related to properties. More specifically, for each property, a vector is assigned to the predicate’s subject
and object. Then the cosine similarity of two vectors is computed, and stored as the confidence score for
the statement. Finally, a threshold τ of 0.15 is used to test whether the statement can be categorized as
a faulty statement or not. In Paulheim and Bizer [42], SDValidate detected 13,000 erroneous statements
in DBpedia.

Another outlier detection approach to enhance quality of linked data is by Debattista et al. [45],
which uses distance-based outlier detection technique to identify potentially incorrect RDF statements.
Based on experiments with DBpedia, the approach reaches 0.76 for precision, 0.31 for recall, and 0.43
for F-score using data taken from DBpedia as a gold standard.

In contrast to most of the state of the art, we are interested in investigating how entity embeddings
can contribute to detect invalid types and resources, and complete missing types for un-typed DBpedia



Information 2019, 10, 6 5 of 23

resources. The main difference between our method and these related works is that our work uses
clustering and classification algorithms instead of cross-checked outlier detection, distance-based
outlier detection, or statistical distribution to detect invalid DBpedia resources and statements.

3. Methodology

This section presents the process used for gathering our dataset from DBpedia, the methodology
followed to build the entity embedding and n-gram models from Wikipedia pages’ abstracts, and the
generation of our clustering and classification models. There were 760 DBpedia types available in the
DBpedia ontology at the date of our test in March 2017. In this version of the DBpedia ontology and
knowledge base, only 461 classes had instances (through rdf:type). Among these 461 types, we ignored
the classes with less than 20 instances (199), which led to 358 classes for our experiments. Examples of
some of the 199 classes include “ArtisticGenre”, “TeamSport”, and “SkiResort”.

3.1. General Architecture

This section describes the general architecture of the various modules involved in our experiments
(See Figure 1).
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The first step is the development of the entity embedding models that are built with
Wiki2vec (https://github.com/idio/wiki2vec) with input from the Wikipedia dumps (https://dumps.
wikimedia.org/enwiki/). The second step is the development of n-gram models that are extracted
with the Weka n-gram tokenizer (http://weka.sourceforge.net/doc.dev/weka/core/tokenizers/
NGramTokenizer.html) from DBpedia entities’ abstracts. The third step is to prepare three datasets
from DBpedia related to each of our tasks. The fourth step involves the clustering and classification
experiments, which rely on the feature vectors produced in step 1 and 3. We compare three clustering
and seven classification algorithms (including a baseline algorithm). The last step is to evaluate the
generated results and discuss the performance of each clustering and classification algorithm.

3.2. Entity Embedding Model Building

Initially, we relied on pre-built models from wiki2vec for the English Wikipedia (February 2015),
without stemming, with a Skip-gram model. We noticed that many entities of the pre-built models
did not have corresponding vectors. To solve this problem, we used both the Skip-gram [28,29] and
CBOW [28,29] architectures for learning our models. To increase the coverage, we trained our model on
Wikipedia with the following parameters: a minimum number of occurrences of 5, a vector dimension
of 100 to limit the size of the entity embedding model, and a window size set to 5, that describes the
maximum distance between the current and predicted word within a sentence.

In this phase, the Word2vec tool [27–29] was envisaged to compute vector representations of
words. Given that we were interested in entities and not words, we needed a way to obtain vector
representations of these entities (resources). For this, we used Wiki2vec, which is built on top of
Word2vec, and makes it possible to build a DBpedia model from Wikipedia. In fact, we can exploit

https://github.com/idio/wiki2vec
https://dumps.wikimedia.org/enwiki/
https://dumps.wikimedia.org/enwiki/
http://weka.sourceforge.net/doc.dev/weka/core/tokenizers/NGramTokenizer.html
http://weka.sourceforge.net/doc.dev/weka/core/tokenizers/NGramTokenizer.html
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the fact that each Wikipedia page is represented by a DBpedia resource. For example, the Wikipedia
page “https://en.wikipedia.org/wiki/Airport” is directly mapped to the DBpedia resource “http:
//dbpedia.org/resource/Airport”. Wiki2Vec replaces Wikipedia hyperlinks in Wikipedia pages by
their corresponding DBpedia URIs. Next, we run Word2vec on the modified corpus to train the
DBpedia entity embedding models.

The detailed process is as follows. Our first step is to process Wikipedia Dumps (in English) to
extract the plain text, and to eliminate tags, figures, tables, etc. Hyperlinks that represent Wikipedia
pages are identified by a specific “DBPEDIA_ID/” (e.g., “DBPEDIA_ID/Barack_Obama” replaces the
hyperlink “https://en.wikipedia.org/wiki/Barack_Obama”). After that, lemmatization is performed
using NLTK (http://www.nltk.org/) and this allows us to build one vector representation for the
words that share the same lemma, for example Child and Children have the same vector. The final
step is to build the model with Wiki2vec.

Once the training process is finished, we obtain a continuous vector representation of single
words and DBpedia entities. These vectors are used to compute similarities between entities and
types. For example, in the Wiki2vec model, the similarity between “DBPEDIA_ID/Bill_Clinton” and
“DBEPDIA_ID/President” can be computed. The obtained entity vectors also represent features for
the classification and clustering tasks and are associated with the types that are already represented in
DBpedia, when applicable. For example, the vector related to “dbr:Bill_Clinton” is associated with the
type “dbo:President”. To give a better idea about this notion of distance, a visualization plot based on
t-SNE (https://lvdmaaten.github.io/tsne/) is provided in Figure 2.
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The 2-D plot is based on a 100-dimension vector representation and uses PCA (Principle
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Furthermore, our trained entity embedding models store both entities and words; entities
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might be represented by compound words such as “Barack_Obama (http://dbpedia.org/page/
Barack_Obama)”. For single words, the dataset usually contains both DBpedia entities and words.
For example, both “DBPEDIA_ID/Poetry” and “Poetry” are represented in our model. We only use
DBpedia entity “DBPEDIA_ID/Poetry” in our tasks, since we are only interested in DBpedia entities.

https://en.wikipedia.org/wiki/Airport
http://dbpedia.org/resource/Airport
http://dbpedia.org/resource/Airport
https://en.wikipedia.org/wiki/Barack_Obama
http://www.nltk.org/
https://lvdmaaten.github.io/tsne/
http://dbpedia.org/page/Barack_Obama
http://dbpedia.org/page/Barack_Obama
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3.3. Dataset Preparation

In this section, we present the process of datasets extraction, first for detecting invalid DBpedia
types and complete missing types (training dataset and test dataset), then for detecting invalid
DBpedia entities.

3.3.1. Dataset for Entity Type Detection

The first datasets consist of the training and test datasets for the automatic detection of DBpedia
types. For each of the 358 DBpedia types, we retrieve entities with the specified type through DBpedia
public SPARQL endpoint (http://dbpedia.org/sparql).

To build the training dataset, we select at most 2000 entities for each DBpedia type using the
process described above, then test the availability of each of these entities in our trained Word2vec
entity embedding model. If the entity is available in our trained entity embedding model, we select the
entity for the dataset, otherwise the entity is ignored. These entities are tagged as positive examples
of the DBpedia type. Negative examples are chosen from a random selection of instances from all
the remaining types, except the test DBpedia types. Given the variations in the number of instances
for some DBpedia classes (some classes have few instances, while others may have more than a
thousand entities), the number of negative entities depends on the corresponding number of positive
entities in order to build a balanced dataset. Duplicates of positive examples are removed from the
negative examples, in order to eliminate mis-clustering and mis-classification problems. For example,
if “dbr:Bill_Clinton” is selected for the (positive) DBpedia type “dbo:President”, then the entity will
not be selected as a negative example. This means that if an entity is selected as a positive one, we
eliminate any mention of this entity in the negative examples. This can happen if the negative examples
are taken from super-classes of the considered type, such as Person and President.

The process of building the test dataset is different from the training dataset, as we randomly select
around 5 to 6 entities for each type from all of the 358 DBpedia types. In total, we obtained 2111 entities
in our test dataset, distributed among these various types. Each entity has an average of 4 to 5 types.
We stored entities and all their related types. For example, we might have “dbr:Bill_Clinton” with
types “dbo:President”, “dbo:Agent”, “dbo:Politician”, and “dbo:Person”. We make sure there are
no common entities in the training and test dataset. These train and test datasets are available to
download (http://www.site.uottawa.ca/~{}diana/resources/kesw17/).

3.3.2. Dataset for Invalid Entity Detection

The second dataset for the task of detecting invalid DBpedia resources is collected separately
from the previous datasets. We randomly select 120,000 and 16,000 entities as training and test datasets
that are available in our entity embedding models through DBpedia SPARQL endpoint. For each of
the selected DBpedia entities, we need all of their corresponding DBpedia resources; that is, we select
all the objects related to that particular entity through a property. These related resources are tagged
as positive examples of valid entities in the target DBpedia entity description. Negative examples
are chosen from a random selection of entities from all of the remaining entities, except the entities
that share the same class. For example, “dbr:Hawaii” has five classes: “dbo:Place”, “dbo:Location”,
“dbo:City”, “dbo:PopulatedPlace”, and “dbo:Settlement”. We do not select any entity that is associated
with these classes. The number of negative entities depends on the corresponding number of positive
entities in order to build a balanced dataset.

Table 1 summarizes the size of the three datasets.

Table 1. Summary of the number of instances in the datasets.

Dataset
Training Dataset for

DBpedia Invalid Type
Detection

Test Dataset for
DBpedia Invalid
Type Detection

Training Dataset for
DBpedia Invalid
Entity Detection

Test Dataset for
DBpedia Invalid
Entity Detection

Number of Entities 360,843 2111 160,000 12,000

http://dbpedia.org/sparql
http://www.site.uottawa.ca/~{}diana/resources/kesw17/
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3.4. N-gram Model Building

The n-gram models are extracted using the Weka n-gram tokenizer. We first collect the DBpedia
entities’ abstracts through DBpedia public SPARQL endpoint for preparing the training and test datasets.
Then we learn the n-gram models using Weka by varying the length of the word sequences (n = 1...3)
and using TF-IDF to weight the n-grams. We performed Random Forest feature selection [47–50]
in order to reduce the number of features to 1000. This number was determined after a set of
empirical experiments.

We obtained 36,842 uni-grams, 62,637 bi-grams, 81,830 tri-grams, and 181,309 n-grams. With the
Random Forest feature selection technique, the dimension of n-gram models decreased to 1000.

3.5. Evaluation Metrics

The evaluation measures include Precision, Recall, F-Score, Accuracy, and Area Under the Curve
(AUC) (for the classification experiments). Finally, the Student’s t-test measure is used to assess the
statistical significance of our results.

4. DBpedia Entity Type Detection

4.1. Experiment Setup

This phase consists of two parts: clustering and classification. Both parts use Scikit-Learn
(http://scikit-learn.org/stable/) [51] on the prepared dataset for each DBpedia type. We perform a
binary clustering and a binary classification that represent two main categories for each type of interest:
The positive class/cluster and the negative class/cluster. For example, we want to classify examples as
instances of Airport and instances of NOT Airport using the vectors as features.

In terms of clustering, all of the entities are clustered with the following standard algorithms:
K-means, Mean Shift, and Birch using the Euclidean distance. The number of clusters is set to two, one
represents the positive cluster for the type of interest, and the other one is the negative cluster.

As a reminder, for each DBpedia type, the related DBpedia entities are selected using the predicate
rdf:type. These entities are considered as examples of the positive class, the same number of negative
entities is then selected from DBpedia excluding the entities from the positive class. Because the
produced clusters are not labelled, the cluster with the highest number of positive entities is considered
the positive cluster, and vice versa.

In the classification part, several classification algorithms are tested. We experimented with
Decision Tree, Extra Tree, Random Forest, K Nearest Neighbor (KNN), Naive Bayes and Support
Vector Machine (SVM).

In the evaluation section, we present clustering and classification results with different entity
embedding and n-gram models, and we compare results with different clustering and classification
algorithms. In addition, results on both training and test dataset are shown. The experiments on the
training dataset helps us find the most appropriate clustering and classification algorithms for our
task. Then we build models on the whole training dataset and we apply them on the held-out test set,
on which we report our final results.

4.2. Clustering Evaluation

4.2.1. Clustering with N-gram Models

This section provides clustering with N-gram models.
Based on the results of the uni-gram, bi-gram, tri-gram and n-gram models (Table 2); the uni-gram,

bi-gram and tri-gram models have similar performance. According to the results of Tables 2–5,
the n-gram model differs significantly from the other three models; it performs around 10% better than
the other three models in terms of F-score. We report the improvements as differences (percentage

http://scikit-learn.org/stable/
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points). According to the clustering results with the n-gram model (Table 2), Birch outperform by
around 40% Mean Shift in terms of F-score.

Table 2. Results of clustering algorithms with n-gram models on the training dataset.

Model Algorithm Precision Recall F-Score Accuracy

Uni-gram
K-means 0.819 0.657 0.669 66.3%

Mean Shift 0.357 0.431 0.367 27.4%
Birch 0.811 0.745 0.726 70.2%

Bi-gram
K-means 0.816 0.655 0.664 65.9%

Mean Shift 0.361 0.429 0.365 27.5%
Birch 0.800 0.759 0.730 69.8%

Tri-gram
K-means 0.818 0.661 0.670 66.4%

Mean Shift 0.346 0.433 0.367 26.7%
Birch 0.810 0.743 0.721 69.8%

N-gram
K-means 0.897 0.671 0.731 74.4%

Mean Shift 0.407 0.391 0.345 28.8%
Birch 0.858 0.773 0.774 76.2%

Table 3. Summary for clustering algorithms with n-gram model on test dataset.

Model Algorithm Precision Recall F-Score Accuracy

Uni-gram K-means 0.505 0.940 0.657 50.9%
Birch 0.507 0.933 0.654 50.8%

Bi-gram K-means 0.503 0.937 0.654 50.5%
Birch 0.505 0.933 0.653 50.5%

Tri-gram K-means 0.513 0.930 0.655 51.1%
Birch 0.514 0.929 0.655 51.2%

N-gram K-means 0.507 0.935 0.656 50.9%
Birch 0.510 0.945 0.662 51.6%

Table 4. Summary for clustering with entity embedding models on the training dataset.

Model Algorithm Precision Recall F-Score Accuracy

Skip-Gram
K-means 0.937 0.950 0.941 94.2%

Mean Shift 0.560 0.991 0.713 71.3%
Birch 0.941 0.945 0.937 94.0%

CBOW
K-means 0.826 0.653 0.669 66.7%

Mean Shift 0.360 0.431 0.368 27.6%
Birch 0.815 0.753 0.733 70.8%

Table 5. Summary for clustering algorithms with entity embedding model on test dataset.

Model Algorithm Precision Recall F-Score Accuracy

Skip-Gram Kmeans 0.820 0.935 0.856 83.0%
Birch 0.837 0.932 0.861 83.7%

CBOW
K-means 0.543 0.924 0.667 53.8%

Birch 0.535 0.916 0.660 52.8%

Given our results on the training datasets, where K-means and Birch obtained the best
performance with both entity and n-gram models, we report only their results on the test set. Table 3
shows the clustering results of K-means and Birch on the test dataset with different n-gram models.
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Based on the averaged clustering results for the four n-gram models on the test dataset, different
from the results on the training dataset, uni-gram, bi-gram, tri-gram and n-gram models have very
close performance, and there is no significant difference between them.

4.2.2. Clustering with Entity Embedding Models

Here we present the clustering results both on the training dataset and the held-out test dataset
using entity embedding models.

We explored two word embedding models in our experiments. Table 4 shows the average
results for clustering on the 358 DBpedia types with Skip-gram and CBOW entity embedding models.
We report the metrics for the positive class only.

Based on the results of the two entity embedding models, the performance of Skip-gram is usually
better than CBOW. Skip-gram outperforms the CBOW model with about 26% in terms of F-Score.
For Accuracy, the difference is even bigger; Skip-gram surpasses by 32% CBOW. Furthermore, K-means
has similar performance as Birch, and their performances are much better than that of Mean Shift.
The Skip-gram entity embedding model has the best performance among all of the entity embedding
and n-gram models based on the training dataset, followed by the CBOW entity embedding model.
We also performed clustering on the test set (Table 5).

The superiority, in terms of accuracy and F-Score, of the skip-gram model is again apparent on the
test set. There was no significant difference between clustering with CBOW and the n-gram models.

4.3. Classification Evaluation

We experimented six classification algorithms: Decision Tree, Extra Tree, K Nearest Neighbor
(KNN), Random Forest, Naïve Bayes and Support Vector Machine (SVM). Also, a baseline algorithm
was used for a comparison/lower bound (named DummyClassifier in Scikit-learn).

4.3.1. Classification with N-gram Models

This section shows the classification results with the N-gram models. Table 6 shows the average
classification results (10-fold cross validation) with the n-gram models on the training dataset.

Table 6. Evaluation of classification algorithms with n-gram models on the training dataset.

Model Algorithm Precision Recall F-Score Accuracy AUC

Uni-gram

Baseline 0.498 0.496 0.485 49.7% 0.500
DT 0.907 0.874 0.884 89.4% 0.898

Extra Tree 0.933 0.879 0.900 91.0% 0.955
KNN 0.933 0.640 0.737 80.1% 0.896

RF 0.932 0.858 0.886 90.1% 0.951
NB 0.835 0.927 0.871 86.9% 0.876

SVM 0.961 0.837 0.884 90.6% 0.960

Bi-gram

Baseline 0.497 0.497 0.485 49.5% 0.801
DT 0.904 0.871 0.881 89.0% 0.895

Extra Tree 0.935 0.876 0.898 91.0% 0.957
KNN 0.932 0.639 0.737 80.2% 0.900

RF 0.934 0.859 0.888 90.2% 0.956
NB 0.836 0.928 0.872 86.9% 0.874

SVM 0.956 0.833 0.879 90.2% 0.955

Tri-gram

Baseline 0.501 0.501 0.489 49.9% 0.501
DT 0.906 0.872 0.883 89.3% 0.897

Extra Tree 0.939 0.881 0.903 91.4% 0.959
KNN 0.934 0.640 0.737 80.2% 0.897

RF 0.938 0.860 0.891 90.5% 0.957
NB 0.840 0.930 0.875 87.2% 0.880

SVM 0.953 0.832 0.878 90.1% 0.950



Information 2019, 10, 6 11 of 23

Table 6. Cont.

Model Algorithm Precision Recall F-Score Accuracy AUC

n-gram

Baseline 0.504 0.501 0.490 50.2% 0.499
DT 0.933 0.921 0.923 93.0% 0.933

Extra Tree 0.955 0.926 0.936 94.1% 0.976
KNN 0.954 0.738 0.815 85.2% 0.931

RF 0.955 0.911 0.928 93.7% 0.977
NB 0.855 0.939 0.887 88.4% 0.894

SVM 0.964 0.895 0.921 93.6% 0.976

Based on these classification results, the n-gram model has the best performance in terms of both
F-score and Accuracy among all of the n-gram models, followed by uni-gram, bi-gram and tri-gram
models. Extra Tree and SVM have the best results among all the classification algorithms.

For our experiments on the test datasets, we selected the best classification algorithms (Extra tree,
RF and SVM) based on the 358 tested DBpedia types on n-gram models (Table 7).

Table 7. Summary for classification algorithms with n-gram model on test dataset.

Model Algorithm Precision Recall F-Score Accuracy AUC

Uni-gram
Extra Tree 0.962 0.916 0.932 93.8% 0.974

RF 0.959 0.896 0.918 92.8% 0.967
SVM 0.982 0.874 0.912 92.7% 0.970

Bi-gram
Extra Tree 0.948 0.851 0.886 90.1% 0.952

RF 0.949 0.833 0.874 89.3% 0.948
SVM 0.968 0.778 0.842 87.9% 0.953

Tri-gram
Extra Tree 0.920 0.815 0.847 86.2% 0.915

RF 0.919 0.800 0.836 85.0% 0.916
SVM 0.941 0.697 0.766 81.7% 0.913

n-gram
Extra Tree 0.970 0.906 0.930 93.7% 0.974

RF 0.964 0.898 0.921 93.0% 0.968
SVM 0.987 0.962 0.907 92.4% 0.965

Similar to the results on the training dataset, the n-gram model gets the best results among all of
the n-gram models, followed by the uni-gram model, then by bi-gram and tri-gram models in terms of
F-score and Accuracy. However, the difference between the n-gram model and the uni-gram model is
not significant in terms of F-score and Accuracy.

4.3.2. Classification with Entity Embedding Models

Table 8 compares the results of the Skip-gram and CBOW models using the same
classification algorithms.

Based on the classification results on entity embedding models on training dataset (Table 8),
the Skip-gram model still performs better than the CBOW model, but the difference between them
is quite small; the performance of Skip-gram model is only around 7% better than CBOW model in
terms of F-score and Accuracy. For the results with Skip-gram entity embeddings, Extra Tree, Random
Forest, Naïve Bayes, and SVM get close performance with an F-Score and Accuracy greater than or
close to 0.95. When switching to the CBOW model, the performance of these classification algorithms
drops by at least 10%, except for the baseline algorithm.

Based on the overall results of entity embedding and n-gram models, tree-based algorithms and
SVM over-perform the other results. Compared to the results of the Skip-gram model, Naïve Bayes
does not perform as well on the n-gram models: the F-Score, Accuracy and AUC are around 0.85 for
the n-gram models compared to 0.95 or higher on the Skip-gram models. Extra Tree and SVM have the
best results among all the classification algorithms on both training and test datasets. In terms of the
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Skip-gram entity model, Support Vector Machine performs slightly better than Extra Tree in terms of
F-score, while the difference is within 2%. When switching to the n-gram model, Extra Tree performs
slightly better than Support Vector Machine in terms of F-score, the difference is within 1%. However,
the two algorithms have almost the same Accuracy and AUC.

Table 8. Evaluation of classification algorithms with entity embedding models on the training dataset.

Model Algorithm Precision Recall F-Score Accuracy AUC

Skip-Gram

Baseline 0.499 0.497 0.487 49.8% 0.502
DT 0.881 0.897 0.883 88.8% 0.888

Extra Tree 0.962 0.950 0.954 95.8% 0.988
KNN 0.869 0.995 0.922 91.8% 0.976

RF 0.958 0.935 0.944 94.9% 0.986
NB 0.967 0.955 0.959 96.4% 0.991

SVM 0.958 0.986 0.970 97.3% 0.995

CBOW

Baseline 0.496 0.500 0.486 49.7% 0.503
DT 0.908 0.896 0.881 89.0% 0.896

Extra Tree 0.937 0.897 0.899 91.1% 0.955
KNN 0.941 0.641 0.739 80.2% 0.898

RF 0.936 0.857 0.887 90.1% 0.955
NB 0.837 0.925 0.871 87.1% 0.877

SVM 0.959 0.836 0.883 90.3% 0.955

Furthermore, like the results in the clustering part, the Skip-gram entity embedding model still
has the best performance among all models. The Skip-gram model obtains a performance slightly
better than the n-gram model in our classification experiments, but the difference is much smaller
than in the clustering ones. For example, with the Extra Tree classification algorithm, the difference
between the two models is only around 3% in terms of F-Score and Accuracy. Using the Support Vector
Machine classification algorithm on the test dataset, the difference between the two models is around
8% and 6% in terms of F-Score and Accuracy respectively.

Based on the classification results on the 358 DBpedia types with the Skip-gram and the CBOW
entity embedding models on the test dataset (Table 9), the Skip-gram model still performs better than
the CBOW model with a drop of around 10% with CBOW. One interesting point is that when switching
from the Skip-gram model to the CBOW model, the results of Naïve Bayes drop significantly, from
0.95 to 0.68 in terms of F-Score, and from 0.96 to 0.66 in terms of Accuracy. The difference between
them is around 27% for F-Score, and 30% for Accuracy.

Table 9. Summary for classification algorithms with the entity embedding model on the test dataset.

Model Algorithm Precision Recall F-Score Accuracy AUC

Extra Tree 0.972 0.931 0.946 95.2% 0.986
Skip-Gram RF 0.961 0.922 0.938 94.5% 0.983

SVM 0.966 0.967 0.962 96.5% 0.991

Extra Tree 0.920 0.850 0.875 88.6% 0.947
CBOW RF 0.917 0.948 0.872 88.3% 0.941

SVM 0.926 0.890 0.897 90.4% 0.962

4.4. t-Tests

Several Student’s t-tests were applied on the precision, recall, f-score, and accuracy results of the
Skip-gram entity embedding and the n-gram models, using SVM, the best classification algorithm on
both the training and test dataset with one-tailed hypothesis. The details of Student’s t-test results
based on precision, recall, F-score, and accuracy results of the Skip-gram entity embedding, and n-gram
traditional n-gram models, are shown in Table 10.



Information 2019, 10, 6 13 of 23

Table 10. Student’s t-tests based on the training and test datasets.

Dataset Results Significance Level t Value p Value Student’s t-Test Results

Training dataset

Precision 0.01 −1.022 0.153 not significant
Recall 0.01 13.436 <0.00001 significant at p < 0.01
F-score 0.01 7.793 <0.00001 significant at p < 0.01

Accuracy 0.01 7.722 <0.00001 significant at p < 0.01

Test dataset

Precision 0.01 −6.006 <0.00001 significant at p < 0.10
Recall 0.01 9.059 <0.00001 significant at p < 0.01
F-score 0.01 5.970 <0.00001 significant at p < 0.01

Accuracy 0.01 0.109 0.457 not significant

The results on the training dataset are not statistically significant for precision. However, recall,
f-score and accuracy results are statistically significant at p < 0.01. For the Student’s t-test on the test
dataset, precision results are statistically significant at p < 0.01, as well as recall and F-score. However,
accuracy results are not statistically significant.

4.5. Synthesis and Discussion

Overall, the Skip-gram model obtains the best results among all of the entity embedding and
the traditional models followed by n-gram and uni-gram models. Continuous Bag-Of-Words has
a similar performance with bi-gram and tri-gram models. The difference between results obtained
using the Skip-grams model and the n-gram models is statistically significant in terms of recall, f-score
and accuracy results on the training dataset. Furthermore, based on the precision, recall and F-score
results on the test dataset, the difference between results obtained using the Skip-gram model and the
n-gram models is also statistically significant. Random Forest, Extra Tree and Support Vector Machine
were among the top classifiers with good performance on all of the entity embedding and n-gram
models. The Random Forest feature selection algorithm helped to decrease the dimension of vector for
n-gram models.

Finally, the Support Vector Machine obtains the best results among all of the clustering and
classification results. The classification results are usually better than clustering results regardless of
which entity embedding or n-gram model is used.

5. DBpedia Invalid Entity Detection in Resources Description

This section describes the task of DBpedia invalid entity detection in resource description,
including the methods and the experimental setups and detailed evaluation results for this task.

The task of DBpedia invalid entity detection in resource description is to detect invalid
DBpedia entities in the DBpedia resource descriptions. For instance, consider the entity “dbr:Cake”
where the resource description contains triples related to types of Food or ingredients. In the
“dbr:Cake” description, we found one invalid entity “dbr:Ernest_Dichter”. “dbr:Ernest_Dichter”
is a psychologist. Similarly, in “dbr:Farmer”, where entities are about “dbo:Agriculture”, we identified
“dbr:Iowa_State_University” as an outlier, as it has the type “dbo:University” and is related to
“dbo:School” and “dbo:Education” for instance.

At the time of our experiments, there were several outliers and invalid facts in some resource
descriptions. However, DBpedia is a knowledge base that is updated and cleaned on a regular
basis. Some of the invalid entities detected during our experiments were removed from DBpedia
resources later. Based on our latest experiments, most (90%) of the DBpedia entities do not currently
have any invalid entities. Thus, to be able to evaluate the interest of our approach, we built an
artificial dataset by adding noisy/invalid triples in randomly selected entities. The objective of
this task is to detect whether the clustering and classification algorithms can detect this external
noise. For instance, in the “dbr:Cake” resource description, the external noise entities, such as
“dbr:FreeBSD”, “dbr:Hydrazine”, “dbr:Johns_Hopkins_University”, etc., have indeed been detected as
invalid entities. The original entities from the “Cake” resource description, such as “dbr:Cupcake”,
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“dbr:Butter”, “dbr:Sprinkles”, etc., have been detected as valid entities. Similarly, our approach has
been able to discriminate, for the “dbr:Farmer” resource description, between invalid entities, such
as “dbr:Solar_Wind”, “dbr:Linux”, and “dbr:Fibre_Channel”, and valid entities such as “dbr:Farm”,
“dbr:Local_Food”, and “dbr:Agriculture”.

5.1. Experiment Setup

Similarly to our previous tasks, this task consists of two parts: clustering and classification.
Both of them use clustering and classification algorithms applied on the prepared dataset for each
of the DBpedia entities. In both cases, we perform a binary clustering and a binary classification
that represent two main categories for each entity of interest: the entity’s category and NOT the
entity’s category (the positive class/cluster, and the negative class/cluster). For example, for the
entity “dbr:Barack_Obama”, we want to classify entities that occur as objects in the RDF description of
“dbr:Barack_Obama” as either valid or invalid.

The instances for the entity’s category (positive class/cluster) are the entities that are extracted
from the DBpedia resources descriptions, for example, the positive instances for the entity
“Barack_Obama” are extracted from the DBpedia resource description of “Barack_Obama”, such
as “dbr:Occidental_College”, “dbr:Hawaii”, and “dbr:Illinois”. The invalid entities (negative
class/cluster) are selected randomly from all of the remaining entities, except the entities that share
the same class of the positive instances. For example, “dbr:Illinois” has five classes: “dbo:Place”,
“dbo:Location”, “dbo:AdministrativeRegion”, “dbo:PopulatedPlace”, and “dbo:Region”. We do not
select any entities (resources) that are associated with these classes. The number of negative instances
depends on the corresponding number of positive instance in order to build a balanced dataset.
The dataset is divided into a training part and a testing set, and we perform a 10-fold cross validation.
Finally, we report the evaluation results of the negative class only as we want to test the ability to
detect invalid entities.

5.2. Clustering Evaluation

5.2.1. Clustering with N-gram Models

Table 11 shows the clustering results of K-means, Mean Shift and Birch on the training dataset
with different n-gram models.

Table 11. Summary for clustering algorithms with n-gram model on the training dataset.

Model Algorithm Precision Recall F-Score Accuracy

Uni-gram
K-means 0.691 0.766 0.657 59.5%

Mean Shift 0.501 0.997 0.667 47.0%
Birch 0.558 0.450 0.406 60.3%

Bi-gram
K-means 0.482 0.104 0.108 51.3%

Mean Shift 0.509 0.990 0.671 32.0%
Birch 0.591 0.089 0.125 51.7%

Tri-gram
K-means 0.465 0.087 0.095 50.6%

Mean Shift 0.491 0.995 0.657 39.4%
Birch 0.573 0.099 0.128 51.4%

N-gram
K-means 0.490 0.134 0.136 52.0%

Mean Shift 0.537 0.991 0.695 36.1%
Birch 0.343 0.020 0.025 49.5%

We observe that the uni-gram, bi-gram and tri-gram models have similar performance. We also
observe that outlier detection based on n-gram models is a difficult task with a top accuracy of ~60%.
Table 12 shows the clustering results of K-means and Birch on the test dataset with different n-gram
models, which show a similar pattern than the results on the training dataset.
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Table 12. Summary for clustering algorithms with n-gram model on test dataset.

Model Algorithm Precision Recall F-Score Accuracy

Uni-gram K-means 0.556 0.456 0.448 60.8%
Birch 0.422 0.089 0.121 49.4%

Bi-gram K-means 0.595 0.104 0.104 51.9%
Birch 0.543 0.029 0.051 50.4%

Tri-gram K-means 0.510 0.066 0.068 50.4%
Birch 0.473 0.021 0.037 50.0%

N-gram K-means 0.605 0.150 0.144 50.3%
Birch 0.603 0.033 0.060 50.8%

5.2.2. Clustering with Entity Embedding Models

Table 13 describes summary results for clustering algorithms with entity embedding model on
training dataset. We report the metrics for the negative class only.

Table 13. Summary for clustering algorithms with entity embedding models on training dataset.

Model Algorithm Precision Recall F-Score Accuracy

Skip-Gram
K-means 0.931 0.874 0.894 91.2%

Mean Shift 0.496 0.992 0.661 49.5%
Birch 0.906 0.854 0.864 88.0%

CBOW
K-means 0.905 0.856 0.871 87.8%

Mean Shift 0.499 0.999 0.665 49.9%
Birch 0.878 0.828 0.836 84.8%

We also notice, from Tables 13 and 14, that, compared to n-gram models, the accuracy increases
significantly to over 90% with entity embedding models. Similarly to our previous observations,
the Skip-gram model outperforms the CBOW model.

Table 14. Summary for clustering algorithms with entity embedding models on the test dataset.

Model Algorithm Precision Recall F-Score Accuracy

Skip-Gram K-means 0.705 0.944 0.807 77.3%
Birch 0.918 0.245 0.393 61.1%

CBOW
K-means 0.570 0.265 0.308 54.4%

Birch 0.518 0.084 0.128 50.9%

The results of the Skip-gram model exceed by 35% the CBOW model in terms of F-Score, and even
more in terms of Accuracy.

5.3. Classification Evaluation

5.3.1. Classification with N-gram Models

Tables 15 and 16 show the classification results with various traditional N-gram models on the
training and test datasets. Based on these results, the n-gram model has the best performance in terms
of both F-score and Accuracy among all of the n-gram models, followed by uni-gram, bi-gram and
tri-gram models. Extra Tree and SVM have the best results among all the classification algorithms.

On the test set, the difference between the n-gram model and the uni-gram model is not significant
based on the results of all classification algorithms in terms of F-score and Accuracy.
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Table 15. Summary for classification algorithms with n-gram model on training dataset.

Model Algorithm Precision Recall F-Score Accuracy AUC

Uni-gram

Baseline 0.500 0.497 0.493 49.7% 0.500
DT 0.767 0.810 0.781 77.7% 0.779

Extra Tree 0.776 0.902 0.826 81.1% 0.817
KNN 0.479 0.700 0.498 51.9% 0.550

RF 0.775 0.887 0.816 80.2% 0.808
NB 0.832 0.941 0.873 88.2% 0.872

SVM 0.906 0.854 0.876 86.6% 0.960

Bi-gram

Baseline 0.500 0.503 0.496 49.7% 0.500
DT 0.729 0.751 0.722 72.4% 0.726

Extra Tree 0.704 0.867 0.748 72.1% 0.734
KNN 0.476 0.804 0.548 49.7% 0.521

RF 0.710 0.839 0.734 71.3% 0.727
NB 0.777 0.792 0.709 84.9% 0.750

SVM 0.890 0.798 0.837 73.0% 0.847

Tri-gram

Baseline 0.500 0.501 0.495 49.8% 0.501
DT 0.709 0.694 0.654 67.5% 0.682

Extra Tree 0.708 0.739 0.650 65.7% 0.673
KNN 0.447 0.726 0.492 49.4% 0.519

RF 0.708 0.701 0.625 64.6% 0.664
NB 0.751 0.785 0.694 78.8% 0.728

SVM 0.830 0.737 0.773 70.6% 0.790

N-gram

Baseline 0.499 0.501 0.495 49.7% 0.500
DT 0.768 0.819 0.785 78.2% 0.785

Extra Tree 0.772 0.907 0.821 80.5% 0.812
KNN 0.531 0.751 0.536 52.1% 0.544

RF 0.767 0.887 0.805 79.1% 0.800
NB 0.751 0.801 0.699 87.2% 0.741

SVM 0.914 0.820 0.861 71.9% 0.869

Table 16. Summary of classification algorithms with n-gram model on test dataset.

Model Algorithm Precision Recall F-Score Accuracy AUC

Uni-gram
Extra Tree 0.674 0.693 0.674 67.2% 0.675

RF 0.678 0.707 0.682 67.8% 0.681
SVM 0.833 0.806 0.820 82.5% 0.825

Bi-gram
Extra Tree 0.737 0.851 0.784 76.8% 0.770

RF 0.754 0.849 0.793 78.0% 0.783
SVM 0.704 0.894 0.826 88.8% 0.778

Tri-gram
Extra Tree 0.681 0.775 0.718 70.2% 0.705

RF 0.693 0.765 0.720 70.8% 0.712
SVM 0.955 0.824 0.884 88.8% 0.890

Mix-gram
Extra Tree 0.769 0.877 0.815 80.3% 0.805

RF 0.792 0.879 0.829 81.9% 0.821
SVM 0.833 0.909 0.870 71.2% 0.830

5.3.2. Classification with Entity Embedding Models

As shown in Tables 17 and 18, Extra Tree, Random Forest, and SVM have high-quality results,
and can be used to detect most DBpedia entities correctly. When switching from the Skip-gram model
to the CBOW model, the overall results drop by around 5%.

For the invalid resources identification, overall, the Skip-gram model obtains the best results
among all of the entity and n-gram models for both the positive and negative class, followed by
the CBOW model, and then the uni-gram and n-gram model, regardless of which clustering or
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classification algorithm is being used. The n-gram model obtains a similar performance with the
uni-gram model, followed by bi-gram and tri-gram models.

The classification algorithms perform better than clustering algorithms regardless of which entity
embedding or n-gram model is used. The SVM classifier gets the best results among all of the
classification algorithms on the Skip-gram entity embedding model for the both positive and negative
classes. The Extra Tree, Random Forest, Support Vector Machine have good performance with entity
embedding models for the detection of the negative class.

Table 17. Summary of classification algorithms with entity embedding model on training dataset.

Model Algorithm Precision Recall F-Score Accuracy AUC

Skip-Gram

Baseline 0.503 0.501 0.493 49.7% 0.501
DT 0.835 0.834 0.828 83.2% 0.833

Extra Tree 0.892 0.934 0.909 90.8% 0.910
KNN 0.949 0.931 0.937 93.9% 0.940

RF 0.886 0.927 0.902 90.3% 0.903
NB 0.946 0.934 0.937 93.9% 0.939

SVM 0.957 0.941 0.947 94.8% 0.949

CBOW

Baseline 0.504 0.499 0.493 96.7% 0.501
DT 0.784 0.785 0.778 77.9% 0.782

Extra Tree 0.839 0.909 0.868 86.4% 0.866
KNN 0.923 0.869 0.878 89.4% 0.896

RF 0.830 0.903 0.860 85.5% 0.858
NB 0.928 0.921 0.921 92.2% 0.923

SVM 0.958 0.942 0.947 94.9% 0.950

Table 18. Summary of classification algorithms with entity embedding model on test dataset.

Model Algorithm Precision Recall F-Score Accuracy AUC

Extra Tree 0.64.3 0.664 0.647 64.2% 0.644
Skip-Gram RF 0.784 0.879 0.829 81.5% 0.814

SVM 0.833 0.983 0.902 89.2% 0.882

Extra Tree 0.643 0.664 0.647 64.2% 0.644
CBOW RF 0.651 0.684 0.661 65.5% 0.657

SVM 0.833 0.909 0.870 84.2% 0.830

6. Evaluation on the Whole DBpedia Knowledge Base

In this section, we present the results of applying the Random Forest classification model on
the whole DBpedia knowledge base. We performed several types of experiments: We experimented
with the identification of new and similar types for entities in the DBpedia knowledge base to both
ascertain the interest and accuracy of our classification procedure and the identification of wrong types
for already available rdf:type statements.

Based on our experiments with the three clustering and six classification algorithms, we came to
the conclusion that SVM had the best overall performance when coupled with the skip-grams model.
Random Forest displayed good overall performance, and most of its results were close to Support
Vector Machine. However, Support Vector Machine is slow compared to Random Forest. By taking
into account both performance and efficiency, we decided to use the Random Forest classifier for our
experiments on the whole DBpedia knowledge base.

There were around 4.7 million resources in DBpedia at the time of our experiments. We checked
the availability of these entities in our embedding model. We found that 1.4 million of these entities
were represented by a vector in our model, with a coverage rate of around 30%. Compared to the
pre-built model that we first used, where only 0.22 million were available with a coverage around 5%,
this is better and justifies the interest of our own word2vec model. Our explanation for absence of the
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remaining 3.3 million entities is the use of a threshold of 5 for taking into account an entity (an entity
that occurs less than 5 times is ignored).

New types discovery. The first experiment on the whole DBpedia knowledge base tested how
many entities have new types based on our methods. The experiment was processed as follows:
for each DBpedia entity from the 1.4 million entities, we tested the entity with the 358 classifiers
previously trained, then compared the classification results with the types already available in
the DBpedia knowledge base for these entities. For example, “dbr:Donald_Trump” originally had
two classes, “dbo:Person” and “dbo:Agent”, in the DBpedia knowledge base. Our classification
procedure discovered four classes for the entity “dbr:Donald_Trump”: “dbo:Person”, “dbo:Agent”,
“dbo:Politician”, and “dbo:President”, based on our experiment results. Thus, the new types are
“dbo:President” and “dbo:Politician”. Based on the results on the whole DBpedia knowledge base,
80,797 out of 1,406,828 entities were associated with new types. There are around two new types per
entity, on average. The percentage of entities with new types is 5.74%.

Table 19 shows the detailed results for the top five DBpedia classes that have the highest number
of new DBpedia entities.

Table 19. DBpedia new entities based on the whole DBpedia knowledge base.

DBpedia Class Number of New Entities Percentage of New Entities

Animal 2381 0.169%
Eukaryote 2869 0.204%

Person 2291 0.163%
Place 3399 0.242%

Species 3002 0.213%

Below is a set of new rdf:type triples found by our classification experiments:

<dbr:Wright_R-540 rdf:type dbo:Aircraft>

<dbr:Asian_Infrastructure_Investment_Bank rdf:type dbo:Bank>

<dbr:Hernando rdf:type dbo:Place>

<dbr:Air_China_flight_129 rdf:type dbo:Airline>

<dbr:New_Imperial_Hotel rdf:type dbo:Hotel>

Type Confirmation. The second experiment counted how many entities had the same types
as shown on DBpedia based on our methods. The experiment was processed as follows: for each
DBpedia entity, we tested the entity with the 358 classifiers, then compared the classification results
with the DBpedia knowledge base. For example, “dbr:Barack_Obama” originally had four classes:
“dbo:Person”, “dbo:Agent”, “dbo:Politician”, and “dbo:President”. Based on our classification results,
the four types were correctly mapped to the entity “dbr:Barack_Obama” using our classifiers. Based
on the results on the whole DBpedia knowledge base, 1,144,719 out of 1,406,828 entities had the same
types as those available in the DBpedia knowledge base. The percentage of the entities that have the
same types is 81.37%. This shows the completeness of our classification methods and the interest of
using our classifiers to automatically identify the types of new resources that will emerge in Wikipedia
and DBpedia.

Table 20 shows the detailed results for the top five DBpedia classes that have the highest number
of similar entities as DBpedia based on our methods.
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Table 20. DBpedia similar entities based on the whole DBpedia knowledge base.

DBpedia Class Number of Similar Entities Percentage of Similar Entities

CareerStation 10,001 0.711%
Document 9983 0.710%

PersonFunction 9958 0.708%
Sound 9856 0.706%

SportsTeamMember 9833 0.699%

Entity Extraction. The third experiment counted how many classes were related to new entities
based on our methods. The experiment was processed as follows: for each DBpedia class, we tested
the class with the entities from the whole DBpedia knowledge base using our 358 classifiers. Then we
compared the classification results with the DBpedia knowledge base to find the number of classes with
new entities. For example, the class “dbo:Politician” originally had more than a hundred thousand
entities, such as “dbr:Barack_Obama”, “dbr:George_Bush”, “dbr:Bill_Clinton”, etc. Following our
experiment, “dbr:Donald_Trump” and “dbr:Rex_Tillerson” were added as new entities to the class
“dbo:Politician”. Based on the results on the whole DBpedia knowledge base, 358 out of 358 classes
obtained new entities (100%).

Invalid RDF Triple Detection. The fourth experiment tested the number of invalid RDF triples
through the predicate rdf:type based on our methods. The experiment was processed as follows: for
each RDF triple using the predicate rdf:type:<Subject rdf:type Object> in the DBpedia knowledge base,
we ran the 358 classifiers to classify the Subject and compared the output to the object. For example,
based on our classification results, the Subject “dbr:Xanthine” is correctly classified with the Objects
“dbo:ChemicalSubstance” and “ChemicalCompound”. Thus, the RDF triples <dbr:Xanthine rdf:type
dbo:ChemicalSubstance> and <dbr:Xanthine rdf:type dbo:ChemicalCompound> are classified as valid
RDF triples. However, the classification results do not find the type “dbo:Airport”. Thus, the RDF
triple <dbr:Xanthine rdf:type dbo:Airport > is classified as an invalid RDF triple. Among the 4,161,452
rdf:type triples that were tested, 968,944 were detected as invalid triples. The overall percentage of
invalid RDF triples is 23.28%.

The following examples show several invalid triples detected using our methods:

<dbr:Wright_R-540 rdf:type dbo:TelevisionShow>

<dbr:Asian_Infrastructure_Investment_Bank rdf:type dbo:University>

<dbr:African_Investment_Bank rdf:type dbo:University>

<dbr:Air_China_flight_129 rdf:type dbo:ArtificialSatellite>

<dbr:Lufthansa_Flight_615 rdf:type dbo:Band>

Table 21 shows the detailed results for the top five DBpedia classes that have the biggest number
of invalid triples.

Table 21. DBpedia invalid RDF triples.

DBpedia Class Number of Invalid RDF Triples Percentage of Invalid RDF Triples

ComicsCharacter 6670 1.603%
Language 10,456 2.513%

Person 5538 1.331%
Place 7354 1.767%

Species 16,027 3.852%

7. Conclusions and Future Work

In this article, we addressed the tasks of building our own entity embedding and n-gram models
for DBpedia quality enhancement by detecting invalid DBpedia types, completing missing DBpedia
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types, and detecting invalid DBpedia entities in resources description. We compared the results of
different clustering and classification algorithms, and the results of different entity embedding and
n-gram models.

In the DBpedia entity type detection part (Section 4), the experiments show that we can detect
most of the invalid DBpedia types correctly, and can help us to complete missing types for un-typed
DBpedia resources. In the DBpedia invalid entity detection part (Section 5), our experimental results
show that we can detect most of the invalid DBpedia entities correctly. In the experiments in both
parts (Sections 4 and 5), we chose the best models and algorithms, and we presented further detailed
results for a sample of DBpedia types and entities. Overall, the Skip-gram entity embedding model
has the best results among all of the entity embedding and the n-gram models. Given an accuracy
greater than or equal to 96%, we are confident that our approach is able to complete and correct the
DBpedia knowledge base.

Recalling the two research questions that we proposed at the beginning of this article:

RQ1: How do entity embeddings compare with traditional n-gram models for type identification?

The entity embeddings can help detect relevant types of an entity. Based on the results with
Support Vector Machine, more than 98% of the relevant types of an entity can be detected with the
Skip-gram entity embedding model. However, not all entity embedding models outperform traditional
n-gram models. N-gram and uni-gram models performed better than the Continuous Bag-Of-Words
(CBOW) entity embedding model.

RQ2: How do entity embeddings compare with traditional n-gram models for invalid
entity detection?

All the entity embedding models (Skip-Gram, CBOW) performed better than the traditional
n-gram models. Entity embeddings, and more precisely the Skip-Gram model, helped detect the
relevant entities in the RDF description of a DBpedia resource. Based on our results with SVM,
we showed that around 95% of the relevant entities in the RDF description of a DBpedia resource can
be detected with the Skip-gram entity embedding model.

There are still some limitations to our approach. The first limitation is that vector representation
of entities is the only feature for the description of DBpedia entities. Features based on the DBpedia
knowledge base or extracted from the Wikipedia abstracts or complete pages could be used to enhance
the performance of our classifiers. Another limitation is that our entity embedding models do not
contain all of the DBpedia entities, even if they are more complete than the ones available in the state
of the art. In terms of comparison with results obtained in the state of the art, our initial plan was to
compare our methods with SDValidate and SDType [41,42]. However, we were not able to run the
code provided despite repeated efforts. Similarly, the authors did not share their specific datasets
extracted from DBpedia for us to be able to use the same gold standards.

Another limitation is that the approach for detecting the validity of an RDF triple in a resource
description could be significantly enhanced. For example, we did not use the properties or predicates to
identify the validity of an RDF triple. Most importantly, we relied on the available DBpedia descriptions
as our gold standard. Given that these descriptions might contain incorrect statements, it is not clear
how this impacts the discovery of invalid triples in unknown resources. Another limitation is that we
only built classifiers based on 358 DBpedia classes. There are 199 DBpedia classes that do not have
entities, and for which we cannot build classifiers based on our current method.

The first work for the future is to use more features rather than a single vector representation
of entities. One important aspect would be to identify how properties can be exploited to assess the
validity of an RDF triple rather than relying only on the semantic distance between the subject and
object based on the obtained vectors. Furthermore, how to build classifiers for the 199 ontological
classes without any entities in DBpedia is an important avenue for the future. Another important
direction is to build larger entity embedding models to include more DBpedia entities, and also to



Information 2019, 10, 6 21 of 23

explore how graph embeddings models such as node2vec [52] can be used in similar experiments.
In terms of the entity embedding model building, we also plan to try other entity embedding tools,
such as GloVe [53] to see if they can lead to better models.
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