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Abstract: This paper investigates energy harvesting based multiuser system with large-scale
distributed antennas, where a large number of remote antenna units (RAUs) are evenly separated
across multiple circles. An efficient wireless energy and information transmission protocol is proposed.
To save the signaling and the radio frequency chains overheads, the RAU with the shortest distance
towards a user equipment (UE) is employed for the downlink wireless energy transfer (WET).
In the uplink phase, we analyze the probability of wireless information transmission (WIT) of UEs.
Then, linear zero-forcing detection and minimum-mean-square error are used to separate the data
information among all the UEs that satisfy the requirement of WIT. The asymptotic throughput for
an arbitrary UE is derived in closed-form. The time fraction used for the WET is optimized through
maximizing the asymptotic throughput. Numerical and simulation results are given to verify the
theoretical analysis, and bring to light the time fraction planning and the RAUs deployment for
the system.

Keywords: energy harvesting; massive distributed antenna system; remote antenna unit; wireless
energy transfer; wireless information transmission

1. Introduction

As the key technology of the fifth-generation (5G), massive multiple-input multiple-output
(MIMO) has been pervasively studied in recent years [1]. With hundreds of antennas equipped,
massive MIMO can achieve extremely high data rates, spectrum efficiency, and energy efficiency [2,3].
According to the law of very long vectors, transmission channels for different users in massive MIMO
are orthogonal to each other, which simplifies the system from a mathematical point of view [4,5].
By employing spatial temporal linear equalizers in wireless sensor networks, such as zero-forcing (ZF)
and minimum-mean-square error (MMSE), multi-user interference can be mitigated [6–9]. However,
it is reported that massive MIMO system is expected to support billions of wireless user equipments
(UEs), which leads to huge energy consumption and massive greenhouse gas pollution [10].

On the other hand, the lifetime of batteries seriously limits the performance of wireless
networks [11]. In the past decades, the energy density and size of batteries have not been improved
significantly. Fortunately, wireless energy transfer (WET) or energy harvesting (EH), which can harvest
energy from ambient radio frequency (RF) resources has emerged as a prospective technique to provide
continuous power supply for UEs in the wireless environment. The authors in reference [12] have
considered single-antenna UEs that harvest energy from hybrid data-and-energy access point, where
frame-based transmissions is employed in the upcoming uplink training and information transmission.
The work of authors in reference [13] employs the matched-filter precoder to maximize the minimum
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harvested energy among energy users for massive MIMO. In general, the energy harvesting efficiency
is really sensitive to the transmission distance [14–16]. In order to enhance the energy harvesting
efficiency, beamforming and EH zone have been employed in references [12,17,18]. As the average
transmission distance between transmitters and receivers in distributed antenna system (DAS) is much
smaller than that in co-located based MIMO, WET is more feasible in DAS. The antennas deployment
in massive DAS is geographically separated in which antennas are defined as the remote antenna
units (RAUs). Theses RAUs in the cell are connected to a central processor via high-bandwidth and
low-latency backhaul. Compared with the traditional massive MIMO, the coverage of massive DAS
is expanded, and the average access between transmitters and receivers can be shortened with this
distributed structure [19]. Since all the RAUs in a cell are cooperative for information transmission,
DAS with large-scale antennas can be treated as an extension of the centralized massive MIMO.
Therefore, research on wireless-powered based massive DAS is a trend toward the next generation
communication systems [20].

A single-circle layout massive DAS has been proposed in reference [21] where a large number
of RAUs have been deployed across a circle, and the optimal radius of RAU deployment has been
gained. Li et al. have studied the massive DAS with multiple-RAU clusters and demonstrated the
massive DAS outperforms co-located massive MIMO in terms of achievable rates [22,23]. K. Guo et al.
have proposed two DAS enabled transmission strategies for a uniformly distributed massive DAS [24].
Nevertheless, the distances between UEs to the RAUs nearby in the models proposed above are not
sufficiently short, which results in inefficient EH. The work in references [20,25] have proposed the
uniformly distributed massive DAS. The potential issues on the technologies that could improve
WET and wireless in formation transmission (WIT) have also been discussed. However, connecting
all the RAUs with the optical fiber are complicated for uniformly distributed massive DAS. Since in
massive MIMO, high hardware cost and signaling overheads are produced by an excessive number
of RF chains, choosing optimal RAUs for WET towards UEs is an effective way for the issues [26].
Various RAU selection schemes proposed in references [27–30] can also be applied in the massive DAS.
In reference [31], the author designs a feasible wireless-powered massive DAS and employs the best
channel quality based antenna selection scheme to analyze the throughput performance for a single
user scenario. The multiuser scenario has not been addressed.

In this paper, we consider the multiple-circle layout based massively DAS for multiuser scenario,
and study the throughput performance based on EH. This work can be generalized to the ring form
layouts, but it cannot be generalized to all the layouts, like grid layout. The contributions of this paper
are listed as follows.

• An efficient energy and information transfer transmission scheme is proposed. In the downlink
phase, to save the signaling and RF chains overhead, the RAU with the shortest distance towards
a UE is selected for the WET. In the uplink phase, the wireless data transmission probability of a
UE is developed. Then, the UEs which satisfy the WIT requirement transmit data to the central
processor (CP) according to the “harvest-then-transmit” protocol.

• The asymptotic throughput for an arbitrary UE is derived in closed-form by exploiting the
ZF detection (ZFD) and the MMSE detection (MMSED) to separate data information among
different UEs. Besides, the optimal time fraction used for EH is obtained by maximizing the
asymptotic throughput.

• Performance results are provided to validate the theoretical analysis and show the impacts on
the throughput performance from various parameters. The average throughput of the cell is also
calculated through numerical analysis, which can provide guidelines for the network analysis
and optimization.

The rest of this paper is organized as follows. Section 2 introduces the system model which
includes the EH model and the WIT model, respectively. In Section 3, we analyze the information
transmission probability of the target UE. The asymptotic throughput is derived in Section 4. Section 5
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studies the optimal EH time fraction. Numerical and simulation results are provided in Section 6.
Finally, Section 7 concludes this paper.

Notation: Boldface lowercase and uppercase letters represent vectors and matrices, respectively. |·|
denotes the absolute value, E{·} denotes the expectation, Pr{·} denotes the probability, diag{·, . . . , ·}
denotes the diagonal matrix, and ‖·‖F denotes the Frobenius norm of a vector. The operations (·)T and
(·)H represent the transpose and the conjugate transpose of a vector, respectively.

2. System Model

With the development of internet of things, the lifetime of batteries has much more effects on
terminals application. Fortunately, energy harvesting is an effective technique to prolong the lifetime of
batteries. Since energy harvesting is sensitive to the propagation distance, the transform of circle layout
based massive distributed antenna system is developed [32,33], i.e., multiple-circle layout, to reduce the
distance between users and antenna modules. With the angle between two adjacent RAUs uniformly
spread in a circle, this structure is equivalent to one dimensional, and the computational complexity of
the system is greatly reduced. Therefore, this multiple-circle layout has a good balance between the
tractability of theoretical analysis and practicality. In addition, omnidirectional antennas are adopted
to get full coverage.

In a macrocell, we assume the system has N circles with radius r1, r2, . . . , rN , respectively, and they
are all connected to a CP via optical backhaul, as shown in Figure 1. In this network, the power
beacons which can provide wireless power are tied up to the existing infrastructure of the low-cost
antennas [27], forming the modified RAUs. M RAUs are evenly distributed across these circles. The CP
in the cell has the ability of a base station and processes signals in a centralized way. Compared with
stochastic process-based layout and grid layout, this architecture simplifies the RAUs connections
in the implement point of view, which makes performance analysis tractable as the topology is
equivalent to a one dimensional network. Throughout this paper, the channel state information in
both uplink and downlink can be known at the receiver. Signals are assumed to experience frequency
nonselective fading.
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Figure 1. The system model of wireless-powered based massive distributed antenna system.

We denote Rm as the m-th RAU in the cell, where 1 ≤ m ≤ M. Each UE and RAU is assumed
to be equipped with one omnidirectional antenna, and the number of the UEs is K (K << M).
The small-scale fading for uplink and downlink between Rm and its serving UE are denoted as gmk and
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hmk, respectively, where 1 ≤ k ≤ K. The normalized time parameter is divided into two time fractions,
i.e., τ0 (0 < τ0 < 1) for the downlink WET phase and 1− τ0 for the uplink WIT phase. The specific
transmission protocol is defined as follows:

• Downlink WET: In τ0, each UE harvests energy from the selected RAU with the shortest distance.
• Uplink WIT: Firstly, we analyze the information transmission probability of a UE. Only if the

power used for information transmission in 1− τ0 is no less than the transmit sensitivity, the UE
can send its data to the CP at threshold power. To separate different data information among K1

(0 ≤ K1 ≤ K) UEs, ZFD is employed.

2.1. WET Model

We select the k-th UE as the target user. Since the WET technique is sensitive to distance, the UE
select the RAU with the shortest distance, Ro, for energy harvesting, i.e.,

Lok = arg max
1≤m≤M,0≤k≤K

{Lmk} (1)

Let smk be the transmit information symbol which satisfies E{
∣∣sm,k

∣∣2} = 1. The Rayleigh fading
factor hmk ∼ Rayleigh(Ωmk), the path-loss Lm,k can be modeled by Lm,k = (dm,k)

−α, where dm,k is the
access distance from Rm,k to the UE, and α is the path-loss exponent. In this work, the equal power
allocation scheme is adopted among all the RAUs. During a given block time, the received signal from
the selected RAU at the UE is expressed as

rok =
√

PtLokhoksok +
M

∑
m=1,m 6=o

√
PtLmkhmksmk + n0 (2)

where Pt is the transmit power allocated to each RAU, and n0 is the additive white Gaussian noise.
Suppose the distance among each UE is far enough, the energy transfer effect of the remaining

K− 1 RAUs which are in the WET state on the target UE can be ignored. The energy harvested from
the noise can be negligible since the transmit power of an RAU is far beyond the noise. In 1− τ0,
The amount of energy harvested by the target UE is given by

Q = ξτ0PtLok|hok|2 (3)

where 0 < ξ < 1 is defined as the energy harvesting efficiency.

2.2. WIT Model

In the downlink EH phase, the energy harvested by UE varies with different UE’s locations.
The target UE can transmit data to the CP only when the power Pk harvested in the downlink is greater
than the transmit sensitivity, P. The uplink path-loss is deemed as Lmk due to the symmetry of the
propagation path between uplink transmission and downlink transmission. Then, the M× 1 channel
vector between the k-th UE and all the RAUs can be written as

bk =
[√

L1kg1k · · ·
√

LMkgMk

]T
(4)

We assume K1 (K1 ≤ K) UEs can satisfy the WIT condition in 1− τ0 time fraction, then the uplink
M× K1 channel vector B =

[
b1 · · ·bK1

]
can be built.

The random variable xk is defined as the transmitted symbol of the target UE which satisfies
E{|xk|2} = 1. Therefore, x =

[
x1 · · · xK1

]
denotes K1× 1 UE data vector. According to the transmission

protocol, the received signal at CP can be obtained as

y =
√

PBx + n (5)
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where n is the noise vector, and each element is i.i.d., obeying complex Gaussian distribution,
i.e., n ∼ CN (0, σ2IM).

In massive MIMO, the receiver can separate each data information among different UEs by
utilizing the ZFD and the MMSED [34]. With the ZFD, the received signal vector y should be multiplied
by the matrix A = (BHB)−1BH . From Equation (5), we have

r = Ay

=
√

Px + (BHB)−1BHn
(6)

where the kth element in r is
rk =

√
Pxk + aH

k n (7)

where ak denotes the kth column vector of the M× K1A, and aH
k n∼ CN

(
0, ‖ak‖2

2σ2
)

. It is concluded

from Equation (7) that the simultaneous signal-to-noise ratio (SNR) can be expressed as γk =
P

‖ak‖2
2σ2 .

Similarly, with the MMSED, the received signal vector y should be multiplied by the matrix

A = BH(BBH + σ2

P I)
−1

. We assume C = AB and ek = ∑
k 6=l

Ck,l
√

Pxl + (Bn)k,k, we have

r′k = Ck,k
√

Pxk + ek (8)

3. Information Transmission Probability for a UE

Let χmk = PtLmk|hmk|2, since hmk is Rayleigh distributed, χmk = PtLmk|hmk|2 is exponentially
distributed. Therefore, the cumulative distribution function (CDF) of χmk can be expressed as

Fχmk (χ) = 1− exp(−λmkχ) (9)

where λmk = 1/PtLmkΩmk, and E{|hmk|2} = Ωmk.
Since the energy harvested in the downlink phase is used for the circuit operation and information

transmission, we define 0 < ρ ≤ 1 as the proportion of energy used for the information transmission.
Then, the available transmit power for the target UE is written as

Pok =
ρQk

1− τ0
= ρξPtLok|hok|2

τ0

1− τ0
(10)

When Pok is greater than the threshold power P, the UE can transmit its data in the remaining
time fraction. Thus, the information transmission probability of the target UE can be obtained as

Psok = Pr{Pok ≥ P}
= Pr

{
χok ≥

P(1−τ0)
τ0ρξ

}
= exp

(
− 1−τ0

τ0
P

ptρξΩok Lok

) (11)

4. Asymptotic Throughput

In 1 − τ0 time fraction, K1 UEs are assumed to satisfy the data transmission requirement.
The uplink throughput of the kth UE with ZFD can be expressed as

Tk = Psok(1− τ0)Ck (12)

where

Ck = E
{

log2

(
1 +

P

‖ak‖2σ2

)}
(13)
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And the uplink throughput of the kth UE with MMSED can be obtained as

T ′k = Psok(1− τ0)C ′k (14)

where

C ′k = E

log2

1 +
‖ck‖2

∑
l 6=k

∥∥ck,l
∥∥2

+ σ2

P ∑
l
‖al‖2


 (15)

Without loss of generality, we take the derivations with ZFD for instance in the following.
By exploiting the advantages of massive MIMO, such as the channel hardening and the asymptotic
orthogonality of user channels [35–37], the small-scale fading parameters can be averaged out, and the
interference among the UEs can be eliminated. In what follows, we study the asymptotic throughput
of the target UE as the number of RAUs tends to be infinity.

It is noticed from Equation (4) that bk = L1/2
k hk, where Lk = diag{L1k, . . . , LMk} is the path-loss

matrix with L1/2
k = diag

{√
L1k, . . . ,

√
LMk

}
, and hk = [g1k, . . . , g1k]

T. Therefore, 1√
M

hk are random

vectors of i.i.d. entries with zero mean and 1√
M

variance. The eighth order moment of the k-th entry is

E{|gmk|8}/M4, which is of order O
(
1/M4) when E{|gmk|8} < ∞, whose elements are independent

of Lk. Since 1√
M

hk is independent of Lk, we can follow lemma 4 and lemma 5 of reference [38] and
obtain the following results:

1
M
‖bk‖2 − 1

M

M

∑
m=1

Lmk =

(
1√
M

hk

)H
Lk

1√
M

hk −
1
M

tr(Lk)→ 0 (16)

and
1
M

bH
k bi =

(
1√
M

hk

)H
Lk

(
1√
M

hi

)
→ 0 (i 6= k) (17)

Applying Equations (16) and (17), one obtains
1
M‖b1‖2 · · · 1

M b1bK1
...

. . .
...

1
M bK1b1 · · · 1

M‖bK1‖
2

− diag

{
1
M

M

∑
m=1

Lm1

}
→ 0

Let Lk =
1
M

M
∑

m=1
Lmk, since BHB ≥ 0, we have

[
1
M

(
BHB

)]−1
− diag

{
1
L1

, . . . ,
1

LK1

}
→ 0 (18)

then, the element from the kth column and the kth row of matrix
[

1
M
(
BHB

)]−1
is convergent at 1

Lk
.

Further, we have
1[(

1
M BHB

)−1
]

kk

=
1
M

1[(
BHB

)−1
]

kk

=
1
M

1

‖ak‖2 → Lk (19)

Substituting Equations (19) and (11) into Equation (12), we obtain the asymptotic throughput of
the kth UE as

Tk = (1− τ0) exp
(
−1− τ0

τ0

c
ΩokLok

)
log2

(
1 +

PMLk
σ2

)
(20)

It is observed from Equation (20) that the throughput is mainly affected by the EH time fraction
τ0, the distance between the RAU and its serving UE, and etc.
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5. Optimization of Energy Harvesting Time

Theorem 1. The optimal EH time fraction parameter can be calculated by maximizing the system throughput as

τ0op =
−u +

√
u2 + 4u

2
(21)

where u = P/PtρξΩokLok (u > 0).

Proof of Theorem 1. Let u = P/PtρξΩokLok (u > 0)), the asymptotic throughput of the kth UE can be
rewritten from (17) in the original manuscript as

Tk = (1− τ0) exp
(
−1− τ0

τ0
u
)

log2

(
1 +

PMLk
σ2

)
(22)

• Differentiating Tk given in the above equation with respect to τ0, one obtains

dTk
dτ0

= − exp
(
− 1−τ0

τ0
u
)

log2

(
1 + PMLk

σ2

)
+ u(1−τ0)

τ2
0

exp
(
− 1−τ0

τ0
u
)

log2

(
1 + PMLk

σ2

) (23)

Let dTk
dτ0

= 0, we have
u(1− τ0)

τ2
0

= 1 (24)

the solutions of the above equation can be calculated as

τ01 =
−u +

√
u2 + 4u

2
> 0, τ02 =

−u−
√

u2 + 4u
2

< 0 (25)

Since ∆ = u2 + 4u > 0, the optimal time fraction τ0op should be τ01.

• We now show the solution of τ01 is the maximum of Tk. It is concluded from Equation (20) that

e
1−τ0

τ0
u log2

(
1 + PMLk

σ2

)−1 dTk
dτ0

is a decreasing function of τ0. Therefore,

e
1−τ0

τ0
u log2

(
1 +

PMLk
σ2

)−1 dTk
dτ0

=

{
> 0, τ0 < τ01

< 0, τ0 > τ01
(26)

Notice that e
1−τ0

τ0
u
> 0 and log2

(
1 + PMLk

σ2

)−1
> 0, therefore,

dTk
dτ0

=

{
> 0, τ0 < τ01

< 0, τ0 < τ01
(27)

The optimal EH time fraction can be calculated by maximizing Tk as τ01. �

The result of Theorem 1, i.e., t0op as a function of u is shown in Figure 2. Since u = P/PtρξΩokLok,
the optimal EH time fraction depends on the transmit power of a RAU, the threshold power, distance
between the transceiver, EH efficiency, etc. If the distance between the RAU and its serving UE is
farther, the throughput of a UE should be maximized by harvesting energy for much more time.
In the wireless-powered based massive DAS, signals will experience bidirectional path-loss, and the
channel gain related to those RAUs far away from the UE can be ignored. As a result, the throughput
performance is improved to a small degree as the number of RAUs increases.
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6. Numerical Results

In this section, we present numerical results to demonstrate the throughput performance for
wireless-powered based massive DAS, and give Monte Carlo simulations to validate the theoretical
results. Without loss of generality, we analyze the throughput performance with ZFD. The impacts of
various parameters, such as the locations of the UE, the number of circles, the number of the RAUs,
as well as the EH time fraction on the throughput performance are revealed by numerical analysis.
In the simulations, unless stated otherwise, the cellular radius is set as R = 500 meters, the number
of circles is N. With this circular pattern layout, the distance between any two adjacent circles is set
to be r = R/(N + 1), where R is the radiant radius of the marcocell. It is assumed that K RAUs with
single-antenna are uniformly distributed across the inner circle, and the ith (1 ≤ i ≤ N) circle has
Ki = iK RAUs. Thus, the total number of RAUs should be M = KN(1 + N)/2. The distance between
the UE and the cell center is denoted as d0, the angle between the direction from the UE to the cell
center and the horizon direction is denoted as θ. The path-loss exponent is α = 3, the number of RAU
in the first circle is K = 2, the EH efficiency is ξ = 0.9, the proportion of information transmission is
η = 0.9, the normalized time fraction for EH is τ0 = 0.25, the transmit power of each RAU is Pt = 3 W,
the power spectral noise is σ2 = −80 dBm, the threshold power is P = 1 mW, and the angles between
the direction of the UE to the cell center and horizontal direction is θ = π/100.

Figure 3a,b show the property of information transmission probability of a UE versus the EH
time fraction, and the ratio of RAU transmit power and threshold power, respectively Pt/P. In this
simulation, the number of circles is set to be N = 15. As expected, the simulation results correspond to
Equation (10). It is also observed from Figure 3a that the probability increases with the growth of τ0

at d0 = 27 m, because the more energy harvested by the UE in the downlink, the larger probability
that the available transmit power for the target UE achieves the threshold power. From Figure 3b,
we observe that the information transmission probability in uplink increases with the growth of the
value of Pt/P. This is explained by the fact that when the value of Pt/P is large, the transmit power
allocated to the RAU is high or the threshold power preset is low, which increase the probability of
data transmission. Further, the information transmission probability varies with the UE at different
positions. For instance, as the distance between any two adjacent circles in massive DAS with 15-circle
layout is r = 31.25 m, the UE located at d0 = 27 m has the shortest distance to the selected RAU,
leading to larger information transmission probability.
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Figure 3. Information transmission probability versus (a) EH time fraction and (b) Pt/P (N = 15).

The asymptotic throughput as a function of EH time fraction is plotted in Figure 4. Monte Carlo
simulations verify the correctness of the theoretical results, and MMSED outperforms ZFD. As can be
seen from this figure that as the EH time fraction τ0 increases, the throughput performance improves at
first, but gradually decreases after reaching a maximum. This may due to the fact that the increase of
the information transmission probability can contribute to the throughput, however, the time fraction
used for WIT is shortened, as a result, the gain brought by WET does not surpass the loss brought by
WIT. We also find that when the distance between the UE and cell center is 100 m, the optimal EH
time fraction can be calculated from Equation (18) as τopt ≈ 0.59, which matches the simulation result.
Further, the UE’s location can also affect the optimal EH time fraction.Information 2019, 10, x FOR PEER REVIEW 10 of 15 
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Figure 4. Throughput as a function of τ0 (N = 15 ).

The throughput performance versus the transmit power threshold is studied for massive DAS
with 10-circle layout and 20-circle layout, respectively, as shown in Figure 5. Both of the two scenarios
have nearly the same number of RAUs (M = 220 for N = 10, and M = 210 for N = 20). At first,
the throughput increases as the threshold power increases, whereas, it may not always increase due
to the decrease of the information transmission probability. When the number of the RAU for the
two scenarios (N = 10 and N = 20) is nearly the same, throughput performance is an increasing
function of the number of circles. This is because the average distance between transceiver is reduced
with the increase of the number of circles, resulting in the improvement of path-loss. In the practical
scenario, however, the optical and radio frequency chains cost can be increased with the growth of
circles. Thus, the RAU deployment should be designed according to the stringent requirement of
communications and the hardware cost.
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Figure 5. Throughput versus the threshold power P (N = 15).

As the theoretical results are validated by the Monte Carlo simulations, the system performance
with various parameters settings can be estimated efficiently by the theoretical expressions without
resorting to the time-consuming simulations. Figure 6 plots the throughput performance versus the
UE’s locations (including the distance and the angle information). Since N = 15, r = 31.25 m, three
peak values of the throughput can be achieved at d0 = 31.25 m, d0 = 62.5 m, and d0 = 93.75 m,
respectively, over the radiation range of 0 to 100 m, which matches the numerical results. It is
concluded from Figure 6 that the maximal throughput appears when the UE moves along the horizon
direction. This can be explained by the fact that the path-loss is the highest when the distance
between the UE and its selected RAU at this direction is the shortest, which attributes to the optimal
throughput performance.

Information 2019, 10, x FOR PEER REVIEW 11 of 15 

 

the UE and its selected RAU at this direction is the shortest, which attributes to the optimal 
throughput performance. 

 
Figure 6. Throughput versus the user equipment (UE’s) locations ( 15N = ). 

We further study the DAS model with 10-circle layout to find the impacts of the number of RAUs on 
the throughput performance, and compare the proposed massive DAS with the centralized large-scale 
MIMO (L-MIMO) system at different locations ( 0 15d =  m and 0 45d =  m), as shown in Figure 7. In 
general, the throughput performance increases as the number of antennas increases, but it grows slowly 
when the number of the antennas tends towards infinity. It is also observed from Figure 7 that compared 
with the proposed massive DAS, the centralized L-MIMO system is more sensitive to the UE’s locations. 
For instance, when the UE locates near the cell center, the L-MIMO system outperforms the massive DAS, 
whereas when the UE locates far from the cell center, the L-MIMO achieves very low throughput. 
Therefore, compared with the centralized L-MIMO, our proposed massive DAS is a more applicable 
network for energy harvesting to ensure the fairness of the UEs in a cell. 

 
Figure 7. Throughput versus the number of remote antenna units (RAUs) for massive distributed 
antenna system (DAS) and centralized large-scale multiple-input multiple-output (L-MIMO). 

The average throughput of a cell reveals the insights of the average experience of the UE service, 
and the optimal EH time scheduling to the downlink WET and the uplink WIT can be estimated with 
numerical results. The average throughput of a cell can be obtained by averaging over the locations 
of the target UE, and the detailed derivation is illustrated in Appendix A. Since equation (28) in 
Appendix A is a single-integral, theoretical results can be evaluated efficiently exploiting the common 
mathematical software (e.g., MATLAB). As can be seen from Figure 8 that the average throughput 
performance has the same variation tendency as that of in Figure 4, and the optimal EH time fraction, 0opτ

200 400 600 800 1000 1200 1400
0

1

2

3

4

5

6

7

RAU number

T
hr

ou
gh

pu
t 

(b
ps

/H
z)

 

 

Massive DAS, d0=15 m

Massive DAS, d0=45 m

Centralized Massive MIMO, d0=15 m

Centralized Massive MIMO, d0=45 m

Figure 6. Throughput versus the user equipment (UE’s) locations (N = 15).

We further study the DAS model with 10-circle layout to find the impacts of the number of
RAUs on the throughput performance, and compare the proposed massive DAS with the centralized
large-scale MIMO (L-MIMO) system at different locations (d0 = 15 m and d0 = 45 m), as shown in
Figure 7. In general, the throughput performance increases as the number of antennas increases, but it
grows slowly when the number of the antennas tends towards infinity. It is also observed from Figure 7
that compared with the proposed massive DAS, the centralized L-MIMO system is more sensitive
to the UE’s locations. For instance, when the UE locates near the cell center, the L-MIMO system
outperforms the massive DAS, whereas when the UE locates far from the cell center, the L-MIMO
achieves very low throughput. Therefore, compared with the centralized L-MIMO, our proposed
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massive DAS is a more applicable network for energy harvesting to ensure the fairness of the UEs in
a cell.
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Figure 7. Throughput versus the number of remote antenna units (RAUs) for massive distributed
antenna system (DAS) and centralized large-scale multiple-input multiple-output (L-MIMO).

The average throughput of a cell reveals the insights of the average experience of the UE service,
and the optimal EH time scheduling to the downlink WET and the uplink WIT can be estimated with
numerical results. The average throughput of a cell can be obtained by averaging over the locations
of the target UE, and the detailed derivation is illustrated in Appendix A. Since Equation (28) in
Appendix A is a single-integral, theoretical results can be evaluated efficiently exploiting the common
mathematical software (e.g., MATLAB). As can be seen from Figure 8 that the average throughput
performance has the same variation tendency as that of in Figure 4, and the optimal EH time fraction,
τ0op, to maximize the average throughput of a cell varies with different number of circles. For instance,
the optimal EH time fractions for massive DAS with 10-circle layout (M = 220), 14-circle layout
(M = 210), and 20-circle layout (M = 210) are 0.21, 0.24, and 0.25, respectively. Moreover, compared
with Figures 5 and 7, it is concluded that the number of circles, rather than the number of the RAUs,
has much more effect on the system performance.
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7. Conclusions

This paper has studied the throughput performance of wireless-powered based massive DAS in
the case of a multiuser scenario. A multiple-circle layout network in which a large number of RAUs
are evenly deployed across the circles was considered. We also proposed a RAU selection method
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for the WET and analyzed the data transmission probability of a UE for the WIT. The closed-form
expression of the asymptotic throughput was obtained by exploiting zero-forcing detection. Numerical
and simulation results were given to verify the correctness of the theoretical results, and the optimal
EH time fraction for an arbitrary UE can be obtained efficiently with numerical results. Our work can
be enriched to solve the performance estimation and antennas deployment for MIMO with large-scale
distributed antennas.
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Appendix A

The geometrical relationships between the UEs and the RAUs are shown in Figure 1. The distance
between a typical UE and the cell center is denoted as d0, the distance between the UE to the kth
RAU on the nth circle, Rn,k, is denoted as dn,k, and the angle between the direction of the UE to the
cell center and Rn,k to the cell center is θn,k. Without loss of generality, we assume θ1,1 = 0, therefore,
θn,k = 2π(k− 1)/nK. The path-loss from the UE to Rn,k is expressed as

Ln,k =
[
(nr)2 + d0

2 − 2nrd0 cos θn,k

]− α
2 (A1)

Followed by reference [18], when M→ ∞ , the average propagation path-loss, L, can be
obtained by

L = 2
KN(N+1)

N
∑

n=1

nK
∑

k=n
Ln,k

= 2
KN(N+1)
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1
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∫ π
−π

[
(nr)2 + d0
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n
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2−1

[
(nr)2+d0

2∣∣∣(nr)2−d0
2
∣∣∣
]

(A2)

where P·(·) is the Legendre function [39].
Supposed UEs are uniformly distributed in the cell, the probability density function (PDF) of the

UE’s position can be written as [40]

fd0(d0) =
2d0

R2 , 0 < d0 ≤ R (A3)

Applying Equation (A2) into Equation (20), and averaging over the PDF of d0 shown in Equation
(A3), one derives the analytical expressions of asymptotic average throughput of a cell as

T =
2

R2

∫ R

0
d0Tkdd0 (A4)

Since the commonly used mathematical tools like Matlab include integral and Legendre functions,
the analytical expressions shown in Equation (A4) can be efficiently evaluated.
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