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Abstract: Nature has inspired music since the dawn of humankind and has contributed to the
creation and development of music as an art form. However, attempts to use the science of
nature (i.e., quantitative ecology) to inform music as a broader art-science system is comparatively
underdeveloped. In this paper an approach from biodiversity assessments is borrowed to quantify
structural diversity in music scores. The approach is analogous in its nature and considers notations
with distinct pitches and duration as equivalents of species in ecosystems, measures within a score as
equivalents of ecosystems, and the sum of measures (i.e., the entire score) as a landscape in which
ecosystems are embedded. Structural diversity can be calculated at the level of measures (“alpha
diversity”) and the entire score (“gamma diversity”). An additional metric can be derived that
quantifies the structural differentiation between measures in a score (“beta diversity”). The approach
is demonstrated using music scores that vary in complexity. The method seems particularly suitable
for hypothesis testing to objectively identify many of the intricate phenomena in music. For instance,
questions related to the variability within and between musical genres or among individual composers
can be addressed. Another potential application is an assessment of ontogenetic structural variability
in the works of composers during their lifetime. Such information can then be contrasted with other
cultural, psychological, and historical variables, among others. This study shows the opportunities
that music and ecology offer for interdisciplinary research to broaden our knowledge of complex
systems of people and nature.

Keywords: quantitative musicology; biodiversity; ecology; interdisciplinary research; music analysis;
art-science

1. Introduction

Nature has informed music ever since the dawn of humanity, and it has played key roles in the
formation and evolution of music as an art form and humans as complex beings. In contrast, the science
of nature (e.g., ecology) has been comparatively less influential in analyzing music, both as an art
form and as a scientific discipline. Specifically, the alienation between music and scientific ecology is
manifested in the lack of application of quantitative tools used by ecologists to unravel patterns and
processes in other fields such as music. This paper makes a first step to bridge this divide. While the
idea of the application of statistical tools to music is not new, it introduces an approach used in ecology
to quantify biodiversity and applies it to assess structural diversity in music scores.

A gamut of mathematical and statistical methods used across disparate sciences such as physics,
ecology, speech recognition, bioinformatics and economics has been used to identify information
content and complexity in music. Such methods include (see overview in [1]): exploratory data mining
in musical spaces, global measures of structure and randomness, time series analysis, hierarchical
modeling, Markov chain Monte Carlo (MCMC) models, circular statistics, principal component
analysis, discriminant analysis and nonparametric multidimensional scaling. From a computational
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perspective, a significant increase in algorithm accuracy and efficiency in recent years helped improve
quantification, furthering our knowledge related to, for instance, melody and chord estimation, beat
tracking, mood and genre estimation, and pattern analysis [2]. In addition to methods broadly used
across sciences, quantitative methods have been developed that have not transcended the frontiers
of their field-specific disciplines, despite their clear potentials. For instance, Sundstrom et al. [3]
have shown that quantitative tools developed in ecology, specifically resilience assessments, can be
successfully applied in other fields such as economy and anthropology. This study extends this line of
research building on the rationale that interdisciplinary application of methods can further develop
musicology [4] and more broadly music as a combined art-science system.

This paper borrows an analysis approach from ecology to quantify structure and diversity
in music scores. The rationale builds on the recognition that patterns in ecology [5] and music,
at the composition [6] and socio-musicological system level [7], are hierarchically structured (but see,
for instance, [8] for a non-hierarchical view related to composing music). Such structuring is inherent in
the general theory of systems [3,9], building on the notion that musical and ecological entities comprise
both a part and a whole (i.e., holons). In music, structure has been identified to occur at the scale of a
section, phrase or motif and at the scale that spans the entire work [10]. From a more time-explicit
point of view, sound structure can occur at the micro-time (few nanoseconds to a few milliseconds),
meso-time (centiseconds to a few seconds) and macro-time scale (sound structure composed of several
events that result from interactions among lower-level processes) [11]. Ecological systems have similar
spatiotemporal structuring, whereby structure at the scale of an individual ecosystem and the scale
of an entire region in which ecosystems are embedded can be considered analogous to the structure
present in music.

Georgescu and Georgescu [12] provided an example of a systems approach, which strikingly
matches ecological theory regarding ecosystem organization. They recognize three structural core
concepts that allow contextualizing ecological approaches to the quantification of structure in music,
thereby serving as a suitable analogy connecting music and ecology. Their first concept relates to
“wholeness”, which refers to the emergence of structure beyond the sum of components. This concept
is related to the scale of an entire musical score or a region of ecosystems. Their second concept
emphasizes “order”, which they define as the subsystems that can be isolated and studied. Ecosystems
embedded in a region can be considered such subsystems and are analogous to specific sections in a
score. Their third concept is “centralization”, an integrative feature that pulls a work together and
makes units subservient to a single organizing principle, harmonic progression. The progression aspect
is considered as a manifestation of how patterns of combinations of different pitches and duration
of notations change from one measure to the next in an entire score (“turnover”). Similarly, in an
ecosystem turnover manifests in how sets of species differ across ecosystems in a region.

A benefit that may be obtained from the biodiversity analysis approach presented here is that
different phenomena in musical scores can be studied simultaneously. Ecologists use different
diversity measures to represent different aspects of complex assemblages of animals and plants in the
environment. These different measures thus help making nature’s complexity more tractable. It follows
that biodiversity analysis in music can also reveal aspects of structural complexity, which can be
undoubtedly high [6], for instance in the compositions of the New Complexity genre [13]. Objectively
analyzing and understanding such structural complexity, for which music scores can provide the basis,
has long intrigued music scholars. Studying structural diversity in music scores using the ecological
approach demonstrated in this paper can assist them as a complement to existing modeling methods
in their endeavors to scrutinize complexity.

Based on this rationale, an ecological analysis approach for quantifying structure in music is
contextualized. The aim is not to develop a theory based on perception and cognition, but rather
the interdisciplinary application of the approach focusing on structure in scores, which may be
interesting to historical musicology and the study of musical style. In acknowledging that the
subjective categorization of music elements as equivalents of species and ecosystems deviates from
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structural characterizations so far used by musicologists, it is emphasized upfront that the approach,
rather than a one-to-one translation, must be understood as an analogical model. In the next sections
the suitability of the presented approach is discussed, making structural analogies between ecology
and music. Next the ecological analysis approach using examples of music scores that vary in their
degrees of complexity is demonstrated. It is hypothesized that approaches from biodiversity research
can assess structural complexity in music scores. The paper concludes with discussing potential
applications within musicology research and the development of music as a combined and holistic
art-science system.

2. Materials and Methods

2.1. Music Meets Biodiversity Research

The ecological approach presented here has a long tradition in ecology and has been originally
designed to study the structure and richness of natural communities. This line of study is nowadays
commonly referred to as biodiversity research, which ranges from genes to individuals, to communities
and ecosystems, and includes structural and functional approaches. Such studies are often motivated
by the loss of animal and plant species due to environmental change pressures, like global warming or
exotic species invasions. Ecologists have used a plethora of measures to quantify different properties
of biodiversity. That is, biodiversity has become an umbrella term for different diversity phenomena;
for instance: (1) Species richness, or simply richness, quantifies the number of animal and plant species
within an ecosystem (e.g., a lake). Richness alone ignores how abundant species are. (2) Shannon
entropy (expH’), a measure derived from information theory, integrates both the occurrence of species
and their abundances in a single metric. This measure is often referred to as diversity to discern
it from richness. Shannon entropy has also a broad and long application tradition in musicology
for assessing structural complexity [14–17], although the validity of its usage has been sometimes
questioned. For instance, it has been considered a numerical formula that is divorced from musical
experience ([18] cited in [19]), contributing to a form of “number fetishism” within a purely academic
and narrow pursuit [19]. (3) Evenness assesses the equality of species in term of their abundances
in an ecosystem. It essentially compares the dominance structure across species in ecosystems and
summarizes it in a single metric. It is derived by division of diversity with richness and the resulting
values are bound between 0 (a highly uneven community; a few species are highly dominant) to 1
(every species has the same abundances; perfect evenness).

These metrics can be used for studying patterns at different scales. Briefly, in ecology measures of
richness, diversity and evenness can be assessed for a single ecosystem (e.g., a lake), which ecologists
refer to as alpha diversity, and for a number of ecosystems within a region (e.g., a number of lakes
within a region; gamma diversity). How assemblages of plants and animals differ across ecosystems in
a region can also be quantified and expressed by a measure of differentiation (beta diversity). That is,
beta diversity accounts both for the relationship between the diversity at the scale of individual
ecosystems and the degree of differentiation among ecosystems. It is beyond the scope of this paper
to present detailed information about mathematical deduction and the pure ecological meaning of
the biodiversity measures used in this study. Such information can be found in [20–24]. For a more
general description of biodiversity in ecology and a practical example see [25] and [26], respectively.

This study applies the ecological concept of alpha, beta and gamma diversity and contextualizes it
within music, as shown in Table 1. Music scores are regarded as analogues of ecological systems, which
share structural properties that are conducive to biodiversity measurements. Specifically, notes are the
elemental symbols representing sonic events in instrumental music and comprise the basic building
blocks of scores. Notes are therefore regarded as analogues of species. Measures are elements of
metric-tonal units inherent in scores. Although they are notational constructs that bear no relationship
with actual sound results, they can be considered to be analogous to single ecosystems for our purpose.
The sum of measures within the entire score can be regarded as the landscape composed of ecosystems,
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as shown in Table 1. Although these descriptors are subjectively defined, they can be regarded to
comprise equivalents for calculating alpha diversity (at the scale of measure), gamma diversity (at the
scale of the score) and beta diversity (differentiation across measures) in music scores, as displayed in
Table 1. It is acknowledged that the ecological approach, which is often spatially explicit, is adopted in
a sequential context with regard to the music scores. However, emphasizing the analogous nature
of our comparisons, the spatial vs. sequential assumptions can be relaxed. This allows aligning
alpha, beta and gamma diversity equivalents with elements in music suggested in theoretical systems
approaches [11].

2.2. Study Examples

To demonstrate the approach for assessing alpha, beta and gamma diversity, three examples
were composed for the piano. These examples are meant only for fulfilling the role of numerical
quantification of structure in the musical scores (i.e., they are not meant to play an aesthetic function).
The approach is specifically designed for instrumental music. Specifically, for demonstrating the
approach, diversity was quantified for both piano voices together; however, this does not preclude
that diversity can be calculated for each voice separately, or for a whole range of instruments in an
orchestra. The examples were composed in the freeware MuseScore 2.0.3. It is recommended to gauge
the performance of numerical approaches in the analysis of music [27]. The examples therefore had an
ascending level of complexity and followed certain rules. That is, all three examples were in C major,
used a 4/4 time signature and had 15 measures, as shown in Figure 1. The first example was the most
basic. Every measure consisted of one whole note (treble clef) and one whole rest (bass clef). The notes
c2 and d2 alternated between measures in the treble clef, while whole rests were applied in the bass clef
throughout all measures. Complexity was increased in the second example, as displayed in Figure 1.
In this example, the same treble clef notation was maintained while variation in the bass clef notation
was added relative to example 1. This variation was comprised of a whole rest in addition to different
notes and their duration patterns among measures. These patterns were repeated every four measures.
The third example was the most complex, as shown in Figure 1. It was composed to have unique
combinations and duration of notes and rests in each measure. Note that this example was composed
entirely randomly and is not meant to represent a harmonic sound structure.
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Figure 1. Three examples with ascending complexity composed in MuseScore for analyzing alpha,
beta and gamma diversity.

In addition to these demonstration examples two scores with different levels of complexity were
used. The first score is a popular English lullaby (Twinkle Twinkle Little Star; sheet in Appendix A),
which is very simple in structure. The second score, titled “Buzz Holling” (sheet in Appendix B), is a
composition by the author and has higher structural complexity compared to the lullaby. This piece
has been composed in honor of C.S. (Buzz) Holling, the pioneer of ecological resilience research, which
is the field of the author’s expertise.

The examples used in this study provide a proof of concept and have been specifically chosen to
test the hypothesis that increasing complexity in score structure increases alpha, beta, and gamma
diversity in the scores. That is, increasing variability in pitch and duration patterns of notes across
measures increases alpha and gamma diversity. In turn, with higher variability across measures,
they become more differentiated from each other, so that beta diversity increases.

2.3. Matrix Preparation

For analyzing biodiversity components in the scores, matrices were prepared in Microsoft Excel
that followed essentially the style used in ecological analyses of biodiversity. That is, every single
measure in the score was treated as a musical equivalent of an ecosystem embedded in a landscape.
Thus, the notations of each measure were ordered in a single row and served to calculate alpha diversity.
The sequence of measures in the scores was organized serially, so that measure 1 comprised the first
row, measure 2 the second row, and so forth. At the end of the matrix (after the last measure in each
score) an additional row was added, and the sum of values was calculated across rows. This served to
calculate gamma diversity in the whole score.

The notes and rests, as the equivalents of animal or plant species within ecosystems, were
organized in columns. Every note or rest was considered one diversity unit per measure, as shown in
Table 1. Every note was treated distinctly; that is, different durations of the same note (e.g., c1 whole
and c1 quarter or half rest, quarter rest and sixteenth rest) were coded as different diversity units.
For demonstration of the approach, notations in both the treble and bass clef were quantified together
for each measure. Notes and rests of the same type were quantified according to their occurrence in
the measures (i.e., a note scored 3 if three F quarter notes occurred in one measure in either the treble
or bass clef. Identically, if only a single quarter rest occurred in a measure, it scored 1, etc., as shown in
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Table 1). In the preparation of the matrix for the Buzz Holling score, articulations, ties and dynamics
were ignored for codification.

Table 1. Description of ecological diversity measures and their contextualization within and application
to music (“music-diversity”).

Biodiversity Measure Ecology Music

Alpha diversity Number of animal and plant species within
a single ecosystem (e.g., a lake)

Number of notations differing in duration
and pitch within a measure

Gamma diversity
Number of animal and plant species across

ecosystems in a region (e.g., a lake
landscape)

Number of notations with different
durations and pitches across measures (i.e.,

within an entire score)

Beta diversity 1 Differentiation of diversity of species and
animals across ecosystems in a region

Differentiation of diversity of notations
across measures in a score

Diversity unit Biological species Musical notation 2

Abundance Number of the same species in an ecosystem Number of notations with the same pitch
and duration in a measure

Richness Number of species in an ecosystem without
accounting for their abundances

Number of notations in a score without
accounting for their abundances

Diversity 3 Number of species in an ecosystem
accounting for their abundances

Number of notations in a score accounting
for their abundances

Evenness 4, 5 Closeness of species abundances in
an ecosystem

Closeness of notations abundances in
a score

1 Expressed as gamma diversity divided by mean alpha diversity; 2 In this study, the notations with the same pitch
but different durations are considered different diversity units (e.g., 1/4 c2 vs. 1/8 c2); 3 Expressed as Shannon entropy,
expH’; 4 Expressed as diversity divided by richness; 5 A community/composition of 5 species/notations A and 5
species/notations B is perfectly even; a community/composition with 5 species/notations A and 1 species/notation B
is uneven.

2.4. Analyses

This study was inspired from the field of ecology to quantify biodiversity in scores at different
scales, as shown in Table 1. That is, biodiversity was assessed (1) at the level of individual measures
(i.e., notes within a measure; alpha diversity), (2) across measures at the entire score level (notes across
measures comprise gamma diversity), and (3) the structural differentiation of notes across measures in
an entire score (beta diversity). In this study, following ecological nomenclature, biodiversity is used
as an umbrella term for different diversity metrics: (1) richness (which only quantifies the occurrence
of notes); (2) diversity (exponentiated Shannon entropy; expH’). This metric accounts both for the
occurrences of notes and their abundances in a score; exponentiation of Shannon entropy is carried out
in ecology for achieving mathematically correct comparison with richness [20,23]; and (3) evenness,
which expresses how even notations occur in a score in term of their abundances (definitions in
Table 1). Alpha diversity and gamma diversity for richness and diversity were calculated in the
Primer 6 (Primer-E, Plymouth, UK) software for Windows. Beta diversity was calculated following
Whittaker’s [28,29] multiplicative partitioning method (beta diversity equals gamma diversity divided
by averaged alpha diversity). Evenness was calculated by dividing diversity with richness [22].

3. Results

As expected, biodiversity measures increased with increasing complexity across scores, as shown
in Table 2. These increases were observed at the alpha, beta and gamma diversity level, independent
of the biodiversity measures used (richness, diversity, evenness). Example 1 with its most simple
structure had a mean alpha richness of 2, showing that each measure had consistently 2 notations
(one full note, one full rest), as shown in Figure 1. The gamma richness value in this example was 3,
showing that at the entire score level 3 notations occurred (full c2, full d2, full rest). Beta richness in this
example was 1.50; it shows the differentiation between notations at the gamma and mean alpha level.
That is, across measures one notation (whole rest in the bass clef) was shared, while the alternation of
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notes (c2, d2) between measures in the treble clef resulted to the contribution of each note to half of the
score structure, as shown in Figure 1.

Table 2. Mean alpha, beta and gamma diversity values calculated for three examples and two real scores.

Example 1 Example 2 Example 3 TTLS 1 Buzz Holling

Richness
Mean Alpha 2.00 2.80 6.80 2.42 6.14

Beta 1.50 3.21 10.59 9.10 23.30
Gamma 3.00 9.00 72.00 22.00 143.00

Shannon entropy
Mean Alpha 2.00 2.75 6.40 2.34 5.97

Beta 1.41 3.07 9.40 7.21 20.15
Gamma 2.83 8.46 60.16 16.84 120.18

Evenness
Mean Alpha 1.00 0.98 0.94 0.97 0.97

Gamma 0.94 0.94 0.84 0.77 0.84
1 Twinkle Twinkle Little Star.

Diversity (Shannon entropy; expH’) in this example shows deviations relative to the richness
results. Beta (1.41) and gamma (2.83) diversity were slightly lower relative to richness values, while
alpha diversity showed the same value (2.00). These differences can be explained by the unequal
occurrence of notes in the entire example. That is, there occurred 8 full c2 while only 7 full d2 were
present in the 15 measures. The slight dominance of c2 over d2 results in a marginally uneven structure
in the composition. This unevenness decreased beta and gamma diversity values because these
different abundances are accounted for in Shannon entropy. In turn, these differences manifest also
in evenness values. Because Shannon entropy and richness had the same alpha values, evenness
was perfect (value = 1). This means that there is no difference in the abundance structure of notes at
the level of measures. By contrast, gamma evenness was slightly lower (0.94) than alpha evenness.
This reflects the slight difference in the abundance structure of notes at the level of the entire example.

The examination of biodiversity patterns in example 1 is relatively simple but becomes more
difficult with the increasing complexity of the other examples. The biodiversity calculations allow
for identifying objectively the differences among examples. They also allow contextualizing this
complexity with that present in the Buzz Holling and lullaby score. Gamma richness and diversity
showed the highest increase from example 1 to 3, with richness increasing 24 times (from 3 to 72)
and diversity about 21 times (from 2.83 to 60.16), as shown in Table 2. Less pronounced were these
increases for beta diversity (6.7 and 7 times for diversity and richness, respectively), and alpha diversity
(3.2 times, diversity; 3.4 times, richness), also shown in Table 2. Despite these changes, evenness
values were equal or higher to 0.84, as displayed in Table 2. As evenness values are bound between 0
(highly uneven) and 1 (perfect evenness), this shows a relatively homogenous dominance structure of
notations across examples.

Comparing structure across scores showed that richness and diversity values at the beta and
gamma level of Twinkle Twinkle Little Star fell between examples 2 and 3, while its alpha richness and
diversity fell between examples 1 and 2, as shown in Table 2. Richness and diversity values at the beta
and gamma level of the Buzz Holling score exceeded approximately twice the values of example 3.
The alpha richness and diversity of this score were slightly lower than those of example 3.

4. Discussion

This paper provides a proof of concept regarding the utility of an interdisciplinary approach, rooted
in quantitative ecology, for analyzing diversity in musical scores. It is emphasized that the approach
focuses merely on structural complexity in compositions, providing possibilities to objectively quantify



Challenges 2020, 11, 7 8 of 15

this complexity. Complexity has additional dimensions, which in music manifest as, and emerge from,
subjective and relative perceptions associated with aesthetics. In this sense, complexity, rather than a
structural building block of music, is how it functions, for instance at the level of gesture, and how
complex ideas, whether mathematical, philosophical or spiritual, might be worked out and expressed
musically. It is clear that the present approach exclusively targets the quantification of structural
complexity present in written music, thereby aligning with the goals of objectivity in quantitative
musicology [1]. While being agnostic about the functional or aesthetic dimensions of complexity,
an objective quantification of structure allows to contrast the structure among different “musical
ecosystems” belonging to tonal (harmonic), atonal and panchromatic music that vary substantially at the
functional and aesthetic level. To this end, several applications, for which an exhaustive enumeration
was beyond the scope of this paper, can be envisioned for future research in musicology. Selected
applications can focus, for instance, on the evaluation of how much individual instruments contribute
to the diversity in orchestral performances or on the comparison of the complexity in compositions
among composers. Also, studying the variability of musical diversity within and across genres is a
further possibility for research. Such analysis can target phylogenetic and ontogenetic developments
in music. That is, phylogenetic analysis may allow assessing how genres of music, reflected in the
diversity of compositions, develop over time and across geographical regions. Numerical analyses can
complement currently existing subjective qualitative analysis of genre evolution (e.g., [7]), and target
the analysis of disparate genres such as electronic dance music, classical music, tribal music, flamenco
and heavy metal. Ontogenetic studies may allow assessing how the diversity of compositions changes
during a composer’s or band’s lifetime. Constant experimentation with music is a critical component
in the work of many artists (e.g., Bob Dylan [30]), as it is in music at large, and numerical analysis
using the approach suggested here could help assess how structural diversity in their work changes
as a function of this experimentation. Such information can then be contrasted with other cultural,
psychological, and historical variables, among others (e.g., aesthetics).

The author agrees with Beran [4] that there is a certain risk that music could lose its charm,
once numbers explain it. However, from a scientific viewpoint, the quantification approach
presented here allows for explicit hypothesis testing to obtain knowledge through deductive inference.
Hypothetical-deductive inference, a common scientific method, might unravel many of the unknown
intricacies of music, not only as a form of complex adaptive system within the (acoustic) arts [31],
but also as a broader socio-musicological system in which music and people are strictly interlinked [7].

Musicologists have recognized the difficulty with many complex quantitative models (e.g.,
predictive, probabilistic, hierarchical modeling; cellular automata), to often capture and reflect genuine
musical principles [27]. Such difficulties may arise because modeling frequently requires complex
parameterization that may lead to a misrepresentation of phenomena under study [32]. In this regard,
the biodiversity analysis approach presented here has little risk. It does not require a priori parameter
setting before calculations. The approach rather extracts information present in the subjects based
on the rules (a priori definition of analysis levels [alpha, beta, gamma]), which can be applied across
music scores. Thus, one benefit that may derive from a biodiversity analysis in music scores is that
it can provide a numerical benchmark against which the performance of more complex hierarchical
models can be assessed, and potential recalibration informed. Such an application seems especially
suitable for making comparisons based on information theoretical analysis because measurements
such as Shannon entropy are common in both quantitative musicological modeling [15] and diversity
studies in ecology ([25]; this study).

A further benefit that derives from the biodiversity analysis approach presented here is that
different “phenomena” present in musical scores can be studied individually and in combination.
That is, ecologists consider evenness, richness and diversity to represent different aspects in the
characterization of complex assemblages of animals and plants in the environment. These different
measures thus help making nature’s structural complexity more tractable, particularly if it can be
assessed at different scales (alpha, beta and gamma diversity). Musical compositions can undoubtedly
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also be structured in complex ways [6]. However, in comparison to biodiversity studies, a focus
on diversity in music based on Shannon entropy is agnostic to the evenness or dominance and
richness components of notations in compositions. Objectively analyzing and understanding such
complexity as part of musical structure has long intrigued music scholars. Studying different structural
phenomena across different levels in composition using the ecological approach demonstrated in this
paper can assist them as a complement to existing modeling methods in their endeavors to scrutinize
structural complexity.

The relationship between structure and complexity in music and human cognition has been long
recognized [33]. It is beyond the aim of this study to speculate about the value of biodiversity analysis
to study psychological or other functional aspects related to music. However, the present study points
to recent research, which used biodiversity analysis for assessing structure in visual art works [34].
Such an analysis might find similar applications in music research. It has been proposed that “numbers”
could provide a common measure stick against which people’s subjective perceptions of art can be
gauged [34]. Such a process might help to reconceptualize “seeing” (or “hearing” following the
present study) as questioning [35]. In turn, inquiring through questioning might facilitate information
processing and trigger a learning process [36]. Through this process perceptional uncertainty, which
also characterizes music [37], could be reduced. Numerically underpinning structure in music can
potentially help listeners comprehend complexity in music, particularly assessing to what degrees
structural and functional (aesthetics) dimensions of complexity are aligned, and as such contribute to a
broader understanding of music as an art-science system.

In conclusion it is acknowledged that the biodiversity terminology used in this paper is ecological.
This choice was deliberate to emphasize that the application of the biodiversity framework to music
is borrowed from the field of ecology. Not only does this give credit to its origin, but also reduces
the risk of “reinventing the wheel”. Arguably musicologists may feel uncomfortable using this
terminology. It is far from the author’s aim to impose it; rather the adaptation of terms in a more
specific music context, made by and for musicologists, could improve effective communication and
potential application of the biodiversity analysis framework. Such adaptation of terminology, while
acknowledging its origin, could potentially contribute to the needed perception of musicology as an
integral part of interdisciplinary science [7,38].
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