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Abstract: This paper proposes an advanced shipboard energy management strategy (EMS) based on
model predictive control (MPC). This EMS aims to reduce mission-scale fuel consumption of ship
hybrid power plants, taking into account constraints introduced by the shipboard battery system.
Such constraints are present due to the boundaries on the battery capacity and state of charge (SoC)
values, aiming to ensure safe seagoing operation and long-lasting battery life. The proposed EMS can
be used earlier in the propulsion design process and requires no tuning of parameters for a specific
operating profile. The novelties of the study reside in (i) studying the impact of mission-scale effects
and integral constraints on optimal fuel consumption and controller robustness, (ii) benchmarking
the performance of the proposed MPC framework. A case study carried out on a naval vessel
demonstrates near-optimal and robust behaviour of the controller for several loading sequences. The
application of the proposed MPC framework can lead to up to 3.5% consumption reduction due to
utilisation of long term information, considering specific loading sequences and charge depleting
(CD) battery operation.

Keywords: energy management strategies; model predictive control; hybrid propulsion; energy
storage system; ship control

1. Introduction
1.1. Regulatory and Technical Context for Battery Installations

Reduction of the environmental impact of ships has been a subject of concern and has
been addressed by regional and global regulators. According to the fourth International
Maritime Organisation (IMO) greenhouse gas (GHG) study in 2020 [1], shipping contributes
an average of 2% of total anthropogenic CO2 emissions, while with business as usual (BAU)
projections, the CO2 emissions are expected to increase by 0–50% compared to the 2018
figure. To that end, IMO has been actively involved in, amongst other activities, enhancing
the energy efficiency of ships, within the MARPOL Annex VI regulatory framework. The
IMO’s efforts aim to reduce GHG emissions to 50% of the 2008 baseline value by 2050.
According to all future projections in the study, it is difficult to achieve the CO2 reduction
goal solely by means of more efficient conventional propulsion and lower sailing speeds.
Towards that end, several alternatives to conventional shipboard energy generation have
been proposed in the literature. Listing only some of the proposed alternatives, reduction
of emissions compared to conventional power plants has been reported by using liquefied
natural gas (LNG) fuel [2,3], ammonia fuel and ammonia injection [4,5], biofuels [6,7], and
energy storage systems (ESSs—list of abbreviations given in Table A2).

Although ultracapacitors are utilised when surges of power are needed by electrical
consumers on-board (e.g., weapon systems on naval vessels) [8], the scope of this study
is limited to batteries, as the most researched and most promising ESS in the maritime
sector [9,10]. The price of lithium-ion batteries has plummeted over the past 10 years, by
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approximately $1000/kWh, down to the 137 mark in 2020 [11]. Price projection to 2030 pre-
dicts prices as low as $50/kWh for batteries with silicon alley cathodes, which are cheaper
to produce and more energy dense (205 Wh/kg over 155 Wh/kg compared to graphite
cathodes) [12]. Those rapidly changing price and density values have madeshipboard
battery pack installations an attractive solution for fuel consumption reduction in the years
to come.

Tugboats, ferries, offshore support vessels, and naval vessels operate for a significant
portion of their mission at low power demand. In such cases, the conversion losses
associated with hybrid or electric power transmission (or propulsion) are compensated by
avoiding inefficient part load operation of the prime mover(s). Geertsma et al. [9] review
the fuel savings induced by hybrid or electric propulsion in the corresponding literature.
In short, gas turbines in frigates, sized-for-availability internal combustion engines in
towing or patrol vessels, and transit prime movers in dynamic positioning operation of
offshore support vessels can all benefit from hybrid propulsion, with fuel savings of even
more than 10%. On the other hand, purely electric propulsion installations (no mechanical
power transmission) are mostly driven by particular necessities such as heavy hotel loads,
operational robustness, space limitations, and low noise emissions.

The same study reviews the benefits of further introducing shipboard ESSs in hybrid
propulsion powertrains. Power supply from an ESS can reduce the amount or size of the
internal combustion (IC) engines by extending the operating envelope or by providing
availability and overcoming the necessity of an emergency generator. Operational and
maintenance costs can be reduced by offsetting the operating point to the most efficient
operating region via (dis)charging, or by even switching off engines in part load operation.

In [10] the limitations of shipboard ESSs, particularly batteries, have been examined
for charge sustaining (CS) battery operating mode (which means no charging from ashore).
With a reduced model description, the study concludes that electric propulsion with a gas
engine is a viable alternative to utilising a lithium-ion battery installation for fuel efficiency
gains. Hybrid propulsion has significantly smaller operating regions where batteries yield
efficiency gains, from below 50% of the propulsive load found in electric propulsion, to
below 10%. IC engines with a flatter efficiency curve, such as engines with sequential
turbocharging, show no efficiency gains due to use of batteries across their operating range.
From this and similar studies [13–15] it is found that:

1. The shape of the efficiency curve of the prime mover is the dominant decisive factor
for the applicability of an ESS installation

2. When an ESS replaces engine power instead of adding power to an existing engine
rating, the efficiency gains are smaller especially at nominal loads

3. In electric propulsion, most conversion losses introduced by an ESS are already in
place

4. A DC grid allows for use of non-fixed-speed generator sets and consequently affects
the powertrain efficiency in favour of using generator sets and not ESSs

5. Efficiency gains in electric propulsion due to ESSs are found to be 4.7–7.8% at 50%
load and 18–30% at 15% load.

Hybrid propulsion is also found to yield efficiency benefits when combined with a
battery unit in charge depleting (CD) mode (shore charging) [16]. It has had commercial
success in tugboats by Damen and yachts by Feadship [9]. In [17], four different propulsion
configurations in megayachts have been compared and significant advantages in hybrid
propulsion have been identified when combined with fast shore charging in marinas with
local smart grids. The feasibility of zero-emission high-speed catamaran vessels has been
one of the subjects for [18,19], where the importance of charging stations has also been
identified as crucial. Finally, battery installations can be combined with fuel cell systems
on board ships in order to improve efficiency and dynamic behavior [20,21].

The environmental analysis of battery installations should not be limited to efficiency
benefits. An approach taking into account different impact categories, accurate measure-
ments and the life-cycle (life cycle assessment) of the vessel is capable of providing full
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insight into the environmental benefits of shipboard battery systems. For example, in [22]
a holistic investigation of a fully electric vessel highlights the critical contribution of energy
generation and transportation in the overall environmental impact of electrified ships.

1.2. Energy Management Stragegies and Problem Definition

An effective energy management strategy (EMS) is crucial for the application of
shipboard ESSs. An EMS functions as a high-level control unit determining the control
inputs to the powertrain. Those inputs correspond to the additional degrees of freedom
introduced by the ESS and can be selected appropriately to minimise an objective function,
most commonly fuel consumption. The aforementioned efficiency gains cannot be realised
without the use of an advanced EMS [16]. A comprehensive overview of advanced EMS
which can be implemented in real-time is given in [23] and categorised into predictive
controllers and controllers derived from the optimal control theory (ECMS). These strategies
are separated from rule-based (RB) time-invariant feedback controllers (heuristic rules or
static feedback maps).

Conventional shipboard EMSs use rule-based (RB) controllers. These are tuned specif-
ically for each application, for a given operating profile and power plant, while they are
also inherently suboptimal and unable to adhere to the state constraints on the battery
state of charge (SoC), especially when the operating profile changes [16]. SoC constraints
aim to ensure safe sea-going operation (by ensuring battery availability) and long-lasting
battery life. A fuzzy logic RB controller used in [21] proved to be effective in maintaining
SoC constraints within the battery operating boundaries for a complex powertrain which
combined fuel-cells with a battery and ultra-capacitor installation. However, this controller,
as well as another fuzzy logic implementation in [24] is based on heuristic rules and its
performance in terms of consumption can be improved [23].

Recent research on advanced shipboard EMS showed that strategies based on standard
and adaptive equivalent consumption minimisation strategies (ECMSs) are also suboptimal
when the operating profile changes significantly [16]. In [25], the implemented ECMS is
unable to prove reliable in peak load demand when the batteries are depleted. With ECMS,
only instantaneous operating constraints are considered (e.g., maximum main engine
power) and integral constraints imposed by the battery and charge-sustenance are only
implicitly incorporated through the equivalence factor, which is tuned offline for specific
operating profiles. This leads to either suboptimal or invalid, i.e., incapable of meeting
the power demand or the SoC constraints, control strategies, as opposed to predictive
controllers as in [26], where such constraints are integrated.

In a recent study [27], a multi-layered optimisation scheme uses ant colony optimi-
sation (ACO) to address the deviation between the terminal SoC value and its target by
optimising the equivalence factor of an ECMS control unit. However, the study did not
compare the fuel consumption reduction results to an exhaustive optimal solution; hence
the suboptimal behaviour of ECMS during significant load changes reported in [16], which
is inherent to instantaneous optimisation, should be assumed. In [20], a multi-scheme
EMS which alternates between an ECMS strategy and three heuristic and conventional
control strategies takes into account the SoC constraints, although the results were also not
compared to an optimal solution.

In a study addressing complex non-linear models [28], an instantaneous optimisation
model-based EMS utilises a particle swarm optimisation (PSO) solver to minimise fuel
consumption in the shipboard power plant. However, this approach does not consider
future disturbances, operating profiles or any other future component in the formulations,
yielding a suboptimal charge depleting-charge sustaining (CD-CS) discharging strategy
for the battery. Finally, both rule-based and ECMS strategies are tuned either onboard or
by using high-fidelity models and specific operating profiles [16,25,26]. This makes the
deployment of the existing strategies difficult during the concept and early engineering
design phase. During the early design stage, the decisions about the propulsive layout and
the sizing of the components are made. Due to the EMS also affecting the viability of an
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ESS installation [10] it is potentially beneficial for an EMS to be deployed in low fidelity
systems during early design.

In model predictive control (MPC) the future disturbance estimation over a set pre-
diction horizon span is made online, then a quadratic programming (QP),dynamic pro-
gramming (DP), or other optimisation solution is used to find the optimal control sequence
for a control horizon span, which may not necessarily be of the same length [23,29,30].
MPC is computationally expensive and requires an accurate model description of the
system to yield satisfactory results, while, in order to be effective, prediction techniques
must be used [31]. In [32], an MPC EMS is proposed, utilising intelligent transportation
systems (ITS) for driving cycle prediction. A combination of route prediction from the
telematics system together with MPC for powertrain control has also been implemented
in [33]. Online implementations of predictive control with information supplied by the
GPS and the traffic-flow information systems yield near-optimal results in [34].

Shipboard MPC implementations may function as either power or energy manage-
ment strategies depending on their timescale and objective function. If the timescale of
the control horizon is in the order of several seconds and total fuel consumed is not in the
objective function, the strategies can be classified as power management strategies. Such
controllers take into account the transient behaviour of the powertrain and ship system. For
instance, in [35], the power demand fluctuations (in the order of few seconds) in various
sea states due to the propeller load are mitigated, and in [36], the nonlinear ship response
of an offshore support vessel due to environmental disturbances is taken into account to
control ship speed in the surge direction. Another power management implementation is
found in [37].

In contrast to power management strategies, there are only a few marine studies on
shipboard energy management for entire missions. In [26], a predictive controller that
uses a short-term prediction scheme has been implemented in an electric tugboat, yielding
9% fuel consumption reduction when compared to a rule-based EMS. The study also
incorporates the SoC constraints in the optimisation horizon solver. However, mission-scale
predictions surpassing the prediction horizon and their effect on optimal fuel consumption
were not examined. Furthermore, a comparison with optimal control policies was not
present. Huotari et al. [38] takes into account mission-scale predictions and benchmarks
the proposed MPC-based controller against an exhaustive solution for a diesel-electric
cruise ship power plant case study. This study uses mixed integer linear programming
(MILP) as the MPC solver while it also incorporates a 2-stage predictive scheme to provide
a mission-scale prediction. Despite the effectiveness of the method in achieving close to
optimal results, it is noted that the controller does not incorporate updates on the future
disturbances while sailing and the prediction is provided to the solver prior to the mission.
A rule-based controller is utilised instead in order to compensate for deviations between the
actual disturbances and the initial estimate. In addition, a constraint on the maximum and
minimum (dis)charging power of the battery is incorporated in the optimisation problem.
This should be effective in protecting the battery from exceeding the minimum SoC value.
However, a constraint on the SoC value at the end of the mission is not present, which is
important for optimal performance in charge-sustaining mode.

In an automotive study [34], an implementable MPC framework is developed with
near-optimal performance, enabling online updates and utilising information from the ITS
for load prediction. This controller is adapted in the present work to design a shipboard
MPC framework and address the performance issues of advanced EMS in ships.

1.3. Aim, Contributions and Assumptions

The first goal of this research work is to examine how the loading sequence of the
whole mission affects the fuel savings of an exhaustive solution found with dynamic
programming. This is attained by using partial and full loading sequence information,
corresponding to short-term and mission-scale predictions made for the EMS.
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Secondly, this study develops an energy management framework based on MPC
that addresses multiple objectives which have not simultaneously been fulfilled by EMS
alternatives proposed in the literature. The MPC framework:

1. Deals with battery-induced integral state constraints robustly.
2. Realises potential fuel savings due to mission-scale information.
3. Performs close to the exhaustive DP solution results.
4. Can be readily set to function in charge-sustaining (CS) or charge-depleting (CD)

battery mode.
5. Enables real-time adaptation to shipboard updates on the mission-scale disturbance

estimation while sailing, rather than using offline tuning of parameters such as the
equivalency factor in ECMS, predefined power demand sequences [38] or rule-based
tuning.

6. Requires minimal parameter tuning on specific operating profiles enabling deploy-
ment on early design stages, with the prerequisite that a model description for the
powertrain is available.

This MPC framework has been validated in both CS and CD mode by incorporating
the controller in a dynamic Simulink® model of a naval hybrid propulsion powertrain with
hybrid power supply, validated in [39].

It is noted that, to factor out the performance of individual long-term and short-term
prediction solutions, the study assumes perfect predictors with a fabricated information
barrier scheme for the experiments, which will be discussed in more detail in the results
segment. For future reference, several alternatives for disturbance prediction found in
recent studies are proposed. Long-term predictions can be made by data-driven prediction
approaches, such as the one found in [40], where a physics-based machine learning (PBML)
model is proposed. The utilization of advanced routing models, such as the one found
in [41], can be combined with weather data, navigation aids, the governor’s human input,
and sensor information to provide highly accurate predictions. For short-term disturbance
estimation, several prediction schemes may be used, such as the prediction scheme pro-
posed in [26], neural network approaches, such as the RBF-NN implementation in [34] and
autoregressive moving-average (ARMA) models [42].

2. Materials and Methods
2.1. Model Description

The propulsive plant is described by a set of differential and algebraic equations
(DAE) with inequality constraints for the operating limits of the various components. The
DAE system is defined by the propulsive layout and by means of fitted equations whose
parameters are tuned using experiments on a component level as in [16], either directly
from physical measurements or from detailed dynamic simulation models of components.
For fuel consumption minimisation, quasi-static models are typically modelled by fuel con-
sumption maps, or fitted functions, as dynamic behaviour is of secondary importance [30].
Most of the formulations for the components have been verified and validated in [16] and
the derivations will not be repeated here.

The quasi-static description for the components of a shipboard hybrid power plant can
in turn be reused for different hybrid layouts. Following the methodology for formulating
a non-linear model description for MPC purposes as in [34], the model description for the
hybrid propulsion hybrid power supply configuration in Figure 1 is presented here:

1. The electrical and mechanical nodes of the plant correspond to energy balance equa-
tions.

2. For a given disturbance vector, which is typically comprised by the propulsive load,
hotel load and shaft speed, the operating setpoints of the components are not uniquely
defined due to the degrees of freedom (DoFs) in the system. For example, the propul-
sive demand can be met by infinite combinations of main engine and induction motor
power output levels. The number of indefinite variables in the model description
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corresponds to the DoF in the system and each DoF correspond to an additional
system control input.

3. Each component introduces operating constraints which should be explicitly ex-
pressed.

4. Finally, since the SoC of the battery must be within its operating constraints, it should
be introduced to the system as a state variable.
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The SoC of a battery cell is defined as the charge in the battery, divided by the cell’s
maximum charge,Q(t)/Qcell,0. The derivative yields

S
.
oC = −

Icell,bat

Qcell,0
, (1)

and by discretising with a timestep of ∆t:

SoC(t + ∆t) = SoC(t)−
Icell,bat∆t

Qcell,0
, (2)

where Icell,bat the current in the battery pack (positive for discharging).
There are several ways to define battery efficiency, categorised in [43] into global

and local efficiencies, depending on whether the efficiency is averaged over the entire
(dis)charging cycle (energy ratio) or is calculated as a power ratio. Local efficiency varies
by both (dis)charging battery power and SoC. Local efficiency is strongly dependent on the
(dis)charging battery power, while dependency on the SoC is much weaker [43]. This is the
reason why global efficiency is sufficient for CS operation. However, in CD battery mode,
the SoC value is depleted at 20% [16], and in such low values contribution to the battery
efficiency is no longer negligible. The battery efficiency is used in EMSs for the estimation
of the SoC and small errors are accumulated over time.
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This study uses the battery equivalent circuit found in [16]. However, instead of the
global Ragone efficiency, for the reasons above, the electrochemical local efficiency of the
battery ηech has been used instead. The electrochemical power of the battery cell is defined
as the power of the battery without taking into account the internal losses [43]:

Pcell,ech = Vcell,open Icell,bat, (3)

where Vcell,open the open circuit voltage. The electrochemical power Pcell,ech is connected to
the battery cell power Pcell,bat with the electrochemical local efficiency:

η
sgn(Pcell,bat)
ech =

Pcell,bat

Pcell,ech
=

Vcell,bat

Vcell,open
= f (Pcell,bat, SoC). (4)

The electrochemical efficiency can be expressed as a polynomial function of the power
and SoC:

ηech =


2
∑

i=0

2
∑

j=0
dijSoCiPn

j, Pn > 0

2
∑

i=0

2
∑

j=0
cijSoCiPn

j, Pn ≤ 0
(5)

where cij and dij are fitting parameters for charging and discharging to be determined
experimentally, Pn = Pcell/Pcell,max.

A complex expression for the open circuit voltage is used as in [16]:

Vcell,open = α1 · eα2·SoC + α3 + α4 · SoC + α5 · SoC2 + α6 · SoC3, (6)

where αi model parameters to be determined experimentally. Combining Equations (3)
and (4) while also converting from the pack to the cell:

Icell,bat =
Ppack,bat

npar · nser ·Vcell,open · η
−sgn(Pbat)
ech

, (7)

where npar is the number of cells connected in parallel and nser in series. The SoC for every
the next time-step now is:

SoC(t + ∆t) = SoC(t)−
Icell,bat · ∆t

Qcell,0
, SoC ∈ [SoCmin, SoCmax]. (8)

Substituting the expression for the Icell,bat into Equation (8) provides a way to calculate
the SoC for the next time step.

For non-DC architectures, the battery pack is connected via a static converter (in-
verter/rectifier) to an AC grid. The battery module current Ibat,AC, for the case of a3-phase
AC grid, is connected to the battery pack power Pbat,AC with the expression:

Ibat,AC =
Pbat,AC

Vline p f
√

3
, (9)

where Vline is the line voltage and pf is the power factor of the AC bus.
The associated current losses at the converter, Ibat,cnv,los, are given by the following

quadratic fitted relationship, assumed to stay the same for both converting modes:

Ibat,cnv,los = Inom,los ·
(

e1 I2
n + e2|In|+ e3

)
, (10)
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where Inom,los the nominal current losses and ei fitting parameters. Moreover, In is the
normalised current In = Ibat,AC/Ibat,AC,nom:

In =
Ibat,AC

Ibat,AC,nom
. (11)

The Ipack,bat can then be found as:

Ipack,bat = Ibat,AC + Ibat,cnv,los. (12)

Note that Ibat,cnv,los > 0 so that during charging (I < 0) the rectifier losses are subtracted
from the current input towards the battery, while during discharging (I > 0) the inverter
losses are added.

The fuel consumption of the diesel generator set can be measured by varying the
torque at a constant rotational speed. A cubic approximation is provided using manufac-
turer’s data (as in [16]) as a function of the normalised power output of the generator set,
Pgenset,n:

.
m f ,genset = kgenset

.
m f ,DG,nom

2

∑
i=0

gi · Pi
genset,n, (13)

where gi positive fitting parameters and kgenset the number of active generator sets at a
time. The approximation is a convex function because the second derivative of the fuel
consumption is 2g2 > 0, strictly positive. This allows for choosing the optimal number of
active generator sets using only the required power output (See Appendix A).

The main diesel engine fuel consumption can be approximated with a polynomial
function of the normalised power output PDE,n and engine shaft speed nDE,n:

.
m f ,DE = kp

.
m f ,DE,nom

4

∑
i=0

4

∑
j=0

bi,jni
DE,nPj

DE,n, (14)

where bi,j fitting parameters, kp the number of propulsion trains (assuming one engine per
propeller).

The electric machine has been modelled based on a piecewise polynomial fit, where
the normalised power losses, PPTO/I,loss,n = PPTO/I,loss/PPTI,loss,nom, of the variable speed drive
can be expressed as a symmetric function of the normalised motor speed, nn, and torque,
Mn:

PPTO/I,loss,n =

{
v2Mn

2 + v1
∣∣Mn

∣∣+v0, Mn 6= 0
0, Mn = 0

, (15)

where vi parameters. The power of the electric machine is

PPTO/I = (TnomNPTO/I,nom)2πMnnPTO/I,n, (16)

with Tnom and Nnom as the nominal torque and shaft speed, correspondingly, and nPTO/I,n
the normalised PTO/I shaft speed. If for power-take-off, PPTO/I < 0, and for power-take-in,
PPTO/I ≥ 0, the power before the PTO/I gearbox is:

Pdrive = PPTO/I−
∣∣PPTO/I,loss

∣∣, (17)

while the power at the AC grid is:

PPTO/I,AC = −PPTO/I+
∣∣PPTO/I,loss

∣∣. (18)

The gearbox ratio between the propeller shaft and the PTO/I, and the main engine
and the propeller shaft is:

iGB,drive =
nPTO/I

nS
, (19)
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iGB,DE =
nDE
nS

. (20)

The mechanical power balance can be expressed as

ηGB,DEPDE + ηGB,drivePdrive =
Pprop

kp
, (21)

where Pprop is the total propulsive demand and ηGB is the gearbox efficiencies for the PTO/I
and the main engine shaft. The power quantities have been multiplied with their nominal
values. The power balance at the AC grid is

kgensetPgenset + kpPPTO/I,AC + Pbat,AC = Photel , (22)

where Photel is the hotel power demand on the AC grid and the kgenset the active generator
sets at each instant.

Since the model is quasi-static, the dynamic behaviour of the propulsion system due
to waves, propeller shaft inertiae, and propeller pitch are neglected. Thus, the propulsive
power demand Pprop and the propeller shaft speed np can be separate disturbances to the
system. A separate module that generates these disturbances from e.g., the sea state and
the ship speed can be used.

The operating envelope of the main engine is divided into three different regions, the
power limit, n2 ≤ nDE ≤ nmax, the torque limit, n1 ≤ nDE ≤ n2, and the turbocharger limit,
nmin ≤ nDE ≤ n1. The last limit is expressed in terms of maximum power as a function of
the shaft speed:

PDE,max,TB = β1 + β2nB
2, (23)

where β1, β2 parameters. A safe factor can be used in the controller to ensure that the
operating limits are not violated during operating point transitions, and the engine is
stable.

The per cell maximum continuous current of the battery is Imax, while the cell ca-
pacity is Q0,cell. This gives a maximum C-rate of Cmax = Imax/Q0,cell per cell. For this
C-rate, the power output Pcell,max can be measured, resulting in a total power output
of Pbat,max = nsernparPbat,max. Furthermore, there is a limit on the battery state of charge,
SoCmin ≤ SoC ≤ 1. It is important to note that the latter is an integral constraint on the state.

A minimum value for the torque Mn,min of the electric machine is active, or zero when
the electric machine is disengaged.

Finally, the power from each generator set is Pgenset,min ≤ Pgenset ≤ Pgenset,max or zero
when the generator set is off.

2.2. Energy Management Strategy Framework

The ship dynamic behaviour can easily be written with the system description of the
following form:

S
.
oC = f (SoC, In) (24)

→
y = g(SoC,

→
u ,
→
r ), (25)

where SoC is the state variable, y the system output vector, u the control input vector and r
the disturbance vector, which are:

→
y =

[ .
m f ,DE.

m f ,genset

]
, (26)

→
u =

[
Mn
In

]
, (27)
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→
r =

 ns
Pprop
Photel

 (28)

The algebraic power balance in Equations (21) and (22) allow for the system output to
be calculated. Note that the physical description contains non-linear expressions, e.g., due
to the (dis) charging of the batteries. The operating constraints presented previously are
part of the system description.

A non-linear constrained optimal control problem (OCP) is introduced where the ob-
jective is to find the control input at every time instant which minimises the cost function J:

J(
→
u (t)) = ϕ(SoC(t f )) +

t f∫
t0

(
.

m f ,DE +
.

m f ,genset + G) (29)

where the fuel consumption terms and the G term are functions of the control input vector,
the state, and the time. Term ϕ penalises the end state SoC and term G penalises the state
variable. tf and t0 the end and start instants. Discretising with respect to time, the OCP
then requires a control input policy π* = {u1,u2, . . . ,uN},uk ∈ U so that:

π∗ = argmin
π∈∏
{Jπ} (30)

Jπ = ϕN+1(SoCN+1) + γN+1(SoCN+1)

+
N
∑

k=1
(

.
m f ,DE,k(

→
u k) +

.
m f ,genset,k(

→
u k) + γk(SoCk))

(31)

where the constraints on SoC are enforced with term γk. Time steps t = t0 + 0∆t, t0 +
1∆t, . . . , t0 + N∆t are denoted as 1,2, . . . N. Every control action results in the state of the
next time step. Further discretising the state and control input variables into NSoC and Nu
values, correspondingly, allows for the OCP to be solved with dynamic programming DP.
Using the MATLAB® generic DP solver in [44], the method has been followed in a number
of studies for automotive applications to minimise J [30,34,45].

The momentary fuel consumption for the generator set and the main engine is given
in Equations (13) and (14), correspondingly, and is present in the objective function of the
OCP in Equation (31). The genset fuel consumption is only dependent on the demanded
power from the generator Pgenset (see Appendix A), which is in the algebraic Equation (22).
The main engine fuel consumption depends on the demanded main engine power, PDE,
and the shaft speed ns, which is one of the three disturbances to the system. For a valid
solution to the model description with given disturbances, the value for the PTO/I power is
found from Equation (16) for torque control input, Mn, and the battery power is found from
Equation (9) for battery current control input, In, are found. Together with the disturbances
for the hotel, Photel, and propulsive power demand, Pprop, it yields two Equations (21) and
(22) with two unknowns: the power of the main engine and the power of the generator
set. Then from Equations (13) and (14) the solution can be evaluated with respect to the
objective function in Equation (31). The solver finds the values for the control inputs which
minimise the momentary fuel consumptions, summed up for all time steps.

Operating limits on the components of the ship’s hybrid powerplant and the integral
constraints on the SoC need to be applied effectively. The DP solver is using only the
defined set of the discretised control input vector Uk. It also includes the penalising terms
ϕ and γ to apply constraints on the state. This allows for robust behaviour, ensuring all
constraints are enforced.

In -MPC-, a series of OCPs are solved for subsequent time intervals or control horizons
Tc = Nc∆t. At each time step k,where tk = k∆t the state variable xk is sampled from the
physical system. The disturbance vector rk,k + Nc for the horizon needs to be known or
estimated in advance. Each OCP solution is found by feeding the above to the system
description, yielding the optimal control input policy for the horizon π*

k,k + Nc = {uk, uk+1,
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. . . , uk + Nc}. However, only the first control input vector uk is given to the physical system,
while the rest are discarded and the procedure is repeated for the next time step k + 1,
sampling the next state variable xk+1 from the system.

The advantages of MPC are identified in [29]. MPC is capable of using multiple
variables for the state and control inputs; it is also suitable for handling binary variables
and non-linear systems. For non-linear systems, the term non-linear MPC is used in the
literature [46]. Applicability is promising for shipboard hybrid systems, where more com-
ponents are present compared to automotive hybrid powertrains, and (dis)connecting
generator sets or (dis)charging the battery module introduces non-linear equations. More-
over, MPC is inherently able to use new predictions for the disturbance vector r whenever
available, because it fully recalculates the OCP at every time step.

Conventional MPC originates from the process industry where it is important to use
a setpoint tracking term to penalise deviations from the reference system output or state
at each stage of the OCP [29]. However, the objective of an EMS fits the description of
economic or performance optimisation and can therefore be addressed by formulations
described in the literature as economic MPC [46,47]. These formulations drop the conven-
tional setpoint tracking term and instead optimise for an economic objective by use of a
performance term (first term of Equation (29)) [48,49]. The setpoint tracking is then done
with a terminal constraint or penalty (second term of Equation (29)). The reader is referred
to [46] for an overview on the stability and optimality of economic non-linear MPC.

Sun et al. [34] in a study for automotive vehicles, use a non-linear MPC approach as a
compromise between DP and ECMS for energy management. On one hand, DP requires
the load profile and duration to be known in advance, thus, it is predominantly used
for benchmarking or tuning other EMS. On the other hand, ECMS performs well when
information is given only on the present time instant, however, tuning of the equivalence
factor, which depends on the loading profile, is not a trivial tasks and needs to be done in
advance. This introduces a loading-sequence-specific control design overhead. Adaptive
implementations (A-ECMS) use only a set of equivalence factors and the implementation
in [16] failed to perform well for loads that differ for the profiles used for tuning.

Following the framework design found in [34], the proposed controller MPC frame-
work is comprised by two modules, namely the reference trajectory generation (RTG)
module and the non-linear MPC module (top two blue blocks in Figure 2). Both modules
solve a discrete-time finite horizon non-linear OCP with DP in order to minimise the fuel
consumed in the form of an integral objective function, given by Equations (30) and (31). In
predefined time intervals, the RTG module is initiated and fed with the available remaining
mission load estimation as the disturbance vector input rmission. This future update is shown
in Figure 2 with the arrow from the mission-scale disturbance estimation at the top left to
the RTG module at the top right. Every time a new future update on the remaining mission
disturbance vector is fed to the framework, this also updates the RTG solution. From the
RTG solution, a mission reference state trajectory for the battery SoCref (t) is computed. The
MPC module is instead using a short term prediction rhorizon and is solving a new OPC for
a defined control horizon at every control time-step tk. Using an end-state constraint (ESC)
for the SoC at the end of each horizon, the MPC solution is guided towards the solution
generated by the RTG module:∣∣∣SoCMPC(k + Nc∆t)− SoCre f (k + Nc∆t)

∣∣∣ ≤ E, (32)

where E is the parameter in the ESC tuned to allow for feasible solutions in case of dis-
agreement between the short-term MPC solution and the mission-scale solution by the
RTG module. The end-state constraint is enforced with the ϕ term of Equation (31).
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In both the RTG and MPC modules the behaviour of the propulsive plant is described
by the quasi-static model description given at the beginning of this chapter.

By using two different time-scales for the estimations, mission-scale information (e.g.,
captain’s input, weather and routing data), can be combined with a short-term disturbance
estimation scheme, examples of which can be found in [26,34,42,50,51]. The use of the
quasi-static model in the MPC module provides past values of the state and the system
outputs that may enhance the performance of the estimation scheme. The present study
uses a perfect prediction scheme for both the mission-scale and the short-term, so that the
performance of the scheme does not interfere with benchmarking the performance of the
proposed MPC framework.

3. Results
3.1. Model Description Tuning and Verification

The MPC framework was validated by incorporating the controller in a dynamic
Simulink® model of a hybrid power plant of a naval vessel provided by Damen Naval BV
(Figure 1). For that reason, the parameters of the system description have been formulated
using measurements from the model, whose details and validation are mostly covered [43],
except from the electric machine, which has been simplified here to the same polynomial
in Equation (15).

The telegraph position, Tg, connects to the virtual shaft speed by the equation
Nvirt = (Nvirt,max − Nvirt,min)Tg + Nvirt,min, where Nvirt,min and Nvirt,max are the min and max
virtual shaft speed limits. The virtual speed is connected to the propulsive load and actual
shaft speed for a fixed combinator curve. An interpolated fit has been chosen, shown in
Figure 3. It has been used to generate the disturbance for the shaft speed and the propulsive
load from the telegraph position.
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In Table A1 the parameters of the vessel’s power plant are given. On a component level,
Figures A1–A3 present the fitted results for the electrochemical efficiency of Equation (5)
and the main engine consumption of Equation (14). The Simulink® model uses a simple
polynomial expression for fuel consumption of the generator set as in Equation (13) so the
reduction is trivial. The layout of the hybrid propulsion hybrid power supply power plant
is given in Figure 2.

For the electrochemical efficiency of the battery, the effect of the state of charge is
observed in Figures A1 and A2 but is more pronounced in the case of cell discharging.
The biggest fitting error is observed in Figure A2 with a maximum value of 0.7%, at the
region where the state of charge is above 0.95 and for a discharging power above 40%.
The residuals for charging are shown in Figure A1, with the biggest fitting error of 0.7%
occurring at the zone where the charging power is above 90%.

The bottom plot of Figure A3 includes the envelope boundaries and shows that the
maximum residuals are observed alongside the operating limits of the engine, but do not
exceed the 0.008 mark.

The fitted equations for the main engine (Equation (14)) and the battery cells (Equa-
tion (5)) are normalised in order to ensure that the fit is as accurate as possible. The
corresponding nominal values for the normalised quantities are found in Table A1.

The model description has been verified offline by plotting the results of the same
loading profile of total duration of 3000 s against their Simulink® model counterparts, as
shown in Figure 4. For positive values of the battery power in Figure 4b the charge of
the battery is depleted, shown in Figure 4f, as described in Equations (6)–(8). For this
integrated verification case the setpoints do not yield an extensive charging period for
the battery. However, the battery charging mode is verified also on a component basis,
an important step for accurate SoC tracking, as it is later shown in Section 3.4 that the
proposed framework yields extensive charging periods (see Figure 8d). The offline and
online behaviour have their biggest difference of −4.1% for the diesel generator power
around the 800 s mark and for a relatively short duration of 200 s. Apart from this region,
the difference is well below 1% and it is concluded that the model description is accurate
enough to replicate the Simulink® model. It is clarified here that in this section only a
model verification is presented and no controller has been implemented in the Simulink®

model. That is, the same control input and disturbance vector sequences were fed to both
the model and its reduced quasi-static model description, comprised of all components
described in the beginning of this section.
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3.2. Verification of the Reference Trajectory Generator Module

The MPC framework was first implemented offline in order to select suitable values
for the solver parameters and the MPC. Both the RTG and MPC modules of the framework
use the generic MATLAB® DP solver [45] to solve the OCPs.

Regarding the numerical details, the discretisation of the state and control input
variables was found to be adequate at Nx = Nu = 41, above which not much reduction in
fuel consumption was observed, while the computational load increased considerably. The
number needs to be odd so that the mid setpoint of each variable can be zero, while the
variables are normalised. The solver’s boundary line method was used, which provides
better accuracy for the discretisation number. The non-fixed grid option was selected and
the time step of the solver was set to 20 s.
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The RTG module underwent several qualitative verification tests: A base case of the
telegraph position, an increased position by 10%, and a decreased position by 10% were
compared to check whether the fuel consumption changed consistently. The results are
shown in Table 1. The telegraph position is connected linearly to the propeller speed (until
0.9np,max) and the propeller speed is connected almost linearly to the propulsive demand
(until 0.68Pprop,max) due to the controllable pitch propeller (CPP), as shown in Figure 3. The
specific fuel oil consumption is fairly uniform (less than 7% difference between minimum
and maximum value in Figure 5a). Thus, an increase in fuel consumption is expected with
10% increase in the telegraph position and vice versa, since that corresponds to more than
a 20% increase/decrease for the power demand.

Table 1. RTG load consistency check.

Profile/Telegraph Position Fuel Consumption [kg] Difference [%]

Base 1974.3
−10% 1908.1 −3.35
+10% 2085.5 +5.63

50% PDE,nom 2055.1 +4.09
50% Tnom 2056.7 +4.17
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Figure 5. Verification of the RTG module: Scenario with stricter engine operating boundaries. (a) Main engine setpoints
resulting from the control input plotted on the SFOC [g/kWh] contour plot; (b) trajectories of the power output of the
various powertrain elements together with the propulsive and hotel power demand; (c) trajectories of the shaft speed, the
control inputs (induction machine torque and battery current), the number of active generator sets, and the SoC of the
battery pack.
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The second test introduces narrower operating boundaries for the components of the
power plant. The minimum engine power has been moved from 45% of the nominal value
to 50%, resulting in a consistent increase in fuel consumption. Likewise, an increase in the
minimum torque for the PTO/I also increases fuel consumption.

Figure 5 includes a series of plots that show how the various quantities of the compo-
nents evolve for the increased minimum engine power value. It is noted that not all of the
battery charge is used (as opposed to the base case) because the minimum main engine
power plus the minimum PTI power is higher than the propulsive demand, meaning that
only in peak propulsive power demand regions the PTI can be activated to further deplete
the battery.

3.3. Verification of the Model Predictive Control Module

At the end of Section 2.2 an overview of MPC is provided. The implementation of the
MPC module for this case study is solving an OCP for subsequent control horizons using a
DP solver with an ESC at the end of each horizon. In more detail:

1. The state is the battery SoCk and it is sampled from the Simulink® model of the
propulsive plant at each time step tk and used as the initial SoC for the OCP.

2. The disturbances to the system are the shaft speed, propulsive power demand, and
hotel power demand. The predicted values for each disturbance and for the scope of
each horizon are provided to the OCP at each time step tk.

3. The SoCMPC at the end of the horizon tk + Nc∆t is constrained by the SoCref of the
global solution at the same time-step. This is the ESC of Equation (32).

4. The DP solver is utilised to provide the solution to the OCP above for the control
horizon. The control inputs to the system are the normalized battery current In and
electric machine torque Mn. The resulting control input vector for the next time step
uk + 1 is fed to the system and the control input vectors for the rest of the time-steps,
uk + 2 . . . Nc, are discarded.

5. At the next time-step the MPC module samples the next SoC and iterates the proce-
dure.

Before implementing the MPC module in the Simulink® model of the propulsive
power plant, the parameters in the MPC code are tuned offline so that the generated control
inputs agree with the control inputs of the global solution, which is the DP solution for
the full mission, provided online by the RTG module. In this offline verification, the SoC
reads the initial state from the results of the global solution at each time-step. The goal is to
ensure that the OCP solution with an ESC at the end of the control horizon yields the same
control inputs with the global solution.

The ESC parameter for the MPC module was found offline by decreasing the value
until the load profile provokes an infeasibility error. For E = 0.01 the framework is stable
with 41 grid elements (Nu = Nx = 41), while E = 0.07 can be used for 61 grid elements, and
E = 0.05 for 81. An analysis of the computational cost of the DP solver used by the MPC
framework in this study can be found in [44]. The MPC module control horizon was found
offline by starting at the short horizon of only two time steps (40 s) and increasing until
the control inputs from the MPC module’s OCP converge to those from the RTG module.
It was found that a horizon of 600 s yields optimal response with no instabilities for both
step-up and step-down load sequences (Figure 6). The prediction horizon has been chosen
to be the same as the control horizon.
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3.4. Validation of the Model Predictive Control Framework

The validation of the MPC framework is done by incorporating the controller in the
Simulink® model, using lvl-2 custom S-functions. A series of realistic telegraph trajectories,
generated by a probability density function from historical data, was provided by Damen
Naval BV for the vessel. Using the combinator curve presented in Section 3.1, these
telegraph trajectories correspond to the disturbances for the propulsive load and the shaft
speed. The hotel load power demand has been constant at 1000 kW.

The above loading sequences were spliced together to construct two different scenarios,
referred to as Profiles 1–2. The profiles are used in an information barrier scheme which has
been devised for the validation of the MPC framework: Two online optimal DP controllers
are being fed the same disturbances with the MPC framework controller. At a certain
time-step, called the information barrier point (IBP), the telegraph trajectory changes from
the initial prediction to the actual trajectory (solid and dashed lines, respectively, shown
for profiles 1 and 2 in Figure 7):

• The first online DP controller has perfect information about the disturbances, including
the change at the IBP. This means that it is the optimal controller and calculates the
control inputs for the telegraph trajectory spliced at the barrier point.

• The second online DP controller solves for the initial prediction until the IBP, where it
recalculates the control inputs for the actual trajectory.

• The MPC framework’s RTG module is updated with the actual trajectory at the update
point, which is before the IBP.
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At the final horizon, the MPC framework can either start diminishing its horizon or
use the last calculated control inputs from its RTG module. The first option should be
preferred. However, it has not been implemented here. For this reason, the final horizon
area is not included in the online simulation, resulting in comparison problems when the
optimal and barrier DP controllers have not used the same amount of battery charge at the
end of the online simulation. Offline simulations with the reduced model descriptions are
included to help with interpreting the results. First, the results for the CD mode will be
presented, were the end SoC is free to terminate anywhere within [0.2 1],and then the CS
mode results will be presented, where the SoC starts at 0.9 and can only terminate with a
value in [0.89 0.91].

Table 2 shows the results for CD battery mode. For profile 1, not all of the battery
charge is depleted by the barrier controller, and for profile 2, no such effect takes place.
The barrier benchmark controller optimally solves a control problem twice: the first time
based on the full initially predicted trajectory up until the IBP at t = 2400 s, after which
it solves a second time, now for the actual trajectory (remaining mission). The optimal
controller solves only once for the actual trajectory. The MPC framework has an information
advantage compared to the barrier controller due to the update point at t = 600 s, however,
its optimality is not guaranteed and is being benchmarked.

Table 2. Fuel consumption results; in parenthesis the offline results at the end of the final horizon.

Profile 1 Profile 2

Fuel Consumption
[kg] Difference [%] Fuel Consumption

[kg] Difference [%]

Optimal 1787
(1961)

−4.85
(−3.44)

1758
(1949)

0.00
(−0.20)

Barrier 1878
(2031)

1758
(1953)

MPC 1811 −3.57 1798 +2.28

It is noted here that the consumption reduction of the MPC framework compared to
the barrier controller is attributed to the information advantage described above. However,
even if there is no such consumption reduction, the framework’s performance should
be further assessed for its robust behaviour (i.e., yielding a feasible control policy while
satisfying all constraints) and for its consumption when compared to the optimal controller.

In Figure 8, in the plot for the online simulation of Profile 1, the MPC framework SoC
trajectory (blue) starts to follow the optimal controller SoC trajectory (red) after the update
point at t = 600 s.This is the point where the RTG module of the MPC framework solves
for the updated actual trajectory and provides the new reference to the MPC module of
the framework. In the case of the MPC framework, the update for the trajectory occurs
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so that the controller is able to deplete the battery in time, while the late informed barrier
controller (yellow) finishes the mission with some “trapped” battery charge. The offline
results in Table 2 and Figure 8 also show the effect clearly.
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The effect of “trapped” battery charge can be understood in Figure 9, for Profile 1. At
the region between 700 and 1000 s the barrier controller does not use the PTI, while the
MPC framework, updated with the new information tries to use up the battery charge it did
not use at the beginning of the mission. Not only that, but at 1500 s, the MPC framework
depletes the battery more aggressively than the optimal controller to catch up. After 2400 s
the propulsive load is too small for the PTI to be used, and the barrier controller cannot use
any remaining charge.
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Profile 2 presents little room for alternate control “paths”, and a big portion of the
optimal and barrier controllers coincide. The MPC framework follow very closely the
setpoints of the optimal controller as it can be seen in Figure 9.

Two more profiles were tested for CD mode with similar results to Profile 2, with the
MPC framework following consistently the optimal controller solution after the update
point.

A parametric study for the position of the update point was carried out. Table 3
presents the results and demonstrates that if the “trapped” charge effect is present, there is
a relatively wide update window for the MPC framework to yield savings and the savings
are reducing consistently with later updates. In Figure 10 (right) it is shown that the PTO/I
activity is consistent with the update points. For example, only the controller with an
update point at 600 s follows the PTI setpoints of the optimal controller between 800 and
1000 s, while it can be seen that for the controller with an update point at 1800 s the highest
PTI setpoints are observed after that 1800 s mark in an attempt to deplete the “trapped”
charge.

Table 3. Parametric study: update point (Profile 1).

Fuel Consumption [kg]

600 s 1200 s 1800 s

Optimal 1787 1787 1787
Barrier 1878 1878 1878

MPC 1811
(−3.56%)

1813.4
(−3.44%)

1842
(−1.92%)
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A second parametric study compared different values for the hotel loads. It was found
that there are fuel savings when the electric machines are used, either in PTI or PTO mode
(Figure 10a—design hotel load 7269 kW). In the latter case the controller takes power off
the shaft and offsets the main engine setpoints to the low consumption region (red cluster
at 7 MW on the main engine SFOC plot—Figure 11). For intermediate hotel loads (5 MW)
the energy in the battery matches the hotel energy consumption of the mission and results
in low PTO/PTI activity. The constraint on the torque of the electric machine is active and
without the PTO/PTI mechanism to offset the setpoints of the main engine no reduction in
fuel consumption was observed (Table 4).
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Table 4. Parametric study: hotel power demand.

Fuel Consumption [kg]

1 MW 5 MW 7.27 MW

Optimal 1787 2442 2825
Barrier 1878 2447 2839

MPC 1811
(−3.56%)

2448
(+0.04%)

2826
(−0.44%)

The profiles were also tested for CS mode. For the profiles in CS mode the utilisation
of the battery was below 0.3% of the total installed charge and the induction machine
was only initiated during low propulsive demand, where the operating limit of the main
engines was activated. For Profile 1 the experiment was run again with the PTO/I torque
limit relaxed from 0.3 to 0.1 and the hotel demand raised to 7269 kW. The results are shown
in Figure 12, where it can be seen that the MPC framework closely follows the optimal
controllers. It is noted that no fuel savings were observed in any of the CS modes, results
consistent with the findings in [6] were CS fuel savings due to battery utilisation were
not found.
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4. Discussion

The presence of a shipboard battery pack introduces loading sequence-specific, rather
than profile-specific, system behavior. This should be addressed by control policies aiming
for optimal fuel consumption and effective enforcement of the system constraints. The case
study demonstrates the following about the proposed MPC framework:

• The MPC framework shows close-to-optimal performance and satisfies all operating
constraints, including the integral constraints on the SoC, for all tested loading se-
quences and modes. A time interval of 600 s for both the prediction and the control
horizon has been found to be sufficient for achieving such performance.

• In CD mode the consumption reduction due to utilisation of mission-scale predictions
can be substantial. Compared to the fully-informed, optimal controller, the MPC
framework selects higher power setpoints only after it receives the information for the
updated profile, both in the standard and the parametric study (Figures 9a and 10b).
This means that the primary factor for reducing the fuel consumed is the use of all the
energy in the battery. This in turn offsets the consumption of the main engines and
the generator to lower values. A reduction of up to 3.5% was achieved for this specific
case study in CD mode and under specific loading sequences. In CS mode, savings
due to unused charge avoidance are not possible.

• When the induction motors are active, the reduction in fuel consumption due to
mission scale information is possible (0.4% reduction observed). The control inputs
from the MPC framework yield fuel-efficient operating points in the envelope of the
main engine. This is achieved by storing energy, via the induction motors, to the
battery plant and using it at a later time, in such a way that the fuel consumed is
minimised.

• For several loading sequences, the two benchmark solutions coincide partially or
completely. In such cases, few solutions that satisfy all of the OCP’s constraints exist,
leading to a solution space where fuel consumption reduction due to use of mission
scale information is insignificant. In the simulations for the MPC framework, the
DP solvers in the RTG and MPC modules of the framework have been shown to be
effective in finding these feasible solutions, adding to the controller’s robustness.

• The computational load allows for an embedded controller. The controller framework
implemented in Simulink®, simulated together with the dynamic model, require less
time to compute than the mission on a laptop computer.

The results of the study show the effectiveness of the proposed framework, compared
to the state-of-the-art shipboard EMSs, particularly when handling mission-scale effects
and integral constraints introduced by the battery system. Furthermore, the performance of
the proposed framework in terms of fuel consumption and robustnessis close to the optimal
solution. More specifically, it is demonstrated that the controller yields feasible control
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policies and is robust regarding the integral constraint on the battery SoC, addressing
concerns identified in the literature, such as the insufficient peak demand availability
observed in [25]. It is also capable of adapting to real-time updates on the future disturbance
estimations, as opposed to the controller proposed in [38]. At the same time, it addresses the
problem of instantaneous EMS (ECMS, A-ECMS), identified in [16], where the performance
of the controller is poor under off-design power demand sequences, different from those
used to tune the controller’s equivalency factor(s).

These results may motivate future work to focus on incorporating online short-term
and long-term prediction schemes into the MPC framework, in an attempt to design
a complete controller solution (see Section 1.3). The lack of operating profile-specific
parameters may enable early ship power plant design studies to quantify fuel consumption
savings and battery sizing for different operating profiles and sequences. Finally, complex
ship power plants can benefit from the framework’s ability to readily incorporate additional
control input variables and states as well as terms in the OCP’s objective function.
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Appendix A

In order to find how to divide the total power demand among the available gen-
erator sets, the active number of generator sets can be found by an integer division
NoE = div(Pgen,Pgenset,nom) + 1, and then, by dividing the total power with this number
the consumption can be found:

Pgenset,i =
Pgen

NoE
, i ∈ [1, 2, . . . , NoE]. (A1)

The above yields optimal results in the common case where (a) the fuel consumption
of the generator set is a convex function of its power demand and (b) the generators are
identical.

By considering two generator sets with power setpoints Pg,1,Pg,2, what needs to be
proven is that if point C is the common operation point of the two engines, there exist no
points A and B, that cover the total power demand, such as:

.
m f ,a +

.
m f ,b < 2

.
m f ,c ⇔

f (Pa,g,1) + f (Pb,g,2) < 2 f (Pc,g,12),
Pa,g,1 < Pc,g,12 < Pb,g,2

(A2)

This can be proven from the definition of convexity:

f (tx + (1− t)y) ≤ t f (x) + (1− t) f (y),
t ∈ [0, 1], x < y

(A3)
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Now, since point C is between A and B, it can be expressed in the form:

Pc,g,12 = tPa,g,1 + (1− t)Pb,g,2 (A4)

which yields:

t =
Pc,g,12 − Pb,g,2

Pa,g,1 − Pb,g,2
(A5)

and by substituting in the equation above the expression 2Pc,g,12 = Pa,g,1 + Pb,g,2 = Pgen,
which means that in both scenarios, the total power has to add up to the total power
demand Pgen, yields that t = 1/2. From the definition inequality (A3), and by substituting
the mf function, it is now:

.
m f ,c ≤ 1

2
.

m f ,a + (1− 1
2 )

.
m f ,b ⇔

2
.

m f ,c ≤
.

m f ,a +
.

m f ,b
(A6)

which can be generalised for more engines and which proves that the common power
setpoint Pc,g,12 = Pgen,i from Equation (A1) is optimal. In the case of different engines,
but their consumption functions are still convex, the formulation above can be extended,
however, that case is not discussed here. Regarding the operating limits, the following
inequalities should hold:

Pgen,i ∈ [Pgen,min, Pgen,max]
Pgen ≤ kgPgen,max

(A7)

where kg the number of generator sets available on the vessel.
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J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 25 of 28 
 

 

  
(a) (b) 

Figure A1. Fit for the electrochemical efficiency of the battery cell when charging minus one, as a function of normalised 
power and state of charge(a) and the residuals of the fit (b). R-square: 0.9996. 

  
(a) (b) 

Figure A2. Fit for the electrochemical efficiency of the battery cell when discharging minus one, as a function of normal-
ised power and state of charge(a) and the residuals of the fit(b). R-square: 0.9956. 

  
(a) (b) 

Figure A3. Fit for the electrochemical efficiency of the battery cell when discharging minus one, as a function of normal-
ised power and state of charge(a) and the residuals of the fit(b). R-square: 0.9956. 

Table A1. Case Study Parameter Values. 

Parameter Value Units 
PPTO/I,loss,nom 1.9050 × 105 W 

Tnom 2.2037 × 105 Nm 
Nnom 2.1667 s−1 

Figure A2. Fit for the electrochemical efficiency of the battery cell when discharging minus one, as a function of normalised
power and state of charge (a) and the residuals of the fit (b). R-square: 0.9956.



J. Mar. Sci. Eng. 2021, 9, 993 25 of 28

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 25 of 28 
 

 

  
(a) (b) 

Figure A1. Fit for the electrochemical efficiency of the battery cell when charging minus one, as a function of normalised 
power and state of charge(a) and the residuals of the fit (b). R-square: 0.9996. 

  
(a) (b) 

Figure A2. Fit for the electrochemical efficiency of the battery cell when discharging minus one, as a function of normal-
ised power and state of charge(a) and the residuals of the fit(b). R-square: 0.9956. 

  
(a) (b) 

Figure A3. Fit for the electrochemical efficiency of the battery cell when discharging minus one, as a function of normal-
ised power and state of charge(a) and the residuals of the fit(b). R-square: 0.9956. 

Table A1. Case Study Parameter Values. 

Parameter Value Units 
PPTO/I,loss,nom 1.9050 × 105 W 

Tnom 2.2037 × 105 Nm 
Nnom 2.1667 s−1 
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Table A1. Case Study Parameter Values.

Parameter Value Units

PPTO/I,loss,nom 1.9050 × 105 W
Tnom 2.2037 × 105 Nm
Nnom 2.1667 s−1

mf,DE,nom 0.4950 kg/s
PDE,nom 9 × 107 W
NDE,nom 16.667 s−1

mf,DG,nom 0.1481 kg/s
Pf,gen,nom 2.6923 × 106 W

kp 2
nser 34
npar 102

Pcell,max 1.8417 × 103 W
Qcell,0 48.06 As
Inom,los 206.670 A

Ibat,AC,nom 10287 A
pf 0.8

Vline 440 V
iGB,B 7.692

iGB,drive 1
Mn,min 0.3

PDE,n,min 0.45
SoCmin 0.2

PDG,n,min 0.4

Table A2. List ofAbbreviations.

Parameter Value

CD Charge Depleting
CS Charge Sustaining

DAE Differential and Algebraic Equations
DoF Degrees of Freedom
DP Dynamic Programming

ECMS Equivalent Consumption Minimisation Strategy
EMS Energy Management Strategy
ESC End-State Constraint
ESS Energy Storage System
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Table A2. Cont.

Parameter Value

IBP Information Barrier Point
IC Internal Combustion

MPC Model Prodictive Control
OCP Optimal Control Problem

PTO/I Power take-off/in
RTG Reference Trajectory Generation

SFOC Specific Fuel Oil Consumption
SoC State of Charge
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