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Abstract: A method based on a coarse- and fine-tuning fixed-grid wavelet networks is presented
for online prediction of the coupled heave-pitch motions of a ship in irregular waves. The online
modeling method contains two processes, i.e., coarse tuning and fine tuning. The coarse tuning is
used to select the important wavelet terms, while the fine tuning is only used to compute the related
coefficients of the selected wavelet terms. The Givens transformation algorithm is applied to realize
the fine-tuning process. Due to the continuous fine-tuning process, the computational efficiency is
improved significantly. Both simulation data and experimental data are used to verify the modeling
method. The prediction results illustrate that the method has the ability to online predict the coupled
heave-pitch motions of a ship in irregular waves.

Keywords: ship heave-pitch motions; irregular waves; online prediction; coarse-and-fine tuning
fixed grid wavelet network

1. Introduction

Due to the environmental disturbances such as wind, waves and current, it is very dif-
ficult to establish a precise mathematical model for ship motion at sea [1]. Over many years,
a variety of methods have been proposed and used to predict ship motion. The classic
method is Kalman filtering technique; but to use it, the state equation of ship motion must
be known first [2,3]. Another commonly used method is time-series-analysis techniques,
such as autoregression (AR) model and autoregressive moving average (ARMA) model,
which are linear analysis methods. In many cases, they are not suitable for modeling non-
linear ship motion. The computational fluid dynamics (CFD) method is another important
method for modeling and predicting ship motion at sea, but ship geometry and environ-
mental information are prerequisites for using it, and it is extremely time consuming.

In recent years, with the development of artificial intelligence (AI) technology, the
related machine-learning technology has been widely used in the naval architecture and
shipping industry. Back-propagation neural networks have been used to predict ship
motion [4,5]. The radial-basis-function neural network was proposed to predict vessels’
heave motion [6], a support vector machine was proposed to predict ship motion [7–9], and
the adaptive wavelet network was used to predict short term ship motion [10,11]. With
the development of deep learning, it has also been applied in ship-motion prediction; a
hybrid deep-learning and ARIMA model was used for ships’ roll motion prediction [12].
Recurrent neural network (RNN) is used for predicting the vertical acceleration of a large-
scale ship [13]. Convolutional neural networks (CNN) and long short-term memory (LSTM)
neural networks are also used for ship-motion prediction. The dual-pass LSTM network is
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used for ship-heave prediction by Hu et al. [14]. CNN with LSTM is used for roll-motion
prediction of unmanned surface vehicles (USVs) by Zhang et al. [15]. Deep-neural-network
models usually contain many training parameters; thus, they often need a large number
of training samples. Neural networks can theoretically fit arbitrary nonlinear functions
with arbitrary precision [16]; because of this advantage, they are also used in ship motion
modeling and parameter identification. Haddara and Xu used the random-decrement
technique and neural networks to identity the parameters of coupled heave-pitch motion
equations [17]. Yin et al. used neural networks to predict ship’s roll motion during
maneuvering [18]. Hou et al. used support vector machines to identify the parameters
of coupled heave-pitch motions of a ship in regular waves [19]. However, many neural
networks trained by gradient-type algorithms are liable to fall into local optimum, and the
number of neurons in the hidden layers is not easy to predetermine, especially for online
modeling, as the structure of neural networks is difficult to change online.

Among the six degrees of freedom ship motions, the coupled heave-pitch motions
are most important for ships’ seakeeping performance, since they are directly related to
green water on deck, slamming, propeller racing, etc. Besides, the prediction of coupled
heave-pitch motion is very important for motion compensation in marine operations, such
as the landing of air vehicles on ship-based platforms, the launching of shipboard weapons,
and lifting operations at sea; it is also important for ships’ motion control, especially by
using model-predictive control algorithms. Therefore, the prediction of coupled heave-
pitch motions of ships in waves has attracted great attention from the ship hydrodynamics
community, and many studies have been carried out in this field. However, there are still
some challenging issues, such as the online prediction of coupled heave-pitch motions of a
ship in waves, which is worth studying.

In this paper, a coarse-and-fine tuning fixed-grid wavelet network (CFT-FGWN) is
used to establish the prediction model of coupled heave-pitch motions of a ship in irregular
waves, aiming at online prediction of the coupled heave-pitch motions of a ship sailing at
sea. The CFT-FGWN was first presented in Huang et al. [20,21] for the online prediction of
ships’ roll motion. The modeling method of CFT-FGWN can online change the structure of
the wavelet network and avoid local optima, and usually converges fast. This modeling
method was used for predicting ships’ roll motion in regular waves [20] and in irregular
waves [21]; there was only once fine tuning in these studies. In this paper, continuous
fine-tuning is implemented for two degrees of freedom ship motions, i.e., heave and pitch,
in irregular waves, which makes the computing efficiency greatly improved. The results
show that the online modeling method can effectively predict the coupled heave-pitch
motions of a ship in irregular waves.

2. Fixed-Grid Wavelet Networks for a Multiple-Inputs Multiple-Outputs System

In general, a multiple-inputs multiple-outputs (MIMO) system can be represented as
y1(t) = f1(x1(t), x2(t), · · · , xn(t)) + e1(t)
y2(t) = f2(x1(t), x2(t), · · · , xn(t)) + e2(t)

...
ym(t) = fm(x1(t), x2(t), · · · , xn(t)) + em(t)

(1)

where x(t) = [x1(t), x2(t), · · · , xn(t)]
T and y(t) = [y1(t), y2(t), · · · , ym(t)]

T are the system
input vector and system output vector, respectively; e(t) = [e1(t), e2(t), · · · , em(t)]

T is the
system noise vector; n and m are the numbers of input variables and output variables of
the system, respectively. A neural network is a typical MIMO system model. By simple
mathematical decomposition, it can also be expressed in the form of Equation (1). In fact,
each MIMO system can be thought of as a combination of multiple-inputs single-output
(MISO) systems, and each MISO system can be described by a multivariate nonlinear
function. In this paper, a combination of wavelet-basis functions is used to represent this
nonlinear function.
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According to wavelet theory, the multivariate nonlinear function f (x1(t), x2(t), · · · , xn(t))
can be expressed as [20–24]

f (x1(t), x2(t), · · · , xn(t)) = c0 +
n
∑

i=1
ciψ

[1](xi(t)) + ∑
1<i<j≤n

ci,jψ
[2](xi(t), xj(t)

)
+ · · ·

+ ∑
1<i1<···<im≤n

ci,i2,··· ,im ψ[m]
(

xi1(t), xi2(t), · · · xim(t)
)
+ · · ·+ e(t) i, j ∈ Z

(2)

where c0 is a constant component representing the intrinsic varying trend; ψ[1](·), ψ[2](·)
and ψ[m](·) are the univariate, bivariate and m-dimensional wavelet-basis functions, re-
spectively; and ci, ci,j and ci1,i2,··· ,im are the coefficients of the corresponding wavelet-basis
functions. Equation (2) can be seen as the structure of the fixed grid wavelet network. Due
to this variety of wavelet-basis functions, different wavelet-basis functions can be selected
for different nonlinear systems. Especially for strongly nonlinear systems, the fixed-grid
wavelet network usually converges very quickly.

In order to predict the coupled heave-pitch motions of a ship with two degrees of
freedom, the model for this multivariate nonlinear system can be expressed as

f1(x(t)) = c0 +
n
∑

i=1
ciψ

[1](xi(t)) + ∑
1<i<j≤n

ci,jψ
[2](xi(t), xj(t)) + · · ·

+ ∑
1<i1<···<im≤n

ci1,i2,··· ,im ψ[m](xi1(t), xi2(t), · · · xim(t)) + · · ·+ e1(t)

f2(x(t)) = c′0 +
n
∑

i=1
c′ iψ′

[1](xi(t)) + ∑
1<i<j≤n

c′ i,jψ′
[2](xi(t), xj(t)) + · · ·

+ ∑
1<i1<···<im≤n

c′ i1,i2,··· ,im ψ′ [m](xi1(t), xi2(t), · · · xim(t)) + · · ·+ e2(t)

(3)

where f1(·) and f2(·) are the nonlinear functions of heave motion and pitch motion, respec-
tively. Thus, the key problem of the modeling method is how to determine these wavelet
terms and their corresponding coefficients. The coarse tuning has the ability to select more
important univariate wavelet-basis functions, bivariate wavelet-basis functions and other
wavelet-basis functions, while the fine tuning is used to determine the coefficients of the
corresponding terms.

3. Coarse-Tuning and Fine-Tuning Algorithm

The coarse-tuning process can choose different important terms in the wavelet library,
while the fine tuning only computes the coefficients of the selected important terms. The
flow chart of the coarse-tuning and fine-tuning algorithm for the coupled heave-pitch
motion modeling is shown in Figure 1. The dataset of coupled heave-pitch motions is a
time series. Before modeling, this dataset must be normalized. The sliding data window is
a data sequence; the sampling data entering the queue first go out first. The data in the
sliding data window are used to establish the prediction model of the coupled heave-pitch
motions. The wavelet library contains many different types of wavelet-basis functions;
the variety is rich; the representation ability is strong. The orthogonal least squares (OLS)
algorithm and error reduction ratio (ERR) criterion can quickly find the more important
wavelet-basis functions in the library. First the most important, then the second most
important, one after the other until the model meets the accuracy requirement of the design.
After finding out the important wavelet-basis functions, the model is fine-tuned by the
Givens transformation algorithm, that is, the corresponding coefficients of the selected
wavelet-basis functions are calculated. The combination of coarse tuning and fine tuning
can determine the corresponding nonlinear model effectively. With the sliding data window
moving, the prediction model of coupled heave-pitch motions can be established online.
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The OLS algorithm and ERR criterion are applied to realize the coarse-tuning process.
The ERRi caused by qi(t) is defined as [20,21,25,26]

ERRi =
〈Y(t), qi(t)〉2

〈Y(t), Y(t)〉 〈qi(t), qi(t)〉
× 100%, i = 1, 2, · · · , (4)

where Y(t) is the output vector; qi(t) is the orthogonal column of the corresponding
wavelet terms. The greater the ERRi, the more important the corresponding wavelet term.
According to the ERRi and model validation conditions, the structure of the fixed-grid
wavelet networks can be easily determined.

The Givens transformation algorithm is applied to realize the fine-tuning process. The
task of fine tuning is to online compute the coefficients of the selected wavelet terms, and
the recursive transformation can be expressed as follows [20,21]:

[
Rm(t)×m(t)(t) Vm(t)×1(t)

ψ1(t + 1), · · · , ψm(t)(t + 1) y(t + 1)

] Givens rotation
→

[
Rm(t)×m(t)(t + 1) Vm(t)×1(t + 1)

O1 ξ(t + 1)

]
↓[

Rm(t)×m(t)(t + 1) Vm(t)×1(t + 1)
O1 O2

] (5)

where m(t) is the number of the significant components at the instant t after the coarse
tuning; Rm(t)×m(t)(t) is a unit upper triangular matrix at the instant t; Vm(t)×1(t) is a column
vector at the instant t that depends on the system output; [ψ1(t + 1), · · · , ψm(t)(t + 1)] are
the outputs of wavelet terms depending on the system input at the instant t + 1; y(t + 1)
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is the system output at the instant t + 1; O1 and O2 are the corresponding zero matrixes,
respectively; ξ(t+ 1) represents the error at the instant t + 1. The estimation of Θm(t)×m(t)(t)
is equal to R−1

m(t)×m(t)(t)Vm(t)×1(t).
For the sparse matrix on the left-hand side of Equation (5), the Givens transformation

algorithm is described as follows:

For i = 1 : m(t)

r =
√

A2(i, i) + A2(m(t) + 1, i);

c = A(i,i)
r , s = A(m(t)+1,i)

r ;
For j = i : m(t) + 1

A(i, j) = cA(i, j) + sA(m(t) + 1, j) ;
A(m(t) + 1, j) = −sA(i, j) + cA(m(t) + 1, j) ;

End
End

(6)

where A(i, j) represents the i-th row and j-th column element of the sparse matrix. Yet
there is a drawback: if the sparse matrix is decomposed continuously by the Givens
transformations, the first element of matrix R(t) will tend to infinite, which may cause
the ill-condition of matrix R(t). This problem can be overcome by the back-operation,
which is a reverse operation to eliminate the impact of the oldest data in the sliding data
window [27,28]. The algorithm is as follows:

For i = 1 : m(t)
r = A(i, i) ;

c =
√

A2(i,i)+A2(m(t)+1,i)
r , s = A(m(t)+1,i)

r ;
For j = i : m(t) + 1

A(i, j) = A(i,j)−sA(m(t)+1,j)
c ;

A(m(t) + 1, j) = cA(m(t) + 1, j)− sA(i, j) ;
End
End

(7)

By eliminating the impact of the oldest data and adding the impact of the latest data,
the parameter vector can be updated in an iterative way. In order to ensure the flexibility
of the model’s structure, the maximum number for the continuous fine-tuning should not
be set too large.

4. Simulation Results and Discussion

Based on the simulation data and the experimental data of coupled heave-pitch
motions in irregular waves, the proposed CFT-FGWN is used to establish the forecast
model of coupled heave-pitch motions. All the programs are executed by MATLAB R2016b
under the condition of Intel® Core™ i5-3230 (CPU) and 8.00 GB memory (RAM).

4.1. Prediction Results Based on Simulation Data

The coupled heave-pitch motions of a ship in irregular waves can be represented by
two coupled second-order linear ordinary differential equations, which can be written in
the following form [29]:{

(m0 + m33)
..
z + N33

.
z + C33z + (m35 −m0xG)

..
θ + N35

.
θ + C35θ = τ3

(I22 + m55)
..
θ + N55

.
θ + C55θ + (m53 −m0xG)

..
z + N53

.
z + C53z = τ5

(8)

where z and θ are the heave displacement and pitch angle, respectively; xG is the longitudi-
nal coordinate of the center of gravity of the ship; m0 is the mass; I22 is the pitch moment
of inertia; m33 and m55 are the added mass and added moment of inertia, respectively;
N33 and N55 are the damping coefficients, respectively; C33 and C55 are the restoring force
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coefficients, respectively; mij, Nij, and Cij (i, j = 3, 5) are the coupled coefficients; τ3 and τ5
are the wave exciting force and moment, respectively.

After the normalization of the second-order derivative terms in Equation (8), the
normalized differential equations of coupled heave-pitch motions can be obtained [19]:{ ..

z + b33
.
z + b35

.
θ + r33z + r35θ = τ′3..

θ + b53
.
z + b55

.
θ + r53z + r55θ = τ′5

(9)

where (
b33 b35
b53 b55

)
=

(
m0 + m33 m35 −m0xG

m53 −m0xG I22 + m55

)−1( N33 N35
N53 N55

)
(

r33 r35
r53 r55

)
=

(
m0 + m33 m35 −m0xG

m53 −m0xG I22 + m55

)−1( C33 C35
C53 C55

)
(

τ′3
τ′5

)
=

(
m0 + m33 m35 −m0xG

m53 −m0xG I22 + m55

)−1(
τ3
τ5

)
In order to simulate the coupled heave-pitch motions in irregular waves, the JON-

SWAP (Joint North Sea Wave Project) wave spectrum is used to generate the irregular
waves. It is defined by [30]

S( f ) =
5Hs

2 fm
4

16 f 5γ
1
3

exp(−5 fm
4

4 f 4 )γ
exp[− ( f− fm)2

2σ2 fm2 ]
(10)

where f is the wave frequency, Hs is the significant wave height, fm is the peak frequency, γ
is the peak enhancement factor, and σ is the shape parameter. The values of the parameters
listed in Table 1 are chosen for simulation of the irregular waves [30]. The wave frequency
range is between 0.01 Hz and 2 Hz, and the sampling interval is 0.01 Hz. There are
200 frequency components, and the simulated irregular waves are shown in Figure 2.

Table 1. The parameters of JONSWAP wave spectrum.

Parameter Hs fm γ σ

Value 5 cm 0.7 Hz 3.3 0.07, f < fm
0.09, f ≥ fm

The ship model is the R-Class Icebreaker model, and the principal particulars of
the model are listed in Table 2. According to the strip theory, the related coefficients of
Equation (9) are obtained and given in Table 3. More details can be found in Xu [30].

Table 2. Principal particulars of the R-Class Icebreaker model.

Parameter Value

Length between perpendiculars 2.1985 m
Length of waterline 2.3250 m

Waterline beam at midships 0.4840 m
Draft at midships 0.1735 m

Displacement 121.6 kg

Table 3. The parameters in Equation (9).

Parameter b33 b35 r33 r35 b53 b55 r53 r55

Value 2.8235 0.1565 34.0961 0.2229 0.5797 2.6343 0.6261 30.8090
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Equation (9) is discretized, and it gives:{
z(k) = f1(z(k− 1), z(k− 2), τ′3(k− 1), θ(k− 1), θ(k− 2), τ′5(k− 1))
θ(k) = f2(z(k− 1), z(k− 2), τ′3(k− 1), θ(k− 1), θ(k− 2), τ′5(k− 1))

(11)

where k denotes the k-th sampling instant.
It is easy to know that the six input variables in Equation (11) may be the most

important. According to the prediction results, {z(k− 1), z(k− 2), θ(k− 1), θ(k− 2)} are
the most significant terms, and the nonlinear autoregressive (NAR) model is enough to
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describe the essential characteristics of the coupled heave-pitch motions in irregular waves.
The structure of the fixed-grid wavelet networks is set as follows:

ym(k)= fm(z(k− 1), z(k− 2), θ(k− 1), θ(k− 2))

=
4

∑
i=1

fi(xi(k)) + ∑
1≤i<j≤4

fij(xi(k), xj(k)) + em(k)
(12)

where

y1(k) = z(k), y2(k) = θ(k); xi(k) = z(k− i) (i = 1, 2), xi(k) = θ(k− i) (i = 3, 4).

The functional components fi and fij in Equation (12) can be fitted by the one- and
two-dimensional Mexican-hat radial wavelets. The maximum number of the continuous
fine-tuning is not larger than 5. The coarsest resolutions j1 and the finest resolutions jmax1
are set to 0 and 3 in the one-dimensional radial wavelets, and the coarsest resolutions j2
and the finest resolutions jmax2 are set to 0 and 2 in the two-dimensional radial wavelets.
The sliding data window contains the data of coupled heave-pitch motions for training
the wavelet model. The coarse training condition for the wavelet model of heave motion
is that the other significant terms must be added in the model when ∑i ERRi < 0.99 or
RMSEtraining > 0.012, while the coarse training condition for the wavelet model of pitch
motion is ∑i ERRi < 0.99 or RMSEtraining > 0.008, where RMSEtraining represents the
root mean square error (RMSE) of the training data. These values are determined by the
trial-and-error approach, and the RMSE is defined as

RMSE =

√
∑N

i=1 (yi − ŷi)
2

N
(13)

where N represents the number of samples; yi is the sample data, and ŷi is the estimated
data by the model.

The identified model is given as

z(k) = c1 · ψ
[2]
0;−1,4(z(k− 2), z(k− 1)) + c2 · ψ

[2]
1;−2,−2(z(k− 1), θ(k− 1))

+c3 · ψ
[2]
2;−1,4(z(k− 2), z(k− 1)) + c4 · ψ

[2]
0;1,−1(z(k− 2), z(k− 1))

+c5 · ψ1;2(z(k− 2)) + c6 · ψ
[2]
2;6,2(z(k− 1), θ(k− 1)) + c7 · ψ3;0(z(k− 1))

θ(k) = d1 · ψ
[2]
0;−1,4(θ(k− 2), θ(k− 1)) + d2 · ψ

[2]
2;4,−3(θ(k− 2), θ(k− 1))

+d3 · ψ
[2]
2;−1,3(θ(k− 2), θ(k− 1)) + d4 · ψ

[2]
1;5,−2(z(k− 2), z(k− 1))

+d5 · ψ
[2]
0;1,−1(θ(k− 2), θ(k− 1)) + d6 · ψ

[2]
2;7,−1(θ(k− 2), θ(k− 1))

+d7 · ψ
[2]
0;−3,4(z(k− 2), z(k− 1)) + d8 · ψ

[2]
1;5,−1(θ(k− 2), θ(k− 1))

(14)

where the related coefficients are given in Table 4. The outputs of the identified model are
inversely normalized to obtain the original system outputs.

Table 4. The coefficients in Equation (14).

Coefficient c1 c2 c3 c4 c5 c6 c7

Value −34.1789 0.3242 −0.1250 −1.2824 −0.0652 −0.0677 −0.0100

Coefficient d1 d2 d3 d4 d5 d6 d7 d8

Value −35.6518 4.3020 −0.1215 60.1121 −0.9676 81.3790 −386.9376 12.1714

The results of initial one-step ahead prediction are depicted in Figures 4 and 5, where
the solid line shows the training part, and the dash line shows the testing part. The RMSE
of the identified wavelet model is given in Table 5.
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Table 5. The RMSE of the identified wavelet model.

Motion RMSEtraining RMSEtesting

Heave (m) 4.1442 × 10−4 4.7638 × 10−4

Pitch (rad) 7.1254 × 10−4 7.3482 × 10−4

The multi-steps-ahead prediction can be expressed as

ŷ(k + s) = f (ẑ(k + s− 1), ẑ(k + s− 2), θ̂(k + s− 1), θ̂(k + s− 2)) (15)

where s represents the prediction instant.
The 20-steps-ahead prediction results are depicted in Figures 6 and 7. As it can be

seen in these figures, the prediction performance is acceptable. Due to the accumulation of
data error, the prediction performance is degraded.
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When the sliding data window receives new sample data, the above modeling process
will be repeated. For example, as the sliding data window moves to the sampling instant k
= 687, the corresponding identified model is given as follows:

z(k) = c1 · ψ
[2]
0;−1,4(z(k− 2), z(k− 1)) + c2 · ψ

[2]
1;−2,−2(z(k− 1), θ(k− 1))

+c3 · ψ
[2]
2;−1,4(z(k− 2), z(k− 1)) + c4 · ψ

[2]
0;1,−1(z(k− 2), z(k− 1))

+ c5 · ψ1;2(z(k− 2)) + c6 · ψ
[2]
2;6,2(z(k− 1), θ(k− 1))

θ(k) = d1 · ψ
[2]
0;−1,4(θ(k− 2), θ(k− 1)) + d2 · ψ

[2]
0;−1,1(θ(k− 2), θ(k− 1))

+ d3 · ψ
[2]
0;1,1(θ(k− 2), θ(k− 1)) + d4 · ψ

[2]
1;0,2(z(k− 2), z(k− 1))

+d5 · ψ
[2]
2;5,1(θ(k− 2), θ(k− 1)) + d6 · ψ

[2]
1;−3,4(z(k− 2), z(k− 1))

+d7 · ψ
[2]
2;−3,5(θ(k− 2), θ(k− 1)) + d8 · ψ

[2]
2;−2,5(z(k− 2), z(k− 1))

(16)

where the related coefficients are listed in Table 6.

Table 6. The coefficients in Equation (16).

Coefficient c1 c2 c3 c4 c5 c6

Value −36.0593 0.4879 −0.1297 −1.1814 −0.0633 −0.0577

Coefficient d1 d2 d3 d4 d5 d6 d7 d8

Value −30.9215 1.6543 0.3915 0.0211 0.0911 −151.9032 270.4504 14.9551

The corresponding results of one-step ahead prediction and 20-steps-ahead prediction
are shown in Figures 8–11.
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Figure 11. The 20-steps-ahead prediction of pitch motion in irregular waves at the instant k = 687 for the R-Class
Icebreaker model.

The proposed method is an online modeling method. The structure and parameters of
the CFT-FGWN can change online as the sliding data window moves. When the sliding
data window receives new sample data, the wavelet model can be adjusted online over
time. The dynamic feature of the modeling process is shown in Figure 12. It shows that
several significant wavelet terms can characterize the coupled heave-pitch motions in
irregular waves very well. It is also shown clearly that the number of significant wavelet
terms changes after the coarse-tuning process, and it is different for heave motion and pitch
motion. The number of the continuous fine-tuning does not exceed 5, and the continuous
fine-tuning can also satisfy related modeling conditions, which shows that this modeling
method is effective.
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The computational time of the related modeling algorithm is shown in Table 7. Ob-
viously, the coarse-tuning process needs more computational time than the fine-tuning
process. Hence, the computational efficiency is improved by adding the continuous fine-
tuning process.

Table 7. Computational time with simulation data.

Number of Coarse
Tuning

Number of Fine
Tuning

Computational Time of
Coarse Tuning

Computational Time of
Fine Tuning

Heave-FGWN 65 259 117.1726 s 1.3241 s
Pitch-FGWN 66 258 126.4073 s 1.2001 s

It is clearly shown that the CFT-FGWN has the ability to represent the coupled
heave-pitch motions in irregular waves. As a NAR modeling method, it is not necessary to
measure the information of waves. This is an especially beneficial advantage, since the state
of the waves is usually difficult to measure online at the open sea. As long as the past state
of the coupled heave-pitch motions is obtained, the forecast model can be established online.
Besides, it is easy to see that different system inputs contribute differently to the system
output; thus, the influences of different system inputs can be distinguished. This is another
advantage of the proposed modeling method over the conventional neural network.

4.2. Prediction Results Based on Experimental Data

The experimental data of coupled heave-pitch motions of an FPSO model is also
used to verify the effectiveness of the proposed modeling method. The experimental data
are obtained from the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong
University, and the principal particulars of the FPSO model are given in Table 8 [31]. The
JONSWAP wave spectrum is used to actuate the FPSO model. The significant wave height
and the peak spectral period are 0.1852 m and 1.68 s, respectively. There are 1000 samples,
and the sampling interval is 0.08 s, as shown in Figure 13. The first three-fifths of the
data are used for training, and the rest is used for testing. The coarsest resolutions j1
and the finest resolutions jmax1 are set to 0 and 3 in the one-dimensional radial wavelets,
and the coarsest resolutions j2 and the finest resolutions jmax2 are set to 0 and 2 in the
two-dimensional radial wavelets. The maximum number of the continuous fine-tuning
is not larger than 5. The coarse training condition for the wavelet model of heave motion
is that the other significant terms must be added in the model when ∑i ERRi < 0.99 or
RMSEtraining > 0.008, while the coarse training condition for the wavelet model of pitch
motion is ∑i ERRi < 0.99 or RMSEtraining > 0.006. These values are determined by the
trial-and-error approach.

Table 8. Principal particulars of the FPSO model.

Parameter Value

Length between perpendiculars 3.71 m
Breadth 0.67 m
Depth 0.32 m

Mean draft 0.15 m
Displacement volume 0.363 m3
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The identified model is as follows:

z(k) = c1 · ψ
[2]
0;−1,4(z(k− 2), z(k− 1)) + c2 · ψ

[2]
2;3,−2(z(k− 2), z(k− 1))

+c3 · ψ2;1(z(k− 2)) + c4 · ψ
[2]
0;1,−1(z(k− 2), z(k− 1))

+c5 · ψ
[2]
2;7,0(z(k− 2), z(k− 1)) + c6 · ψ

[2]
2;−3,−3(z(k− 2), z(k− 1))

+c7 · ψ3;10(z(k− 2))
θ(k) = d1 · ψ

[2]
0;−1,4(θ(k− 2), θ(k− 1)) + d2 · ψ

[2]
2;3,−2(θ(k− 2), θ(k− 1))

+d3 · ψ2;1(θ(k− 2)) + d4 · ψ
[2]
0;1,−1(θ(k− 2), θ(k− 1))

+ d5 · ψ
[2]
2;6,0(θ(k− 2), θ(k− 1)) + d6 · ψ3;−2(θ(k− 1))

+ d7 · ψ2;5(θ(k− 2))

(17)

where the related coefficients are given in Table 9. The outputs of the identified model are
inversely normalized to obtain the original system outputs.

Table 9. The coefficients in Equation (17).

Coefficient c1 c2 c3 c4 c5 c6 c7

Value −37.5314 0.4640 0.0214 −1.2207 50.9184 9.0101 −0.0330

Coefficient d1 d2 d3 d4 d5 d6 d7

Value −39.9604 0.3860 0.0167 −1.1384 1.8944 0.0368 0.0239

The results of initial one-step ahead prediction are depicted in Figures 14 and 15. The
results of 30-steps-ahead prediction are depicted in Figures 16 and 17. It can be seen that
the prediction performance is satisfactory.
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As the sliding data window continues to move, it receives new data and the model
can be adjusted online. For example, when the sliding data window receives the data at
the sampling instant k = 763, the corresponding model is identified as follows:

z(k) = c1 · ψ
[2]
0;−1,4(z(k− 2), z(k− 1)) + c2 · ψ

[2]
2;3,−2(z(k− 2), z(k− 1))

+c3 · ψ2;1(z(k− 2)) + c4 · ψ
[2]
0;1,−1(z(k− 2), z(k− 1))

+c5 · ψ
[2]
2;7,0(z(k− 2), z(k− 1)) + c6 · ψ

[2]
1;2,−3(z(k− 2), z(k− 1))

+c7 · ψ
[2]
1;3,3(z(k− 2), z(k− 1))

θ(k) = d1 · ψ
[2]
0;−1,4(θ(k− 2), θ(k− 1)) + d2 · ψ

[2]
2;3,−2(θ(k− 2), θ(k− 1))

+d3 · ψ2;1(θ(k− 2)) + d4 · ψ
[2]
0;1,−1(θ(k− 2), θ(k− 1))

+d5 · ψ
[2]
2;6,0(θ(k− 2), θ(k− 1)) + d6 · ψ3;−2(θ(k− 1))

+d7 · ψ
[2]
0;4,−2(z(k− 2), z(k− 1))

(18)

where the related coefficients are given in Table 10.

Table 10. The coefficients in Equation (18).

Coefficient c1 c2 c3 c4 c5 c6 c7

Value −36.5040 −0.1151 0.0192 −1.4192 42.8903 1.9687 0.0656

Coefficient d1 d2 d3 d4 d5 d6 d7

Value −39.2299 0.4820 0.0175 −1.0484 2.2043 0.0422 −10.6728

The results of the one-step ahead prediction and the 30-steps-ahead prediction are
shown in Figures 18–21.
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Figure 19. The one-step ahead prediction of pitch motion in irregular waves at the instant k = 763 for the FPSO model.
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Figure 20. The 30-steps-ahead prediction of heave motion in irregular waves at the instant k = 763 for the FPSO model.
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Figure 21. The 30-steps-ahead prediction of pitch motion in irregular waves at the instant k = 763 for the FPSO model.

The structure of the CFT-FGWN can be adjusted online over time, and the change
process is shown in Figure 22. It can be seen clearly that several significant wavelet terms
can characterize the coupled heave-pitch motions in irregular waves, which shows that the
CFT-FGWN has a strong nonlinear fitting ability.
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Figure 22. The structure of the CFT-FGWN changing over time based on the experimental data.

The computational time of the related modeling algorithm is given in Table 11. It can
be seen that the fine-tuning process takes less computational time than the coarse-tuning
process. The computational efficiency is improved significantly due to the continuous
fine-tuning process.



J. Mar. Sci. Eng. 2021, 9, 989 21 of 22

Table 11. Computational time with experimental data.

Number of Coarse
Tuning

Number of Fine
Tuning

Computational Time of
Coarse Tuning

Computational Time of
Fine Tuning

Heave-FGWN 67 267 171.4563 s 1.4676 s
Pitch-FGWN 67 267 182.2069 s 1.3377 s

5. Conclusions

The CFT-FGWN is used for online modeling ship’s coupled heave-pitch motions
in irregular waves. The effectiveness of the modeling method is verified by applying
it based on the simulation data and the real experimental data. The prediction results
using the established wavelet model showed that this online modeling method is not only
feasible, but also has high computational efficiency, and several significant wavelet terms
can capture the intrinsic nonlinear dynamics of the coupled heave-pitch motions, which
indicates that the modeling method has the ability to give a good prediction of the coupled
heave-pitch motions of a ship in irregular waves, and it can be applied to MIMO systems.

Based on the simulation results, the continuous fine-tuning process requires less
computational time, which increases the computational efficiency largely. A heuristic
method will be considered to determine the number of continuous fine-tuning in the
future work.
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