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Abstract: The multistage centrifugal pump is the critical component of mineral resources lifting in
deep-sea mining. The reflux of nodules in the lifting pipe caused by the emergency pump stop can
easily cause the pump to clog. In this paper, coupled Computational Fluid Dynamics and Discrete
Element Method (CFD-DEM co-simulations) are used to clarify the solid-liquid two-phase flow in
two-stage centrifugal pumps under different particle sizes (10–20, 20–30, 30–40, 40–50 mm) with
constant particle concentration. The movement and accumulation behaviour of particles in different
flow fields (pipeline to pump, the first to the second pump stage) is investigated. Meanwhile, the
effect of particle size and particle reflux velocity on the blockage of the flow channel in the pump was
investigated. Particle accumulation in the pump was observed to determine the key factors affecting
the pump’s reflux capacity. The residual mass of particles in the pump at different particle sizes was
counted. Simultaneously, the percentage of residual mass of 10–20 mm particles in the pump was
compared between the experiment and the simulation with an acceptable tolerance of within 10%.
In addition, pressure changes in the blockage-prone section were also investigated. A comparison
between experiments and simulations verifies the consistency of the trend on the pump inlet pressure
when clogged with 50 mm particles. It was found that larger particles in the range of 10–30 mm can
better ensure the pump’s reflux performance.

Keywords: deep-sea mining; multiple-stage centrifugal pump; reflux; CFD-DEM numerical
simulation

1. Introduction

With the development of China’s marine industry, the management and sharing of
marine and ocean resources face profound changes. The deep sea is abundant in mineral
resources that are scarce on land, such as manganese nodules, cobalt-rich crusts, and
polymetallic sulphides [1]. With the consumption of mineral resources on land and the
increasing demand for production, consensus is gradually being reached among countries
on the exploitation of marine resources [2,3]. Against such a background, deep-sea mining
is proposed accordingly. Hence, a series of technological developments have been carried
out by various countries.

In the 1990s, China began to research deep-sea mining technologies. During the
11th Five-Year Plan, a two-stage deep-sea lifting pump was designed and manufactured.
A series of experiments based on this pump was carried out. In terms of theoretical
research, the solid-liquid two-phase flow mechanism of the pump has been investigated
by Zou [4]. The theory provides a theoretical basis for designing the flow channel of the
deep-sea lifting pump. A series of studies on fluid velocity, concentration and pressure
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has also been carried out to obtain the pump’s characteristic curve. At the same time, a
two-stage lifting pump was developed by Changsha Mining and Metallurgical Institute
Co., Ltd. “Changsha Mining and Metallurgical Institute Co., Ltd.” is a well known research
institute in Changsha, China [5]. However, a blockage of particles occurred in the pump’s
internal flow channel when reflux containing a quantity of 50 mm particles was carried out.
Therefore, relevant numerical simulation studies on such extreme situations are required
before the experiments. Numerical simulations are used to clarify the safety thresholds for
the particle size and concentration of the test particles and provide the relevant theoretical
recommendations for the regular operation of the multistage centrifugal pump.

In Computational Fluid Dynamics (CFD) for centrifugal pumps, Plua and Hidalgo [6]
investigated the suitability of the simulation for most pumps under the N-S equation by
comparing experimental data with CFD simulation data. The following relevant conclusion
was drawn: the Reynolds average Navier–Stokes (RANS) turbulence model can meet the
needs of most numerical pump simulations. Huang [7] analysed the effect of the trailing
edge of the blades on pressure fluctuations in the pump with CFD simulations. Zeng
and Chen [8] used the mixture multiphase flow model. The numerical simulation of
the solid-liquid two-phase flow in the lifting pump was carried out in their paper. The
effect of particle size on the volumetric concentration distribution of the accumulation in
the pump was compared. In addition, the hydraulic performance of lifting pump with
different particle sizes was also investigated to reveal the effect of particle sizes on pump
characteristics.

By studying the lifting pump’s hydraulic properties problem, the governing equation
of the homogenous slurries two-phase flow model was presented by Zou and Lu [4]. The
two-phase flow model of homogenate was used by Dong [9] to divide the particle size. This
homogeneous slurry model greatly facilitated the investigation of solid-liquid two-phase
flow in deep-sea mining pumps. However, the DPM method is still used in this method. In
this model, tiny particles are mixed with seawater as a homogenate slurry. The effect of
particle action on the flow field is still neglected. The volume effect between particles and
particle convection disturbance needs to be considered for the actual centrifugal pump of
deep-sea mining. However, the accumulation, aggregation and collision of particles in the
pump cannot be truly reflected by the DPM method. Cundall [10] proposed the discrete
element method (DEM) based on the Lagrangian method, which is widely used for the
calculation of multiphase flows of particles and fluids [11,12].

The coupling method of CFD and DEM can be applied to calculate the behaviour of
particles in the flow field with excellent accuracy [13,14]. Li [15] analysed the activity of
single particle and their applications under different operating conditions by using the
CFD-DEM method to model the solid-liquid two-phase of the pump, which provides the
grid feasibility for implementing the coupled CFD-DEM method of the pump. Deng [16]
investigated the phenomenon of inhomogeneous local agglomeration of particles within
a six-stage centrifugal pump by means of CFD-DEM. Li [17] investigated the problem of
particle backflow blockage in single-stage centrifugal pump and elucidated the effect of
particle size on blockage in the pump.

At present, all the work has provided strong support for the study of solid-liquid
two-phase flow in deep-sea mining centrifugal pump, and the blockage mechanism of
the slurry containing coarse particles in the pump is the focus of this study. CFD-DEM
coupling simulation was used to simulate the backflow of coarse particles during pump
shut down, considering the accumulation, condensation, and collision between particles.
The coupled simulation demonstrates the blockage of particles in the pump with different
particle sizes and different particle ratios. Meanwhile, the movement of the particles in the
pump and the residual mass of the particles in the pump in the case of blockage as well
as the pressure variation in the area prone to blockage are analysed. Based on the above
research, some suggestions have been proposed to prevent the blockage of particle reflux
that can potentially occur in multistage centrifugal pumps during emergency shutdown.
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2. Structure and Mesh of Multistage Centrifugal Pump

Six-stage guide vane lift pumps are used as the central core of the lift system to ensure
the high head, significant flow rates and axial flow characteristics required by design.
Figure 1 shows the structure diagram of the six-stage lifting electric pump and the overall
diagram of the motor shell’s annular flow channel. The six-stage lifting pump has a high-
speed ratio and belongs to the segmented type’s vertical multistage pump. The submersible
motor was filled with liquid, and the motor’s outer cylinder was used to ensure sufficient
compressive capacity to overcome the high-pressure environment.
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Figure 1. Overall view of the electric pump.

Given the requirement of the lifting pump for better overflow capacity, the flow path
of the guide vane lifting pump was designed with the amplified flow rate method to match
the channel of the coarse particle mixture slurry [18]. Figure 2 shows the section structure
of the deep-sea lifting electric pump. The electric pump’s standard operation mode is to
suck the coarse particle mixed slurry into the lifting pump through the inlet throttling
channel through the impeller’s high-speed rotation and then turn the high-speed mixed
slurry into the high-pressure head mixed slurry through the guide vane flow channel of
the pump. Eventually, the mixed slurry is conveyed to the ore collection bin on the ship’s
surface through the lifting pipe.
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Figure 2. Deep-sea lifting electric pump structure.

The main parameters of the lifting pump system are as follows: the flow rate should
reach 420 m3/h, the total head of the six-stage pump should reach 270 m, the motor speed
at rated operation condition should be 1450 rpm, and the efficiency of the pump should be
52%. Some key parameters of the impeller and guide vane are shown in Table 1. Consider-
ing the safety and efficiency of sea trial systems, the particle size and concentration needed
reasonable selection. The test pump’s maximum particle size and pipeline transportation
are determined to be 20 mm to reduce sea trials’ technical risk. However, the study of
particle reflux in the pump under the stopped status is not comprehensive enough, and
further theoretical support is needed. Therefore, the authors used particle size classification
to study the dynamic process of particle blockage in the flow channel and analysed the
blockage causes.

Table 1. Main design parameters of the impeller.

Structure of Impeller Parameter Structure of Guide Vane Parameter

Number of blades 4 Number of blades 5
Inlet diameter 235 mm Inlet diameter 395–516 mm

Outside diameter 395–425 mm Outside diameter 95–260
Outlet width 60 mm Outlet width 60 mm

Inlet installing angle 35◦ Inlet installing angle 12◦

Outlet installing angle 32.5◦ Outlet installing angle 85◦

Blade angle 110◦ Blade wrap angle 95.5◦

3. Numerical Modelling
3.1. Fluid Phase Control Equation

The most suitable computational model should be selected from many computational
models to describe turbulent flow correctly. Regarding the design considerations and the
working conditions of large flow, the RNG k-ε model [19,20] was selected to obtain more
accurate results. The RNG k-ε model is still used for the numerical simulation of the reflux
field to maintain the uniformity of the computational model in the simulation.
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The constraint equation of turbulence kinetic energy k and turbulence dissipation rate
ε is as follows [21]:

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

(
αkµe f f

∂k
∂xj

)
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k
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where k is turbulent momentum, ε turbulent dissipation rate, ρ is the density of the liquid,
ui is the direction of liquid flow, xi and xj are direction, Gk represents the generation of
turbulence kinetic energy due to the mean velocity gradients, Gb is the generation of
turbulence kinetic energy, YM represents the contribution of the fluctuating dilatation
incompressible turbulence to the overall dissipation rate, and Sk and Sε are source terms.

According to Chen [22]:

Rε =
Cµρ

(
1− η

η0

)
1+βη3

ε2

k , η = Sk/ε, β = 0.012,

C1ε = 1.42, C2ε = 1.68, C3ε = 0.0845.

3.2. Particle Phase Control Equations

A more comprehensive study of multiphase flows is made, considering the interaction
forces between particles and the slippage between solid and liquid phases.

Particle phase control equations for coarse particle-liquid two-phase flow [23]:

mi
dvi
dt

=
ki

∑
j=1

(
Fn,ij + Ft,ij

)
+ Ff p,i + G + FS + FD + FM (3)

Ii
dwi
dt

=
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∑
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(
Mt,ij + MR,ij

)
(4)

where Mi and Ii are the mass and moment of the particle i; vi and wi are the translational
and rotational velocity of the particle i; and Fn,ij, Ft,ij are normal and tangential contact
force between particles i and j.

Ffp,i is the interaction forces between continuous and discrete phases;
FS is a lift force due to fluid shear;
FD is the fluid drag force on the particle;
FM is a lift force generated by the rotation of particles in the flow field; and
Mt,ij, Mr,ij are tangential and rolling frictional torques acting on the particles i and j.

The relevant formula is as follows:
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FM =
1
2

ApCMagnρ f
|V|
|Ω| (V ×Ω) (9)

where E∗ is the equivalent Young’s modulus, R is the diameter of particles, G∗ is the
equivalent Shear modulus, α is the normal overlap distance between particles, vrel

t is the
tangential component of relative velocity between contacting particles, CD is the coefficient
of drag force, ρ is the density of the fluid, µf is the liquid’s viscosity, d is particle diameter,
uf is the fluid velocity, and υp is particle velocity.

To visualise the values of the parameters in the equation, the parameters of the above
equation are shown in nomenclature part of the paper.

3.3. Coupling Principle and Parameter Setting

In this paper, Fluent-EDEM coupling simulation was adopted, where fluent 19.0 was
used as the calculation tool for the fluid portion [24], and the motion of the particles within
the pump was calculated by using the discrete element software EDEM 18.0. Considering
the real working conditions comprehensively, the flow field and particle coupling calcu-
lations were carried out in Fluent, and the particle dynamic display was carried out in
EDEM. In the iteration process, not only the dragging force, basset force, and buoyancy
on each particle were calculated, but also the influence of particle shape, size, position,
velocity, and other factors on the simulation flow field was obtained. Figure 3 shows the
process of Fluent-EDEM coupling simulation. In the coupling process, the two-phase flow
field is calculated to convergence by Fluent, and then the velocity and force information of
the flow field are updated into EDEM at first. The velocity and position information of the
particles is analysed by EDEM, and then the particle information is sunk into Fluent in the
form of momentum for simulation. All steps are cycled until the end of the simulation.
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Figure 3. Schematic diagram of CFD-DEM coupling method.

Particles reflux blockage in the emergency pump stop condition is studied in this
paper. After the emergency pump stop, the entire lifting system is under static pressure
due to the loss of power. To simulate this state, boundary settings of velocity inlet and
pressure outlet were adopted in Fluent, where the initial condition of the inlet velocity
is 0 m/s. The physical properties of water in the flow field are set: the temperature is
20 ◦C, the density is 998.2 kg/m3, and the viscosity is 0.001003 Pa·s. The pressure-velocity
coupling method was SIMPLEC. Meanwhile, the momentum, turbulent kinetic energy,
and turbulent dissipation rate have been changed to second order windward to improve
the accuracy of the calculation. The choice of standard wall treatment will handle the
majority of near-wall flows of y+ in the range of 15–100. In the coupled calculations, the
data need to be transmitted in real time, and therefore, transients are adopted in the fluent
calculations. In coupling, the time step in Fluent needs to be 10–100 times larger than the
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time step in EDEM. While the time step set in EDEM is 1× 10−5, the time step in Fluent is
therefore set to 5× 10−4 (choose 50 times). Meanwhile, to ensure the calculation results
have good engineering application value, the convergence rules for all residuals were set
to 1 × 10−4. In EDEM, the total mass of generated particles is chosen to be 50 kg in order
to save computational resources, and the particles are selected to be generated from the
start of the calculation. To study the flow capacity of the designed pump and the cause of
the blockage, four particle sizes of 10–20 mm, 20–30 mm, 30–40 mm, and 40–50 mm were
considered for simulation. The setting of particle and pump is shown in Table 2. The initial
concentration of particles was set at the same concentration in EDEM, while the mass of
particles generated and the simulation time was consistent with the four simulations. This
simulation was for the settling of hydrostatic particles after the pump stopped. The settling
velocity of the particles is shown in Table 3 [17].

Table 2. Setting of particle parameters and wall parameters.

Material Coefficient of
Restitution

Coefficient of
Static Friction

Coefficient of
Rolling Friction

Poisson’s
Ratio

Density
(kg/m3)

Shear Modulus
(Mpa)

particle-particle 0.45 0.28 0.01 - - -
particle-pump 0.48 0.16 0.01 - - -

pump - - - 0.3 7800 8100
particle - - - 0.4 2040 21.3

Table 3. Settling velocity of the particles.

Particle (mm) Average Settling Velocity (m/s)

10–20 0.613
20–30 0.77
30–40 0.85
40–50 1

3.4. Validation

The mesh is the link between the watershed model and the algorithmic model, so
the significant position is occupied by the mesh division [10]. The choice of grid division
method, quantity, and grid quality will significantly influence the calculation result. The
meshing method is divided into structured meshing and unstructured meshing.

In general, the higher the mesh quality is, and the lower the mesh distortion is,
the more accurate the calculation can be obtained. Li [17] has researched the clogging
characteristics of single-stage pumps. The flow field when the particles reflux in the pump
involves two changes: the particles enter the pump from the pipe, and the particles reflux
to the pump at all stages. Therefore, the two-stage pump was chosen for the numerical
simulation of particle reflux, with limited computational resources. Figure 4 shows the
mesh of the two-stage centrifugal pump. In this paper, polyhedral and hexa meshes are
used to divide the model.

With the RNG k–ε as the calculation model, y+ should be best in the range of 20 to 50.
Therefore, y+ is chosen to be 30. In this paper, the entire flow field in the pump is at static
pressure. Only the return flow of particles causes a slight disturbance and drives the flow
field. The boundary layer encryption is chosen where the flow field disturbance is large
and the first grid height is 5× 10−3 m. The purpose is to ensure the quality of the mesh on
the guide vanes and impeller blades for the accuracy of the simulation calculations.
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Structured and unstructured meshes of the same mesh quality can yield similar flow
fields [25]. However, with different grid numbers, the settling velocity of the particle
must be different in the end. The velocity comparisons obtained by grid independence
verification are shown in Table 4. Determination on mesh convergence was carried out
based on the relevant mesh convergence verification theory of Slater [26]. The Grid
Convergence Index (GCI) reflects the superiority or inferiority of grid convergence. The
corresponding values of the GCI were obtained by calculation. The safety factor Fs was
chosen to be 1.25 and after the calculation, the convergence accuracy P was calculated to
be 1.433, GCI12 to be 0.875%, and GCI23 to be 1.18%. The formula GCI23/2pGCI12 gave
a calculated result of 0.99, which is close to 1. This indicates that the solutions are well
within the asymptotic range of convergence. Given the computational speed and mesh
quality, meshes of 1.14 million were chosen for the simulation. The average orthogonality
of meshes was 0.8, the average distortion of meshes was 0.21, and the maximum distortion
was only 0.615.

Table 4. Grid independence analysis.

Type Grids Average Settling Velocity of Particles (m/s)

1 3,210,564 0.581
2 1,138,252 0.575
3 274,433 0.559

To verify the correctness of the simulation, experiments from the published paper [17]
were cited for validation. The general layout of the corresponding experimental system
is shown in Figure 5. The experiments were carried out in a 30 m high experimental
system. The equipment required for the reflux experiment are water pump and water
supply pipes to guarantee the hydrostatic condition, nodules silo and feeder to guarantee
material supply, a pressure gauge for gauging the pressure at the inlet and outlet of the
pump, and an electronic scale for gauging the weight of particles. The residual mass of
10–20 mm particles in the pump was measured in the reflux experiment and represented
10% of the total mass of the experimental particles. The simulation results show that the
residual mass of 10–20 mm particles in the pump is about 1 kg, which is 2% of the total
mass of the simulated particles. The simulations were carried out with ideal particle size
and sphericity, whereas the experimental particles are not perfectly spherical and may have
some elliptical particles. The tolerance between simulation and test is within 10% and the
tolerance is acceptable. This indicates the correctness of the simulation results.
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The graph of the inlet pressure of the pump at 50 mm particle size is shown in Figure 6.
Comparing the two curves, it can be seen that particle blockage occurs at the inlet of the
pump when refluxing at a particle size of 50 mm, both in experiment and in simulation.
The pressure on the pump inlet is sustained by the accumulation of particles pressing
against the wall. The curve obtained from the simulation in Figure 6 shows a sharp drop in
pressure after 1 s, indicating that the particles in the pump are slightly relieved at this point.
However, the curve gradually flattens out later, which is due to the re-accumulation of
particles forming a blockage. The pressure difference between experiment and simulation
corresponds to 0.025 Mpa. Considering the different contact surfaces between the particles
and the pump inlet, the pressure caused on the inlet will be different and the error is
within the tolerance. Hence, the corresponding pressure variation trends are consistent
with the error allowance. Figure 7 is reproduced from the work of Li [17]. Furthermore,
the accumulation of particles in Figure 7 shows that the simulation and the experiment are
consistent, which further validates the correctness of the simulation.
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Figure 6. Graph of inlet pressure of pump at 50 mm particle size [17].
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Figure 7. Particle reflux experimental and simulation comparison: (a) 40–50 mm particle reflux experimental; (b) simulation
of 40–50 mm particle reflux.

4. Simulation Results

Four groups of mixed particles with different particle size distributions (10–20 mm,
20–30 mm, 30–40 mm, 40–50 mm) were set up in this paper, and the blockage mechanism
of the four groups of mixed particles was simulated numerically. For example, the particle
size interval is 2 mm for 10–20 mm, which means that this group contains particles with
particle sizes of 10, 12, 14, 16, 18, and 20 mm at concentrations of 75%, 5%, 5%, 5%, 5%, and
5%, respectively. The other groups are similar.

The simulated clouds of pressure on the guide vane after collision with 10–20 mm
particles are shown in Figure 8. It is noticeable when comparing Figure 8a,b that although
both high and low-pressure areas appear on the guide vanes, the high-pressure area is
denser at 10 s than at 2 s. This indicates that the particles collide intensively with the guide
vane at 10 s. At the same time, these areas are found in the upper half of the guide vane
close to the impeller hub and in the lower half of the guide vane away from the hub. It
has been revealed that when a particle moves through a fluid, under the influence of the
viscosity of the fluid, a high-pressure zone will be created ahead of the direction of motion
of the particle, while a low-pressure area will be formed at the end of the trajectory and
on its sides. The high-pressure and low-pressure areas on the guide vane shown in the
pictures prove that the particles have good movement, and stagnation or blockage occurs.
As shown in Figure 8c, except for the remaining three guide vanes, where the pressure
variation zone still exists at the end of the vanes, the rest of the vanes are no longer under
pressure from the particles. This demonstrates that the pre-set particles have fallen entirely,
and the majority of them have passed through the interface between the guide vane and
the impeller. At the same time, particles have started to flow through the impeller vanes to
the next stage of the pump.

However, when studying the pressure variation of 20–30 mm particles on the guide
vane of the first stage pump, the pressure zone distribution of particles on the vane was
essentially the same as for 10–20 mm particles. The pressure clouds are shown in Figure 9,
and from Figure 9b, it can be seen that the high-pressure points on the guide vane are much
denser for 20–30 mm particles than for 10–20 mm particles. Those reflect that the collision
of 20–30 mm particles in the guide vane channel is much larger than in the previous particle
class. Meanwhile, the denser movement of particles in the flow channel means an increased
risk of multiple particles squeezing each other, which increases the risk of blockages.
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Comparisons between Figures 8 and 9 reveal that the behaviour of the 10–20 mm and
20–30 mm particles was basically the same: at 2 s, the particles fall without hindrance. The
particles exert pressure mainly on the middle and the lower half of the guide vanes. How-
ever, at 10 s, temporary accumulation of particles in the pump occurs because the previous
particles cannot fall into the next pump stage in time. This leads to the phenomenon of
pressure areas spreading all over the guide vane. At 15 s, the particles have almost finished
falling. However, residual particles remain in some of the flow channels, which leads to
the phenomenon of pressure zones still existing on some of the guide vanes.

The movement and accumulation of 10–20 and 20–30 mm particles at the correspond-
ing time points are illustrated in Figure 10. The behaviour of two particle sizes in the pump
is compared to reveal the clogging mechanism of the particles better. From Figure 10a,c, it
can be analysed that there is a velocity gradation in the particles that accumulate in the
guide vane of the first stage pump. Figure 10a shows that the particle velocity in this region
ranges from 0.019 m/s to 0.165 m/s, while in Figure 10c, it ranges from 0 m/s to 0.213 m/s.
This indicates that the particles are not jammed in the flow channels. The static particles
are mainly concentrated at the interface between the guide vane and the impeller. This is
the temporary accumulation of particles caused by the front particles not falling in time.
Furthermore, at the interface between the primary pump and the two stages, the particles
can be seen falling at a speed in the range of 0.4–0.8 m/s. This indicates that the particles



J. Mar. Sci. Eng. 2021, 9, 987 12 of 19

are not blocked in the first stage pump. Hence, it can be seen that 10–30 mm particles
have good movement characteristics in the pump. Comparison of Figure 10b,d shows
that the reflux completion time for 20–30 mm particles is shorter than 10–20 mm particles.
This suggests that larger particles can be better returned to the flow with the assurance of
non-clogging. This is because of the restricted particle movement caused by the collision
between many particles, which eventually leads to a decrease in the reflux velocity.
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However, a more noticeable variation in particle reflux can be found in the study of
Figure 11 for 30–40 mm than for the previous particle classes. As can be seen in Figure 11a,
different pressure distribution areas are formed on the guide vanes because of particle
collisions and rolling during the reflux process. In comparison with Figures 8 and 11a, it is
found that the pressure distribution area of one of the guide vanes is not continuous, and
the lower half of the guide vanes is not under pressure from the particles in Figure 11a. In
our analysis, we established that the two sides of a guide vane channel are made up of the
guide vane blades’ inner concave and outer convex surfaces. The high-pressure point is
also found in the corresponding outer convex surface of the guide vane in the guide vane
flow channel, where the pressure point is discontinuous compared to Figure 11b. Therefore,
it can be tentatively concluded that the particles are probably blocked in this channel.
The high-pressure points on both sides of the flow channel reflect how the particles are
clogged by the stacking of multiple particles, causing jamming. Further support for the
previous speculation is provided by comparing the distribution of high-pressure points in
Figure 11c,d.



J. Mar. Sci. Eng. 2021, 9, 987 13 of 19

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 13 of 20 
 

 

particles are clogged by the stacking of multiple particles, causing jamming. Further 
support for the previous speculation is provided by comparing the distribution of high-
pressure points in Figure 11c,d. 

 
Figure 11. Pressure cloud on the guide vane after being collided with 30–40 mm particles: (a) 
simulation of the pressure on the inner concave surface of the guide vane at 10 s; (b) simulation of 
forces on the outer convex surface of the guide vane at 10 s; (c) simulation of the pressure on the 
inner concave surface of the guide vane at 30 s; (d) simulation of the pressure on the inner convex 
surface of the guide vane at 30 s. 

The movement of 30–40 mm particles in the pump is illustrated in Figure 12. As 
shown in Figure 12a, one of the flow channels in the first stage pump has been blocked. 
Figure 12b shows the blocked section where particles remain in the first stage pump. The 
high-pressure area of the pump body can be analysed to reveal the blockage caused by 
the stacking of multiple particles, which more visually confirms the previous suspicions. 

 
Figure 12. Movement and accumulation of 30–40 mm particles in the pump: (a) 30–40 mm particles 
at 10 s simulation; (b) 30–40 mm particles at 30 s simulation. 

Research on the reflux of 40–50 mm particles in the pump revealed that the pressure 
distribution in the guide vane is similar to that of 30–40 mm particles, while the flow of 
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The movement of 30–40 mm particles in the pump is illustrated in Figure 12. As
shown in Figure 12a, one of the flow channels in the first stage pump has been blocked.
Figure 12b shows the blocked section where particles remain in the first stage pump. The
high-pressure area of the pump body can be analysed to reveal the blockage caused by the
stacking of multiple particles, which more visually confirms the previous suspicions.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 13 of 20 
 

 

particles are clogged by the stacking of multiple particles, causing jamming. Further 
support for the previous speculation is provided by comparing the distribution of high-
pressure points in Figure 11c,d. 

 
Figure 11. Pressure cloud on the guide vane after being collided with 30–40 mm particles: (a) 
simulation of the pressure on the inner concave surface of the guide vane at 10 s; (b) simulation of 
forces on the outer convex surface of the guide vane at 10 s; (c) simulation of the pressure on the 
inner concave surface of the guide vane at 30 s; (d) simulation of the pressure on the inner convex 
surface of the guide vane at 30 s. 

The movement of 30–40 mm particles in the pump is illustrated in Figure 12. As 
shown in Figure 12a, one of the flow channels in the first stage pump has been blocked. 
Figure 12b shows the blocked section where particles remain in the first stage pump. The 
high-pressure area of the pump body can be analysed to reveal the blockage caused by 
the stacking of multiple particles, which more visually confirms the previous suspicions. 

 
Figure 12. Movement and accumulation of 30–40 mm particles in the pump: (a) 30–40 mm particles 
at 10 s simulation; (b) 30–40 mm particles at 30 s simulation. 

Research on the reflux of 40–50 mm particles in the pump revealed that the pressure 
distribution in the guide vane is similar to that of 30–40 mm particles, while the flow of 
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at 10 s simulation; (b) 30–40 mm particles at 30 s simulation.

Research on the reflux of 40–50 mm particles in the pump revealed that the pressure
distribution in the guide vane is similar to that of 30–40 mm particles, while the flow of
particles in the pump is further changed compared to 30–40 mm particles. As shown in
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Figure 13, the blockages are more severe at this particle size. Figure 13a demonstrates the
particle reflux when the simulation proceeds to 5 s. The diagram shows that particles have
blocked two of the flow channels in the first stage of the pump, while the remaining flow
channels have the majority of the particle flow velocity at 0.007 m/s. Figure 13b shows
the simulation as it proceeds to 10 s. As seen from Figure 13b, the particles are completely
blocked in the first stage of the pump, and all flow channels are blocked.
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Once blockages occur in the pump, the accumulated particles will squeeze the flow
channels. This will exert pressure on the components in the channels. The worse the
blockage, the greater the pressure on the corresponding component. Therefore, the pressure
on the components can also reflect the degree of blockage of particles in the pump. The
graph in Figure 14 shows the maximum pressure variation trend for different particle
sizes on the first stage guide vane of the pump. The fluctuations of the four curves in
Figure 14 represent that the particles are capable of moving in the flow channel during that
period. While when pressure is stabilised the severity of the blockage is reflected by the
pressure level. As shown in Figure 14a,b, the pressure on the guide vane for both 10–20 and
20–30 mm particles becomes 0 Pa over time. Meanwhile, the pressure of 20–30 mm particles
on the guide vane is significantly higher than that of 10–20 mm particles, which can be
observed from the graph. Therefore, it can be deduced that the collision level of 20–30 mm
particles in the guide vane flow channel is stronger than that of 10–20 mm particles.

On the other hand, the pressure of 30–40 mm particles on the guide vane is stable at
0.3 MPa when the value ceases to vary, as shown in Figure 14c. Therefore, a blockage of the
particles in the pump can be determined at this particle size. However, 40–50 mm particles
were found to block quickly in the pump, as shown in Figure 14d. The pressure of the
particles on the guide vane is maintained at 1.4 MPa. This suggests that the particles are
rapidly and severely blocked in the pump.



J. Mar. Sci. Eng. 2021, 9, 987 15 of 19J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 15 of 20 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 14. Maximum pressure variation on the guide vane of the first stage pump with different particle sizes: (a) 10–20 
mm; (b) 20–30 mm; (c) 30–40 mm; (d) 40–50 mm. 

Figure 15 displays the tendency of the particle mass in the pump. As can be seen from 
the graphs, the total mass of 10–20 and 20–30 mm particles in the pump have almost the 
same tendency to change, and the particles are entirely refluxed. Simultaneously, the 
reflux velocity of 20–30 mm particles is slightly faster than that of 10–20 mm particles. The 
reflux velocity of 30–40 mm particles is significantly lower than that of the previous 
particle sizes, and some of the particles ultimately remain partially in the pump. There are 
some fluctuations in the peak part of each of the four curves, which results from the fact 
that the reflux velocity varies for different particle sizes. When some of the particles leave 
the pump from the outlet while particles are still being generated at the inlet of the pump, 
it can cause the curve to fluctuate. The reason why the four curves intersect at different 
points in time is that particles of different sizes have different levels of blockage in the 
pump. When particles block in the pump, it can slow down the reflux of particles in the 
pump. Situations such as 30–40 mm particles’ mass curves intersecting other curves can 
occur. In combination with Figures 10, 12 and 13, it is caused by particles forming blocked 
sections in the first stage pump, where some particles are unable to complete the reflux. 
The mass profile of 40–50 mm particles reflects the fact that the particles are heavily 
blocked in the pump and the particles are unable to complete the reflux. 

0 5 10 15 20 25 30
0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

pr
es

su
re

(P
a)

time(s)
0 5 10 15 20 25 30

0

60,000

120,000

180,000

240,000

300,000

360,000

420,000

480,000

540,000

600,000

Pr
es

su
re

(P
a)

time(s)

0 5 10 15 20 25 30
0

150,000

300,000

450,000

600,000

750,000

900,000

1,050,000

1,200,000

1,350,000

1,500,000

Pr
es

su
re

(P
a)

time(s)
0 5 10 15 20 25 30

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000
Pr

es
su

re
(P

a)

time(s)

Figure 14. Maximum pressure variation on the guide vane of the first stage pump with different particle sizes: (a) 10–20 mm;
(b) 20–30 mm; (c) 30–40 mm; (d) 40–50 mm.

Figure 15 displays the tendency of the particle mass in the pump. As can be seen
from the graphs, the total mass of 10–20 and 20–30 mm particles in the pump have almost
the same tendency to change, and the particles are entirely refluxed. Simultaneously, the
reflux velocity of 20–30 mm particles is slightly faster than that of 10–20 mm particles. The
reflux velocity of 30–40 mm particles is significantly lower than that of the previous particle
sizes, and some of the particles ultimately remain partially in the pump. There are some
fluctuations in the peak part of each of the four curves, which results from the fact that the
reflux velocity varies for different particle sizes. When some of the particles leave the pump
from the outlet while particles are still being generated at the inlet of the pump, it can
cause the curve to fluctuate. The reason why the four curves intersect at different points
in time is that particles of different sizes have different levels of blockage in the pump.
When particles block in the pump, it can slow down the reflux of particles in the pump.
Situations such as 30–40 mm particles’ mass curves intersecting other curves can occur. In
combination with Figures 10, 12 and 13, it is caused by particles forming blocked sections
in the first stage pump, where some particles are unable to complete the reflux. The mass
profile of 40–50 mm particles reflects the fact that the particles are heavily blocked in the
pump and the particles are unable to complete the reflux.
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Figure 15. Particle mass in the pump.

The effect of particle size on particle reflux can be tentatively concluded from the
above simulation results. As the proportion of particle size distribution is consistent across
the four groups of simulations, the effect of particle size distribution on reflux needs to
be studied more directly. However, the blockage was more noticeable at 40–50 mm than
at other particle sizes, and two additional groups of control trials were considered in
this particle size range: simulation of the single-particle size of 40 mm and the particle
size distribution of 40 mm (85% concentration), 42 mm (5% concentration), 44 mm (5%
concentration), 50 mm (5% concentration).

As shown in Figure 16, it is the different particle size distributions that lead to block-
ages with different degrees. In addition, the particle size is differentiated by colour for
more accessible research on particle blockage behaviour: 40 mm—yellow, 42 mm—green,
44 mm—sky blue, 46 mm—blue, 48 mm—purple, 50 mm—red. As shown in Figure 16a,
the blockage of 40 mm particles in the guide vane flow channel is mainly caused by sev-
eral particles squeezing each other in the flow channel and finally forming a triangular
nodular blockage. Particles of different particle sizes can easily stack with each other
at the interfaces of the guide vanes and impellers, and the phenomenon can be seen in
Figure 16b. This phenomenon leads to large particles forming nodular blockages, while
smaller particles following closely behind will become stuck in the gaps between the larger
particles, creating even more severe blockages. Although blockage occurs in Figure 16c,d,
it is relatively slight compared to Figure 16b. Combined with the curves in Figures 15
and 17 again, it can be seen that the selection of larger particles is within the permissible
range of particle size distribution. This has a certain improvement in terms of the passage
of particles through the pump in the reflux. Meanwhile, the principles that caused the
fluctuations and intersections of the curves in Figure 17 were the same as those in Figure 15.

The line graphs that count the particle mass remaining in the first stage pump for
the four situations of particle blockage section are shown in Figure 17. Comparing the
particle size distributions of 40–42–44–50 mm, 40–46–48–50 mm, and 40–50 mm, it is found
that particles with the particle size distribution of 40–42–44–50 mm are the most serious in
the pump blockage situation. The blockage of particles with size distributions of 40–46–
48–50 mm is less severe than that of particles with size distributions of 40–50 mm. While
the blocking of single-particle size in the pump is the lightest, it can be concluded that
when the particle size exceeds the threshold for blockage, large particles can cause severe
blockage in the pump. In terms of particle size distribution, larger particles in a given
particle size distribution can effectively improve the reflux of particles.
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Figure 16. Different particle size distributions that lead to blockages with different degrees: (a)
single-particle size of 40 mm; (b) particle size distribution of 40, 42, 44, and 50 mm; (c) particle size
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Figure 17. Blockage mass of particles with different particle size distributions in the first pump stage.

5. Conclusions

A numerical simulation was carried out for the backflow problem of an emergency
shutdown of a multistage centrifugal pump. The following conclusions were drawn.

First, the concentration of particles has a specific influence on the backflow. When the
falling velocity of particles is faster than the velocity of particles leaving the lower cover
plate of the impeller, the concentration of the particles can reach a very high level locally.
Then, the extrusion pressure of particles will make particles agglomerate, causing blockage.

Second, the backflow can be completed well in a size of 10–30 mm. At the same time,
30–40 mm particles will form part of the blocked section remaining in the pump with the
primary particles of 30 mm. The analysis reveals that particles of 40–50 mm can cause
severe blockages. The maximum diameter of particles should be controlled within 30 mm
to ensure ore yield and equipment safety.

Third, the simulation shows that the interface between the guide vane and the impeller
is more prone to forming an accumulation of particles. The squeezing motion of multiple
particles against each other can easily lead to the blockage of segments.

Fourth, research into the movement behaviour of particles has revealed that particle
blockage is caused by multiple large particles placed in one section of the flow channel at
the same time, which restrict the movement between the particles and eventually block
into the flow channel. At the same time, smaller particles at the back tend to fill in the
gaps between the larger particles as they form blockage segments. This eventually leads to
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severe blockages occurring. Therefore, the size distribution of the particles significantly
influences the reflux of the particles. It is recommended to use coarse particles with a larger
particle size to ensure a safe return flow in the pump under the premise of no blockages.
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Nomenclature

CD coefficient of drag force
d particle diameter
E* Young’s modulus
FD fluid drag force
Ffp,i interaction forces between continuous and discrete phases
FM lift force generated by the rotation of particles in the flow field
FS lift force due to fluid shear
Fn,ij, Ft,ij normal and tangential contact force between particles i and j
Gb, Gk turbulence kinetic energy
G* Shear modulus
Ii moment of the particle
k turbulent momentum
R diameter of particles
Sk, Sε source terms
Mi mass
Mt,ij, Mr,ij tangential and rolling frictional torques
uf fluid velocity
vi translational velocity
vrel

t tangential component
wi rotational velocity
xi, xj direction
YM dissipation rate
µf liquid’s viscosity
ε turbulent dissipation rate
ρ density of the liquid
ui direction of liquid flow
α normal overlap distance
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