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Abstract: A boundary integral equation method (BIEM) model for the problem of surface wave
interaction with a moored finite floating flexible plate is presented. The BIEM solution is obtained
by employing the free surface Greens function and Green’s theorem, and the expressions for the
plate deflection, reflection, and transmission coefficients are derived from the integro-differential
equation. Furthermore, the shallow water approximation model and its solution is obtained based
on the matching technique in a direct manner. The accuracy of the present BIEM code is checked
by comparing the results of deflection amplitude, reflection, and transmission coefficients with
existing published results and experimental datasets as well as the shallow water approximation
model. The hydroelastic response of the moored floating flexible plate is studied by analyzing the
effects of the mooring stiffness, incidence angle, and flexural rigidity on the deflection amplitude,
plate deformations, reflection, and transmission coefficients. The present analysis may be helpful in
understanding the different physical parameters to model a wave energy conversion device with
mooring systems over BIEM formulations.

Keywords: floating flexible plate; BIEM; SWA; spring moorings; deflection amplitude;
plate displacement

1. Introduction

In recent years, researchers have been increasingly interested in studying the hy-
droelastic response of floating or submerged structures connected with mooring lines
application to coastal or marine engineering problems in order to model floating break-
waters and wave energy converters (see [1–4]). These floating flexible structures need
to survive the failure or any kind of damage in waves, wind, and currents during storm
events. To model a floating flexible structure, the hydroelastic response and its analysis
in different design parameters ensuring the reliability and safety of the flexible structures
are of great importance as the floating structures can be located in unprotected seas and
exposed to rigorous environmental conditions.

Due to the flexible nature of the horizontal structure, the computational burden
becomes too bulky. To overcome these difficulties, researchers often use numerical methods
and solutions. The wave response analysis of a flexible floating structure by combining the
two numerical methods boundary element method and finite element method (BEM-FEM)
is shown in [5]. A B-spline Galerkin scheme was applied to calculate the hydroelastic
response of a very large floating structure in waves in [6]. The hydroelastic response of a
flexible floating structure was analyzed by applying a numerical method FEM in [7]. The
numerical methods BEM and FEM have been applied to the hydrodynamic analysis of
floating elastic surfaces in [8] using FEM; in [9] using BEM and the direct method in [10].
The hydroelastic response of a compliant floating raft modelled as sea ice flow using the
boundary-integral method in [11]. The hydroelastic waves in a channel covered by cracked
ice with arbitrary edge conditions at the walls expanded the solution into a series of cosine
functions with unknown coefficients was studied in [12].
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It may be noted that the numerical computations of the present solution based on
integro-differential equation were carried out in a desktop machine with Intel ®core i7-
4790 CPU with a 3.60 GHz processor and 16 GB of RAM. On average, each case was run
roughly 8–10 min (simulation time). The present BIEM would be one of the alternative
methods to compare and analyze the hydroelastic response of this problem by incorporating
the structural deformations and flexible modes into the formulation. This method is
computationally efficient and it also involves less computational cost than the different
numerical methods used in [13–15].

On the other hand, the interaction of waves with floating or submerged flexible
structures of finite depth connected with mooring lines can hardly be analyzed analyti-
cally. Some of the most relevant previous work relating to moored finite floating and or
submerged flexible horizontal plate problems are discussed below.

There has been considerable progress in the study of real physical boundary value
problems associated with moored finite horizontal floating structures in different water
depths based on an analytical approach. Surface wave interaction with a moored finite
floating elastic plate was formulated using linear water wave theory and the effect of
different design parameters on the floating elastic plate were analyzed using the eigenfunc-
tion expansion method in [16]. The effect of mooring lines on the floating elastic plate in
the presence of submerged flexible horizontal membrane under eigenfunction expansion
method and application of orthogonal mode coupling relation was studied in [17]. Under
the velocity decomposition method, the effect of a fixed submerged flexible membrane on
a moored floating elastic plate in three dimensions was analyzed in [18]. Furthermore, the
effect of a moored submerged flexible porous plate on the moored finite floating flexible
plate was analyzed in two dimensions by studying different design parameters in [19].
Recently, a review on the numerical approaches in the hydroelastic response of horizontal
elastic structures was presented in [20].

From the above literature, it is confirmed that until now there is no study reported
to the public related to wave interaction with a moored finite floating flexible plate using
BIEM and its hydroelastic response via BIEM. Therefore, this paper presents a BIEM model
for linear water wave interaction with a moored floating flexible plate in finite water depth
to analyze the effect of mooring lines on the floating flexible structure on various design
parameters.

The derivation of the boundary integral equation along with the integrodifferential
equation in terms of plate deflection for the moored finite floating flexible plates are
presented by using three-dimensional free surface Green’s function and applying Green’s
theorem. A BIEM code is developed to present numerical results of deflection amplitude,
plate displacements, reflection, and transmission coefficients to study the hydroelastic
response of a moored floating flexible plate. To show the level of accuracy of the BIEM
code, the present results of deflection amplitude, reflection, and transmission coefficients
are compared with existing published results and experimental datasets as well as the
shallow water approximation (SWA) model. Furthermore, the hydroelastic response of
moored finite floating flexible plate is studied by analyzing the effects of mooring stiffness,
incident angle, and flexural rigidity of the moored floating flexible plate on the deflection
amplitude, plate displacements, reflection, and transmission coefficients.

2. Model Formulation

Under linear wave theory, the mathematical formulation is considered in a three-
dimensions Cartesian Coordinate system and BVP is solved by applying BIEM in finite
water depth. It is assumed that a floating flexible plate is placed at y = 0, 0 < x < b
connected with mooring lines with stiffness sj, and z < ∞ over the impermeable bottom
bed y = h. Hence, the whole fluid domain is divided into three fluid domains defined by
open water domain, plate covered domain, and interface domain are referred as DO, DP,
and ∂D, respectively (see Figure 1).
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It is considered that surface gravity wave interacts with floating flexible plate making
an oblique angle β with the positive x-axis and the fluid is inviscid, incompressible, motion
is irrotational and simple harmonic in time with angular frequency ω. Therefore, there
exists velocity potential Φ(x, y, z; t) that can be defined as Φ(x, y, z, t) = Re

{
φ(x, y, z)e−iωt}

where φ(x, y, z) is the complex wave potential with φ(x, y, z) = φO(x, y, z) for DO and
φ(x, y, z) = φP(x, y, z) for DP which satisfies the Laplace equation in the whole fluid
domain as

∇2
xyzΦ = 0 (1)

and the impermeable sea bed condition,

∂yΦ = 0at y = h for−∞ < x < ∞. (2)

The linearized free surface condition inD1 is obtained by the combination of kinematic
and dynamic boundary conditions yields

g∂yΦ + ω2Φ = 0 on y = 0, −∞ < x < 0, b < x < ∞, (3)

where g is the gravitational constant. The linearized kinematic condition at y = 0 in plate
covered domain is given by

∂yΦ = ∂tη (4)

where η(x, z; t) is the deflection of the floating flexible plate.
The floating plate condition is obtained by satisfying plate deflection, equating the

hydrodynamic and dynamic pressure along with kinematic condition (4) at y = 0 as:{
X∇4

xz + `(∂2
x + ∂2

z) + ρpd∂2
t

}
∂yΦ = ρ(∂2

t Φ− g∂yΦ) (5)

where X and ` are the flexural rigidity and the uniform compressive force of the plate,
respectively.

At the moored edges x = 0, b; y = 0, the bending moment and shear force yield the
conditions as

X
(

∂2
xη + υ∂2

zη
)
= 0 (6)

X ∂x

(
∂2

xη + (2− υ)∂2
zη
)
+ `∂xη = sj (7)

The continuity of pressure and velocity at the interface of the plate covered and the
water surface are given by

φO = φP (8)

∂xφO = ∂xφP (9)
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Finally, the complex wave potential φ(x, y, z) also satisfies the Sommerfeld radiation
condition in the far-field.

2.1. Integro-Differential Equation Based on BIEM

In this Section, the solution of wave interaction with a moored floating flexible plate
via integral equation and plate deflection in terms of integro-differential equation will be
presented. The complex velocity potential φO(x, y, z) is decomposed into the incident wave
potential and the diffracted wave potential, which are denoted by φI and φS, respectively.
So, the total potential in the domain DO can be expressed as

φO(x, y, z) = φI(x, y, z) + φS(x, y, z) (10)

where
φI(x, y, z) =

−igI0

2ω
ε(y)eiα0(x cos β+z sin β) (11)

with ε(y) = cosh k(h− y)/cosh kh, I0 is the incident wave amplitude, ω is the frequency
and k0 satisfies the gravity wave dispersion relation. Let G(x, y, z; x0, y0, z0) refer to the
three-dimensional Green’s function with (x0, y0, z0) and (x, y, z) are the source point and
any point in the fluid domain, respectively. Therefore, the Green’s function
G(x, y, z; x0, y0, z0) at the free surface y = y0 = 0 is obtained as

G(x, z; x0, z0) = 2
∫
C

αJ0(αϕ)

(K− αtanhαh)
dα (12)

where C is the contour of integration, J0(αϕ) is the Bessel’s function with

ϕ =
{
(x− x0)

2 + (z− z0)
2
}1/2

and satisfies the governing equation

∇2G = 4πδ(x− x0)δ(z− z0) (13)

with Dirac delta function δ along with free surface boundary condition (3) and bottom
boundary condition (2). Now, applying Green’s theorem to the velocity potentials φO and
φP, for the domain (x, z) ∈ DO, one can get

0 =
∫

∂D∪DP
(φP∂nG − G∂nφP)dΩ, 4πφS = −

∫
∂D∪DO

(φS∂nG − G∂nφS)dΩ (14)

and for (x, z) ∈ DP, result in

4πφP =
∫

∂D∪DP
(φP∂nG − G∂nφP)dΩ, 0 = −

∫
∂D∪DO

(φS∂nG − G∂nφS)dΩ, (15)

where n denotes the outward normal to Ω (Ω is a smooth (regular) surface).
By adding the two Equations (15) and using boundary condition (5) along with

Equation (3) for the Green’s function, one can derive as:

4πφP =
∫
DP

(φI∂nG − G∂nφI)dΩ +
∫
DP

{
(X∇4

x0z0
+ `∇2

x0z0
−mω2)(∂yφP)

}
GdΩ (16)

The integro-differential equation can be derived by applying Green’s formula, free
surface condition for Green’s function and Laplace equation to incident potential as

[
{
X∇4

xz + `∇2
xz + (ρg−mω2)

}
∂yφP]

+ ϑ
4π

∫
DP

{
(X∇4

x0z0
+ `∇2

x0z0
−mω2)(∂yφP)

}
GdΩ = ρg∂yφI , (17)
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where ϑ = ω2/g. Using the kinematic and free surface boundary conditions as in
Equations (2) and (3) and substituting incident potential from Equation (11) into
Equation (17), an integro-differential equation in terms of plate deflection η(x, z) is ob-
tained as:

[
{
X∇4

xz + `∇2
xz + (ρg−mω2)

}
+ ϑ

4π

∫
DP

(X∇4
x0z0

+ `∇2
x0z0
−mω2)η(x0, z0) G(x, z; x0, z0)dx0 dz0 = I0eik0(x cos β+z sin β). (18)

The Greens function (12) satisfy the free surface boundary condition at y = y0 = 0,
bottom boundary condition, and radiation condition where the contour C defined over the
integral is the complex α- plane from 0 to +∞ beneath the singularity α = α0 (see Figure 2)
chosen for satisfying the radiation condition and Bessel’s function J0(αϕ). To overcome
the singularity under the integrals of the integro-differential Equation (18) associated with
the Green’s function by using residue theorem based on the complex function theory.
Furthermore, we applied the Sonine- Gegenbauer expression for J0(αϕ) to evaluate the
integration with respect to z0 (see [21]).
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In the next subsection, the displacement of the moored floating flexible plate, reflection
and transmission coefficients will be determined in terms of series form.

2.2. Plate Displacement, Reflection and Transmission Coefficients

In this Section, the plate deflection can be expressed as a linear superposition of the
eigenfunctions associated with the flexural gravity waves in the following form

η(x, z) =
M

∑
n=0,I,I I,I I I I,IV,1

{An exp(iγnx) + Bn exp(−iγnx)}eizκ , 0 < x < b, 0 < β < 90◦ (19)

where An and Bn are the unknown amplitudes are to be determined with κ = α0 sin β. The
wavenumber γn satisfies the relation γn =

√
λ2

n − κ2 where λn satisfies the flexural gravity
dispersion relation.

S(λn) ≡
{
Xλ4

n + `λ2
n + (ρg−mω2)

}
λntanhλnh− ϑ (20)

In Equation (20), S(λn) ≡ 0 is the dispersion relation associated with a floating
horizontal flexible plate in finite water depth.

Substituting the Green’s function as in Equation (12) and plate deflection as in
Equation (19) into Equation (18), a system of two linear equations is obtained and an-
other four linear equations are obtained using the moored edge conditions (6) and (7), the
bending moment and shear force at x = 0, b gives

M

∑
n=0
X (γ2

n + υκ2){An exp(−iγnb) + Bn exp(iγnb)} = 0 (21)

M

∑
n=0
X (γ2

n + υκ2){An exp(iγnb) + Bn exp(−iγnb)} = 0 (22)

M

∑
n=0

{
X
{

γ3
n + (2− υ)γnκ2

}
− `γn

}
{An exp(−iγnb)− Bn exp(iγnb)} − s1 = 0 (23)

M

∑
n=0

{
X
{

γ3
n + (2− υ)γnκ2

}
− `γn

}
{An exp(iγnb)− Bn exp(−iγnb)} − s2 = 0 (24)



J. Mar. Sci. Eng. 2021, 9, 941 6 of 14

Thus, there are six equations for the determination of the unknowns An and Bn. Using
the relations in Equation (14), the amplitudes of reflected and transmitted waves R and T
in terms of An and Bn are obtained as:

Cr = v(α0, h)
M

∑
n=0

exp(iα0b)(Xλ4
n − `λ2

n −mω2)

(
An exp(−iγnb)

u(α0, β)
− Bn exp(iγnb)

u(−α0, β)

)
(25)

Ct = 1− v(α0, h)
M

∑
n=0

exp(−iα0b)(Xλ4
n − `λ2

n −mω2)

(
An exp(−iγnb)

u(−α0, β)
− Bn exp(iγnb)

u(α0, β)

)
(26)

where u(α0, β) = (γn + α0 cos θ) cos θ and v(α0, h) = α0ϑ/(ϑ2 − ϑ2h + α2
0). In the next

section, the referred problem will be modelled in SWA in a direct manner.

3. Shallow Water Approximation Model

Proceeding similarly in the case of SWA as in [22,23], using the kinematic condition (4)
and plate covered condition (5) in terms of plate deflection, one can derive

φP(x, z) = iωh
M

∑
n=0,I,I I,I I I I,IV,1

{An exp(iγnx) + Bn exp(−iγnx)}eizκ (27)

Solving the Laplace equation using separation of variables along with free surface
boundary condition, the velocity potential in D0 associated with the reflection and trans-
mission wave amplitudes R and T can be derived as:

φO(x, z) =

{
eiα0(x cos θ+z sin θ) + Reiα0(−x cos θ+z sin θ) for x < 0,
Teiα0(x cos θ+z sin θ) for x > b.

(28)

Using the conditions of pressure and velocity (8–9) at x = 0, b into the Equations (27)
and (28), we obtain four linear equations and, also, we have another four linear equations
from moored edge conditions (21)–(24). A MATLAB code is developed by using the
system of eight linear equations to obtain the unknowns An, Bn, R, and T associated
with Equations (27) and (28). Once the reflection and transmission wave amplitudes are
determined, then the reflection and transmission coefficients can be computed by the
following formulae Cr = |R| and Ct = |T|.

4. Numerical Results and Discussions

In numerical computation, the roots of the dispersion relation (20) in DP are in the
upper complex plane. The dispersion relation (20) has two real complex roots, four complex
roots, and many infinitely imaginary roots. In this work, for developing a numerical
code, 10 different roots are utilized which give realistic physical solutions for λ and are
positioned in the upper complex half-plane: one real positive root λ0, two complex roots
λ1 and λ2 which are of the form ±a + ib, and seven imaginary roots of the form +iλn for
n = 3, 4, . . . , 9.

Initially, to verify the accuracy of the present BIEM code, the obtained results of
deflection amplitude, reflection and transmission coefficients are compared with existing
published results of other calculations, experimental datasets, and SWA models. Then, the
hydroelastic response of moored finite floating plate is analyzed by studying the effects of
mooring stiffness, incidence angle, and flexural rigidity on the deflection amplitudes and
plate displacements as well as reflection and transmission coefficients in detail.

4.1. Comparison of Results with Existing Published Results, Experimental Datasets, and SWA
Model

Figure 3 compares the present deflection amplitude with existing published results
in [24] and experimental dataset in [25] with EI = 105, ` = 1.5

√
EIρg, and b/h = 20 versus

plate length. The comparison results show that the trend of the deflection amplitude
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between the present and [24] are similar. Slightly higher values of mooring stiffness
s = 103.5Nm−1 and lower compressive force ` = 0.02

√
EIρg were chosen which led to a

similar trend between the results from the model [24] and experimental data [25] and the
present BIEM model.
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Furthermore, in Figure 3, the deflection amplitude of the horizontal floating flexible
plate from the [24] model is 0.09 m, while the BIEM model is 0.08 m, which is 11% larger.
On the other hand, the deflection amplitude from the Experimental data [25] model is
0.2 m, while the present BIEM model is 0.8 m, which is 66% larger. However, the other two
points from the model [25] are in almost agreement with the present BIEM model.

Figure 4 shows the comparisons of Ct between the present BIEM with (a) Green-
Naghdi model ([26], Figure 13), SWA of the (b) Cr and (c) Ct versus non-dimensional
wavelength with EI = 105, ` = 1.5

√
EIρg, and b/h = 20. In Figure 4a, the comparison

shows that the trend of Ct is in a similar pattern however, there are some deviations
between the two models. This is because of the nonlinearity in [26] and the linearity in
the present BIEM model. From Figure 4b,c, it is found that the trend of the Cr and Ct are
similar and also the data between the BIEM and SWA are very close to each other. It is also
seen that the SWA results are over or under predicted which is because of the neglection of
evanescent modes in the case of SWA.
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Furthermore, in Figure 4a, the transmission coefficient from the Green-Naghdi theory
model is 0.956 m, while the present BIEM model is 1 m, which is 4.37% larger. In Figure 4b:
The reflection coefficient from the shallow water approximation model is 1 m, while the
BIEM model is 0.9 m, which is 9% larger. In Figure 4c: The transmission coefficient from
the Shallow water approximation model is 0.943 m, while the BIEM model is 0.84 m, which
is 10.25% larger.

As a result of Figures 3 and 4, it is ensured that the present solution based on BIEM,
is supported by the existing published results, experimental datasets and as well as SWA
model.

4.2. Hydroelastic Response of the Moored Floating Flexible Plate Based on BIEM

In Figure 5, the variations of the deflection amplitude of the floating flexible plate
for different (a) mooring stiffness versus plate length, (b) mooring stiffness versus non-
dimensional wavenumber, (c) incidence angle with a certain value of mooring stiffness
s = 103.5Nm−1, and (d) flexural rigidity for mooring stiffness s = 103.5Nm−1 versus non-
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dimensional wavenumber kb with EI = 105, ` = 1.5
√

EIρg, and b/h = 20 are plotted.
From Figure 5a,b, we can observe that the deflection amplitude decreases with an increase
in the values of mooring stiffness whilst, the deflection amplitude becomes higher for
higher incidence angle (shown in Figure 5c) which is because, when the incident wave
becoming perpendicular to the floating plate, it propagates along the floating horizontal
plate in the z-direction. This is because, as the rigidity parameter of the floating increases,
the plate behaves as a rigid structure which leads to less deflection or no deflection. From
Figure 5d, it is observed that with a certain value of mooring stiffness s = 103.5Nm−1, the
deflection amplitude of the floating flexible plate decreases with an increase in flexural
rigidity.
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Figures 6 and 7 show the effects of different mooring stiffness and incident angle on
the bending moment and shear force on the moored floating flexible plate versus non-
dimensional wavelength L/b with EI = 105, ` = 1.5

√
EIρg, and b/h = 20. From Figure 6a,

it is observed that the bending moment acting on the floating flexible plate decreases with an
increase in the values of mooring stiffness. However, for larger wavelengths, the resonating
pattern of the shear force vanishes. In Figure 7a,b, it is found that the observations are
similar as in Figure 6a,b. Furthermore, it was observed that the bending moment attends
higher values than those of shear force whilst, this trend is the reverse in case of the effect
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of incident angle as seen from Figures 6b and 7b with a certain value of mooring stiffness
s = 103.5Nm−1.
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Figure 8 simulates the displacements of the moored floating flexible plate for dif-
ferent values of mooring stiffness versus length and width with X = 105 Nm−1, ` =
1.5
√

EIρg, h = 8 m. It is observed that the plate deformation decreases with an increase
in the values of mooring stiffness. This is because as the mooring stiffness of the plate
increases, the plate becomes stiffer which leads to less deformation of the plate.
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Figure 8. Effect of mooring stiffness on the deformation of the moored floating flexible plate.

Figure 9 demonstrates the effect of the mooring stiffness and incident angle on the
reflection coefficient Cr and the transmission coefficient Ct versus (a) non-dimensional
wavelength L/b and (b) wave period T(s) with EI = 105, ` = 1.5

√
EIρg, and b/h = 20. In

Figure 9a, it is seen that for higher values of mooring stiffness, the reflection coefficient Cr
increases for L/b > 8 which is because as the stiffness becomes higher the flexible plate
becomes stiffer which results in higher reflection (see [18]). On the other hand, in the case
of Ct the observations are similar to Cr throughout the non-dimensional wavelength L/b.
In Figure 9b, it is found that the values of the Cr becomes lower as the values of incident
angle increase whilst, the transmission coefficients decrease for higher values of incident
angle. This is because as the stiffness becomes higher, the flexible plate becomes stiffer
which results in a higher reflection (see [18]). Furthermore, the observations in Figure 9c are
similar to Figure 9a. From Figure 9d, it is observed that the reflection coefficient increases
with an increase in flexural rigidity whilst, the trend of transmission coefficient becomes
the reverse to that of reflection coefficients.
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5. Conclusions

In the present paper, the new contribution is the addition of mooring edge boundary
conditions to the BIEM formulation and the effect of mooring stiffness on the hydroelas-
tic response of the floating plate. The BIEM code is compared with existing published
results and experimental datasets from the other calculations as well as the SWA model.
Furthermore, the hydroelastic response of moored finite floating flexible plate is studied
by analyzing the effect of mooring stiffness, incident angle, and flexural rigidity versus
different physical parameters on the deflection amplitude, the plate displacement, and the
reflection and the transmission coefficients. It has been concluded that:

• The mathematical model of the moored floating flexible plate using the BIEM tech-
nique and the analysis of its hydroelastic response is reported for the first time here.

• Comparison of the results reveal that the present BIEM model results are supported
by existing published results from other calculations and experimental datasets as
well as the SWA model.

• The deflection amplitudes of the moored floating flexible plate decrease for higher val-
ues of mooring stiffness and flexural rigidity which is because as these two parameters
go on increasing the flexible plate becomes stiffer that leads to less deflection.

• The shear force and bending moment are decreased in nature when there are higher
values of mooring stiffness and incident angle. Furthermotr, the reflection coeffi-
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cients increasing in nature as the mooring stiffness increases whilst the transmission
coefficients decrease.

• The hydroelastic response analysis of different physical parameters suggested that,
for higher spring stiffness, the deflection pattern becomes more regular whilst rigidity
in the flexible plate creates fewer deformations for higher values of flexural rigidity.
This concludes that a suitable choice of springs and flexural rigidity play a vital role
in modelling a wave energy conversion device.

As a future step, the present formulation and the integro-differential equation can be
generalized for problems arising in civil engineering application to breakwater and WECs.
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