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Abstract: Numerous sound propagation models in underwater acoustics are based on the repre-
sentation of a sound field in the form of a decomposition over normal modes. In the framework of
such models, the calculation of the field in a range-dependent waveguide (as well as in the case of
3D problems) requires the computation of normal modes for every point within the area of interest
(that is, for each pair of horizontal coordinates x,y). This procedure is often responsible for the lion’s
share of total computational cost of the field simulation. In this study, we present formulae for
perturbation of eigenvalues and eigenfunctions of normal modes under the water depth variations
in a shallow-water waveguide. These formulae can reduce the total number of mode computation
instances required for a field calculation by a factor of 5–10. We also discuss how these formulae
can be used in a combination with a wide-angle mode parabolic equation. The accuracy of such
combined model is validated in a series of numerical examples.

Keywords: underwater acoustics; normal modes; perturbation theory; rough bottom; mode parabolic
equations

1. Introduction

Computational technique based on the normal modes theory is widely used in un-
derwater acoustics and its applications that cover a large area of marine sciences [1–3]. It
is important that normal modes provide both quantitative and qualitative understanding
of many physical effects related to sound propagation in the sea. Investigation of the
dependence of modal wavenumbers k j and eigenfunctions φj(z) on certain environment
factors and parameters is often sufficient for estimating the influence of these factors on the
structure of acoustical field (in particular, on interference patterns, shadow zones, arrival
times, and energy distribution [4,5]).

Indeed, sound field in a 3D oceanic waveguide formed by the sea surface z = 0 and
sea bottom z = h(x, y) (here z stands for depth, while x, y are the horizontal coordinates,
see in [1] for detailed discussion of waveguides in underwater acoustics) can be represented
in the form of the expansion

P(x, y, z) =
Nm

∑
j=1

Aj(x, y)φj(z, x, y) (1)

over local normal modes φj(z, x, y) (i.e., the eigenfunctions φj(z) computed for the given
values of x, y). Under the adiabatic assumption, mode amplitudes Aj(x, y) satisfy the
so-called horizontal refraction equation (HRE) [1,5,6]

∂2 Aj

∂x2 +
∂2 Aj

∂y2 + k2
j Aj = 0 , (2)
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and therefore the dependence of eigenvalue k2
j = (k j(x, y))2 on the variables x, y is what

actually determines the propagation of sound waves associated with each mode in the
horizontal plane.

In this case, the distribution of k j(x, y) plays the role of effective refractive index
for horizontal rays [5,7]. In many similar sound propagation models (e.g., in the mode
parabolic equation theory [8–10]), variation of media parameters in the horizontal plane
also influences acoustical field via the corresponding variability of horizontal wavenumbers
in Equation (2) and eigenfunctions in Equation (1).

It is therefore desirable to have explicit formulae describing the dependence of eigen-
values k j and modal functions φj(z) on the horizontal variables x, y.

The variability of modes in x and y can result from the sound speed dependence on
x, y. In this case, the standard perturbation theory from quantum mechanics [1,11] can
be applied to take this dependence into account. For example, it is routinely used to the
compute imaginary parts of eigenvalues and modal group velocities [1].

However, eigenvalues and mode functions can also depend on the horizontal coordi-
nates due to variations of bottom relief. In shallow-water acoustics, this factor is of primary
importance, especially for low-frequency sound that is less sensitive to volume inhomo-
geneities of the sound speed in the water column. This problem is obviously connected
with differentiation of eigenvalues and mode functions with respect to the water depth h.
Explicit formulae for the derivatives of eigenvalues with respect to range in the presence
of water depth variations h = h(x, y) were first derived by Brekhovskikh and Godin [12].
Later, Godin [13] also obtained expressions for the derivatives of mode functions from the
so-called generalized orthogonality relationships [12]. Obviously, the problem of differ-
entiation of eigenvalues and eigenfunctions with respect to the range r can be reduced to
the differentiation with respect to water depth h, provided that environmental gradient,
i.e., dh/dr, is known. Identical formulae were derived independently by Trofimov [14]
who used multi-scale approach. To our knowledge, however, neither a second-order per-
turbation theory nor explicit formulae for second-order derivatives of eigenvalues and
mode functions in the case of water depth variations h = h(x, y) = h0 + ∆h(x, y) (see
Figure 1) have been presented in the literature. It appears that the derivation techniques
from in [12–14] cannot be extended to the second-order case. We also observed that the con-
vergence of Godin’s series for the derivatives of mode functions is slow, and the respective
approximation error decreases in a non-monotonic way. Clearly, this makes the formulae
for the derivatives of modal functions from in [13,14] ill-suited for practical computations.
Very recently, explicit formulae for the first and second derivatives of eigenvalues and
modal functions in the case of water depth variations were outlined by Petrov et al. [15].
The approach used in the latter paper is different from those of Godin [13] and Trofi-
mov [14]. For the first-order derivatives of eigenvalues, the resulting formulae are the same
as derived by Trofimov and Godin [13,14] (modulo some simple transformations). At the
same time, the numerical examples presented in this study indicate that our expressions for
the derivatives of mode functions appear to be more practical and computationally robust.

The main goal of this study is to provide a detailed derivation of the formulae
from in [15], including the generalization to the third-order perturbations of horizon-
tal wavenumbers that were not given in the mentioned paper, and to show how this
perturbation theory can be used in realistic problems of sound propagation. Note that
in [15] only the very idea of the derivation of the perturbative formulae is given, while the
calculations are largely omitted.

The paper is organized as follows. We start with the formulation of the Sturm–
Liouville problem from which horizontal wavenumbers and mode functions are deter-
mined (Section 2). In Section 3, we introduce change of variables that reduces it to a form
for which the standard results of the perturbation theory for linear operators [16] can be
applied. Next, we derive perturbation formulae for the solutions of the latter problem.
In Section 4, we use the derived perturbative formulae for the wavenumbers and mode
functions to compute acoustic field by the formula (1), where the mode amplitudes Aj are
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computed using a wide-angle mode parabolic approximation for Equation (2). We show
that even a single call of the spectral problem solver together with our perturbation theory
allows to perform accurate simulation of sound propagation in a very large area.

h

∆ h
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(h+∆ h) k

4
(h+∆ h)k

2
(h)     k

4
(h)

φ
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4
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Figure 1. Perturbation of waterborne modes by water depth variation in a typical shallow-water
waveguide with penetrable bottom.

2. Acoustical Spectral Problem

The main goal of the present study is to improve the computational efficiency of
sound propagation models based on the normal modes theory that rely on representation
of acoustic field in the form (1). In the course of the field computation, such models usually
make numerous calls of a solver of the following acoustic spectral problem [1,2]:

d2φj

dz2 +
ω2

(c(z))2 φj = k2
j φj , z ∈ (0, h) ∪ (h, H) ,

φj|z=0 = 0 ,

φj|z=H = 0 ,

φj|z=h− = φj|z=h+ ,

1
ρ

dφj

dz

∣∣∣∣
z=h−

=
1
ρ

dφj

dz

∣∣∣∣
z=h+

,

(3)

on an interval z ∈ [0, H], where F|z=h± denotes one-sided limits of some function F(z)
(possibly discontinuous) as z approaches the point z = h from below or above, respectively.
The function c(z) in (3) is assumed to be continuously differentiable on the intervals
I1 = [0, h) and I2 = (h, H] (it can therefore have a finite jump discontinuity at z = h),
and the density is a piecewise-constant function:

ρ(z) =
{

ρw, for z ≤ h ,
ρb, for z > h .

(4)

The second and the third equalities in Equation (3) express pressure-release boundary
conditions at the surface z = 0 and at some sub-bottom z = H (the sub-bottom is introduced
to avoid complications associated with continuous spectrum of the halfspace). The value
of H is chosen to be sufficiently large in order to ensure the convergence of the solution
of the propagation problem of interest. The third and the fourth equalities are continuity



J. Mar. Sci. Eng. 2021, 9, 934 4 of 13

conditions for sound pressure and particle velocity at the interface z = h between the water
and the upper sediment layer of the bottom.

Solutions of the problem (3) are pairs (k j, φj(z)), where k j is called horizontal (modal)
wavenumber, and φj(z) is the respective (vertical) mode function. The Dirichlet boundary
conditions at the endpoints of the interval [0, H] in Equation (3) ensure that the problem has
purely discrete spectrum consisting of a countable set of real eigenvalues k2

j , j = 1, 2, . . . .

We assume that they are ordered in such a way that k2
j ≥ k2

j+1 for all j. Note that the mode
functions form an orthonormal basis with respect to the scalar product

( f , g) =
∫ H

0

f (z)g(z)
ρ(z)

dz , (5)

i.e., (φi, φj) = δij (see [1,2]).
Hereafter, we are mainly interested in waterborne modes, i.e., such modes that their

eigenfunctions φj(z) have maxima in the water column, and their eigenvalues k j belong to
the interval [ω/cb, ω/cmin] (cb is the sound speed in the upper layer of the bottom, and cmin
is the minimum value of the sound speed in the water column). Away from the source
the field is mostly formed by waterborne modes, and therefore in practical problems of
underwater acoustics they are of primary importance.

In the literature, horizontal wavenumbers k j are often called eigenvalues of the prob-
lem (3) [1], although strictly speaking this term should be used only for their squares k2

j .
According to this tradition, hereafter we also call k j eigenvalues.

Note that the problem (3) can be considered a regular counterpart to the singular
spectral problem for the Pekeris operator [17,18] (where the condition at z = H is replaced
by the boundedness condition at z → ∞). Within this work, we restrict our attention
to the self-adjoint case, i.e., to the case of lossless bottom (with negligible attenuation).
The regular case considered below is arguably more important from the practical point
of view.

From the standard theory of regular Sturm–Liouville problems (see, e.g., in [1,18,19])
it is known that eigenvalues of (3) are real of multiplicity 1, and that they form a countable
set k2

1 > k2
2 > . . . . The respective eigenfunctions φj(z) are obviously continuous on [0, H],

and their restrictions φj|I1,2 to the intervals I1,2 belong to spaces C2(I1,2), respectively.
In this case, k j and φj can be considered functions of h (while the latter is in turn a

function of horizontal coordinates x, y). An illustration of this dependence for a typical
shallow-water waveguide with penetrable bottom is presented in Figure 1.

Observe that for the field computation by the formula (1) it is necessary to know
k j(x, y) and φj(z, x, y) for all values of x, y (or for all values of h(x, y) along in the area
of interest). This requires the solution of the problem (3) for all values of h with certain
sufficiently small step. On the other hand, we can consider the variations of water depth as a
perturbation with respect to certain average value h0. Expressing the bathymetry variations
h = h0 + ∆h(x, y) as fluctuations of water depth ∆h(x, y) around some average value h0
we can use Taylor series expansion for horizontal wavenumbers and mode functions

k j(x, y) ∼ k j,0 + k′j,0∆h(x, y) +
1
2

k′′j,0(∆h(x, y))2 + . . . , (6)

φj(z, x, y) ∼ φj,0(z) + φ′j,0(z)∆h(x, y) +
1
2

φ′′j,0(z)(∆h(x, y))2 + . . . , (7)

where prime denotes the derivative of k j or φj(z) (for a fixed value of z = zr) with respect
to the parameter h.

3. Perturbation of Normal Modes by the Bathymetry Variations

The problem for the bathymetry perturbation (i.e., interface perturbation) can be re-
duced to a well-studied problem of the potential perturbation in the stationary Schrödinger
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equation [11]. Let us introduce new variable t = zh0/h and denote T = Hh0/h. After sub-
stitution into Equation (3), we obtain the following spectral problem:

d2ψj

dt2 +
h2ω2

h2
0(c(t))

2
ψj =

h2

h2
0

k2
j ψj ,

ψj|t=0 = 0 ,

ψj|t=T = 0 ,

ψj|t=h−0
= ψj|t=h+0

,

1
ρ

dψj

dt

∣∣∣∣
t=h−0

=
1
ρ

dψj

dt

∣∣∣∣
t=h+0

,

(8)

where k j are the same wavenumbers as those obtained by solving (3), and eigenfunc-
tions ψj(t) are related to the eigenfunctions of the original problem (3) by the relation

φj(z) =

√
h0

h
ψj(t) . Denoting ε = ∆h/h0 = (h− h0)/h0 for convenience, we introduce the

following expansions:

h = h0(1 + ε) ,

T =
Hh0

h
= H

(
1− ε +

ε2

2

)
,

k j = k(0)j + εk(1)j +
ε2

2!
k(2)j + . . . ,

ψj = ψ
(0)
j + εψ

(1)
j +

ε2

2!
ψ
(2)
j + . . . (9)

Q(z) = Q(t) + εtQ′(t) + ε2 t2Q
′′
(t)

2!
+ . . . . (10)

where Q =
ω2

c2 , and superscripts in parentheses stand for derivatives with respect to ε.
Now, we follow the standard scheme of the perturbation theory. Substituting expan-

sions (9) into (8) and separating terms with identical powers of epsilon ε, we obtain for ε0

the spectral problem (8) for k(0)j and ψ
(0)
j (t) with the boundary condition ψ

(0)
j |t=H = 0.

For ε1 we obtain

d2ψ
(1)
j

dt2 + Qψ
(1)
j +

(
tQ′ + 2Q

)
ψ
(0)
j =

(
k(0)j

)2
ψ
(1)
j + 2

((
k(0)j

)2
+ 2k(0)j k(1)j

)
ψ
(0)
j . (11)

In order to obtain k(1)j and ψ
(1)
j from the latter equation, we multiply it by ψ

(0)
j and by

ψ
(0)
i (in the sense of the scalar product). As these functions are orthogonal on [0, H], we

have to transfer the boundary condition from t = T to t = H.

ψ
(0)
j + εψ

(1)
j +

ε2

2
ψ
(2)
j +

ε3

6
ψ
(3)
j |t=T = ψ

(0)
j |t=H + ε

ψ
(1)
j − H

dψ
(0)
j

dt

∣∣∣∣∣∣
t=H

+

ε2

ψ
(2)
j

2
− H

dψ
(0)
j

dt
+ . . .

∣∣∣∣∣∣
t=H

+ ε3

ψ
(3)
j

6
− H

dψ
(0)
j

dt
− H3

6

d3ψ
(0)
j

dt3 +
H2

2

d2ψ
(1)
j

dt2 + . . .

∣∣∣∣∣∣
t=H

= 0 , (12)

where dots denote the terms containing ψ
(0)
j , ψ

(1)
j , ψ

(2)
j and their derivatives that vanish

according to the following identities:
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d2ψ
(0)
j

dt2

∣∣∣∣∣∣
t=H

=

((
k(0)j

)2
−Q

)
ψ
(0)
j

∣∣∣
t=H

= 0 ,
dψ

(1)
j

dt

∣∣∣∣∣∣
t=H

= H
d2ψ

(0)
j

dt2

∣∣∣∣∣∣
t=H

= 0 , etc . (13)

Separating in (12) terms of different powers of ε, we obtain a family of boundary
conditions for ψ

(0)
j , ψ

(1)
j , ψ

(2)
j , ψ

(3)
j that read as

ψ
(0)
j

∣∣∣
t=H

= 0 , ψ
(1)
j

∣∣∣
t=H

= H
dψ

(0)
j

dt

∣∣∣∣∣∣
t=H

, ψ
(2)
j

∣∣∣
t=H

= −H
dψ

(0)
j

dt

∣∣∣∣∣∣
t=H

,

ψ
(3)
j

∣∣∣
t=H

=

(
6H − 2H3

((
k(0)j

)2
−Q

))dψ
(0)
j

dt

∣∣∣∣∣∣
t=H

. (14)

Now, let us compute the scalar product of Equation (11) with the function ψ
(0)
j

∫ H

0

d2ψ
(1)
j

dt2 + Qψ
(1)
j +

(
tQ′ + 2Q

)
ψ
(0)
j

ψ
(0)
j

ρ(t)
dt =

(
k(0)j

)2 ∫ H

0

ψ
(1)
j ψ

(0)
j

ρ(t)
dt + 2

((
k(0)j

)2
+ k(0)j k(1)j

) ∫ H

0

ψ
(0)
j ψ

(0)
j

ρ(t)
dt , (15)

using the following standard orthogonality identities (see, e.g., in [11])

∫ H

0

ψ
(0)
i ψ

(0)
j

ρ(t)
dt = δij ,

∫ H

0

ψ
(k)
j ψ

(0)
j

ρ(t)
dt = 0 for k > 0 . (16)

Integrating the first term on the right-hand side of Equation (15) by parts and using
(16) and (14), we obtain the following expression for k(1)j

k(1)j = −k(0)j +
1

k(0)j

∫ H

0
Q(t)

(
ψ
(0)
j (t)

)2

ρ(t)
dt +

1

2k(0)j

∫ H

0
tQ′(t)

(
ψ
(0)
j (t)

)2

ρ(t)
dt +

Bjj

2k(0)j

, (17)

where we introduced the following notation:

Bji = −

 H
ρ(t)

dψ
(0)
j

dt
dψ

(0)
i

dt

∣∣∣∣∣∣
t=H

(18)

for the terms associated with the sub-bottom stretching in new coordinate t (obviously,
these terms can be neglected for trapped/waterborne modes).

Multiplying Equation (11) by the function ψ
(0)
i and repeating the steps described

above, we arrive at the following formula for the scalar product of ψ
(1)
j and ψ

(0)
i :((

k(0)j

)2
−
(

k(0)i

)2
) ∫ H

0

ψ
(1)
j ψ

(0)
i

ρ(t)
dt = 2

∫ H

0
Q

ψ
(0)
i ψ

(0)
j

ρ(t)
dt +

∫ H

0
tQ′

ψ
(0)
i ψ

(0)
j

ρ(t)
dt + Bji . (19)

As {ψ(0)
i } form an orthogonal basis, the function ψ

(1)
j can be expressed in the form of

the following series:
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ψ
(1)
j = ∑

i 6=j

Vji(
k(0)j

)2
−
(

k(0)i

)2 ψ
(0)
i , (20)

Vji = 2
∫ H

0
Q

ψ
(0)
i ψ

(0)
j

ρ(t)
dt +

∫ H

0
tQ′

ψ
(0)
i ψ

(0)
j

ρ(t)
dt + Bji . (21)

Functions ψ(1) by their construction are the derivatives ∂ψ
∂ε = h0

∂ψ
∂h . Consequently,

the derivatives ∂φ
∂h of eigenfunctions φ(z) of the original problem (3) can be found as

∂φj

∂h

∣∣∣∣
h=h0

=
1
h0

−ψ
(0)
j

2
− t

∂ψ
(0)
j

∂t
+ ψ

(1)
j

∣∣∣∣∣∣
t=z

. (22)

Let us now proceed with the terms of the order ε2 that arise when substituting (9) into
(8). We obtain the following equation:

d2ψ
(2)
j

dt2 + Qψ
(2)
j + 2(tQ′ + 2Q)ψ

(1)
j + (t2Q

′′
+ 4tQ′ + 2Q)ψ

(0)
j =(

k(0)j

)2
ψ
(2)
j + 4

((
k(0)j

)2
+ k(0)j k(1)j

)
ψ
(1)
j + 2

((
k(0)j

)2
+ 4k(0)j k(1)j + k(0)j k(2)j +

(
k(1)j

)2
)

ψ
(0)
j . (23)

Multiplying it by ψ
(0)
j (in the sense of the scalar product), and using the orthogonality

relations (16) and boundary conditions (12), we obtain an expression for k(2)j ,

k(2)j = −k(0)j −

(
k(1)j

)2

k(0)j

− 4k(1)j +
1

k(0)j

∫ H

0

(
tQ′ + 2Q

)ψ
(1)
j ψ

(0)
j

ρ
dt

+
1

k(0)j

∫ H

0

(
t2 Q

′′

2
+ 2tQ′ + Q

)(
ψ
(0)
j

)2

ρ
dt−

Bjj

k(0)j

. (24)

The scalar product of the equality (23) and ψ
(0)
i leads to the expression for ψ

(2)
j

ψ
(2)
j = ∑

i 6=j

Wji(
k(0)j

)2
−
(

k(0)i

)2 ψ
(0)
i , where

Wji = −4k(0)j

(
k(0)j + k(1)j

) Vji(
k(0)j

)2
−
(

k(0)i

)2

+
∫ H

0

(
2Q + 4tQ′ + t2Q

′′)ψ
(0)
j ψ

(0)
i

ρ
dt + 2

∫ H

0

(
2Q + tQ′

)ψ
(1)
j ψ

(0)
i

ρ
dt− 2Bji , (25)

while the second derivative of the eigenfunction of the original problem (3) can be found as

∂2φj

∂h2

∣∣∣∣∣
h=h0

=
1
h2

0

3ψ
(0)
j

4
+ 3t

∂ψ
(0)
j

∂t
− ψ

(1)
j + t2

∂2ψ
(0)
j

∂t2 − 2t
∂ψ

(1)
j

∂t
+ ψ

(2)
j

∣∣∣∣∣∣
t=z

. (26)

Let us conclude this section with the formula for k(3)j , that can be obtained in by
reiterating the calculations above:
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k(3)j = −6

k(1)j + k(2)j +

(
k(1)j

)2

k(0)j

+
k(1)j k(2)j

2k(0)j

+
1

k(0)j

∫ H

0

(
3t
2

Q′ + 3Q
)ψ

(2)
j ψ

(0)
j

ρ
dt

+
1

k(0)j

∫ H

0

(
3t2

2
Q
′′
+ 6tQ′ + 3Q

)ψ
(1)
j ψ

(0)
j

ρ
dt

+
1

k(0)j

∫ H

0

(
t3

2
Q
′′′
+ 3t2Q

′′
+ 3tQ′

)(ψ
(0)
j

)2

ρ
dt +

(
3− H2

((
k(0)j

)2
−Q

)) Bjj

k(0)j

. (27)

4. Numerical Example: the 3D Coastal Wedge Problem

Consider a coastal wedge shown in Figure 2 with the opening angle α = 2.86◦ and
water depth near the source h = 200 m. Assume that the sound speed and the density in the
water column are c1 = 1500 m/s and ρ1 = 1 g/cm3, respectively, and the values of these
parameters for the bottom are c2 = 1700 m/s and ρ2 = 1.5 g/cm3. Sound propagation
in the wedge with the parameters specified above is considered a standard benchmark
problem for 3D models of sound propagation in underwater acoustics (see, e.g., in [1,20]).

A Cartesian coordinate system in the waveguide is chosen in such a way that x axis
is aligned along the isobath, while the direction of the y axis coincides with the water
depth gradient, and a point source of the frequency f = 25 Hz, is deployed at the depth
zs = 100 m (its horizontal coordinates are xs = 0, ys = 0).

Figure 2. Coastal wedge with penetrable bottom.

The problem of sound propagation in the coastal wedge with the parameters specified
above is usually used for the validation of various mathematical models in shallow-water
acoustics. It was recently shown that an accurate solution of this problem in the cross-slope
direction can be obtained under the adiabaticity assumption [21]. In our opinion, this result
is remarkable, as it indicates that many propagation problems can be successfully tackled
by a computationally lightweight adiabatic models.

The main idea of the present study is that the efficiency of the respective approaches
can be further improved if we reduce the number of calls of the Sturm–Liouville problems
solver. The first thing to do in this direction is to answer the question on how far can we go
from the source with just one call of the normal modes computation. Arguably, the wedge
problem can be considered a worst case scenario for the application of our perturbation
theory, as depth variations in this environment are by no means small. Indeed, an accurate
solution of the wedge problem reported in [21] required the computation of modes for
the values of water depth in the range 50–350 m, i.e., and therefore we have h0 = 200 m,
and ∆h = −150 · · ·+ 150 m.

Figure 3 shows the dependencies of the wavenumbers k j on the water depth h for
all three waterborne modes excited by the source. The red lines correspond to the “exact”
eigenvalue dependencies on h. Approximations of these dependencies obtained by the
perturbation formulae of the first, second, and third order are represented by magenta,
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blue, and black lines, respectively. It can be seen that the 3rd-order approximation is almost
perfect for ∆h ∈ [−100 m, 100 m] for the first and second modes, and also works pretty well
for ∆h ∈ [−50 m, 100 m] for the third mode. The 2nd-order perturbation theory provides
accurate approximations of the wavenumber variations for |∆h| ≤ 50 m, while the linear
(1st-order) approximation of k j(h) ensures reasonable quality only for |∆h| ≤ 10–20 m.
Note that all approximations are clearly invalid beyond the cut-off depth value. Yet, high-
order approximations offer considerable improvement over the accuracy of the linear one.
It is also important that the calculations of the derivatives k(n)j by the perturbative formulae
require almost no extra computational cost (in addition to the solution of the “unperturbed”
Sturm–Liouville problem).

Although the accuracy of approximation of the eigenvalues k j dependence on h
can be of interest per se, it is more important to investigate the accuracy of the field
computation if our formulae are used to compute φj(z, x, y) in the expansion (1) and
k j(x, y) in Equation (2). In this study, we compute the solution of the wedge problem using
the perturbation theory for the normal modes in combination with the field representation
(1) and the pseudodifferential parabolic equations for mode amplitudes Aj (PDMPEs).
The latter equations can be used to compute the solution of Equation (2) neglecting the
back-scattering (which is known to be small in the case of the penetrable wedge), see
in [21,22] for the details.

The solution of the wedge problem obtained by the scheme outlined here is obtained
under several assumptions and approximation. In order to validate its accuracy, we com-
pare it against the solution computed using source images technique [20]. The comparison
along the x axis for y = 0 and z = zr = 30 m is presented in Figure 4. From Figure 4d, it
is clear that the solution based on the PDMPE theory and adiabatic approximation (we
actually use a wide-angle parabolic approximation for Equation (2) and the expansion (1)
according to the theory from in [21,22]). exhibits excellent agreement with the reference
solution if the spectral problem is solver for each value of h (for all x). If we solve it
only for h = h0 and use first-order perturbative formulae, then the field can be computed
accurately only for x < 6–7 km (see Figure 4a). A significant improvement can be achieved
by employing 2nd-order formula (Figure 4b), and the agreement with the reference solution
in this case is very good up to x = 15 km, which is already sufficient for many practical
problems arising in underwater acoustics, where the speed of the field simulation is of
primary importance. Note that in this case the 3rd-order formula extends the correct
solution by a couple of kilometers in range, as shown in Figure 4c. As for h < 100 m
(i.e., for |∆h| > 100 m), even the third-order approximation for the wavenumbers k j(h)
fails to reproduce actual dependence (see Figure 3), the solution for x > 17 km cannot be
accurate. Indeed, it is known that interference pattern along this interval is formed by
the field of the first mode that reaches this area by “direct” and “refracted-by-the-wedge”
paths [23,24], and the turning point of the latter is located very close to the wedge apex,
where perturbation theory does not provide sufficient accuracy for the wavenumbers.
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Figure 3. Dependence of kj(h) in the coastal wedge and its approximations by perturbative formulae.
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PDMPE
source images (ref)

(d) Exact values of kj for each h

Figure 4. Acoustical field magnitude (in dB re 1 m from the source) in the coastal wedge as a function
of x for y = 0, z = 30 m computed using pseudodifferential mode parabolic equations and (1) (red
solid line). The reference solution by the method of source images is shown by the black dashed line.

The slice of acoustical field P(x, y, z) by the horizontal plane z = zr = 30 m for the
normal modes computed by the 3rd-order perturbation theory and the respective reference
solution are shown in Figure 5.
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Figure 5. The field at z = zr computed using eigenvalues and eigenfunctions obtained by the
3rd-order perturbation formulae (a,b) and by solving the Sturm–Liouville problem (3) for each
h (c,d).

It can be seen that within the rectangle |y| ≤ 2 km, x ≤ 15 km that the solution
computed using k j and φj approximated by the formulae (6), (7) cannot be distinguished
from the reference solution. At the same time, the perturbation theory allows to reduce the
computational cost by a factor of 10 in this case.

The simulation results confirm that the perturbation theory for normal modes de-
veloped in our study can be successfully used to improve the efficiency of the sound
propagation model based representation of acoustical field in the form (1), and that some-
times it is sufficient to solve the spectral problem (3) only once for some average water
depth value h0.

We also observed that even if the accuracy provided by the perturbation theory and
a single call of mode solver is not sufficient, one can use solve the spectral problem for
maximal and minimal values of the depth, compute the derivatives of wavenumbers and
mode functions by our formulae, and then use a clamped spline approximation for the
entire area of interest. For example, in the wedge case this results in a solution that perfectly
coincides with the one obtained by using k j computed for all values of the water depth.
This two-point clamped spline approach can be considered a good compromise between
the efficiency and the accuracy.

5. Conclusions

In this study, formulae for the first- and second-order derivatives of wavenumbers
and eigenfunctions of normal modes in a shallow-water waveguide with respect to the
water depth are obtained (we stress again that main formulae were outlined in [15], but the
detailed derivation was not presented there). They are derived by using vertical coordinate
transformation that leads to the reformulation of the problem in such a way that the
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interface perturbation turns into the potential perturbation in a stationary Schrödinger
equation. Clearly, our results can be generalized to the interface perturbation theory of
arbitrary order. On the practical side, however, most problems can be covered by the
second- and third-order formulae presented here.

Note that first-order derivatives of wavenumbers and mode functions with respect
to h were computed by a different method in [9,12,13], however unfortunately the latter
approach cannot be generalized to obtain higher-order formulae. It can be shown that our
expression for the first derivative (20) can be reduced to the respective formula from [9].
However, the two expressions are absolutely different from the computational point of
view. Indeed, in our case the main contribution to the first derivative of the eigenfunction
with respect to the h parameter is made by the derivatives of the latter with respect to z,
and the series over other unperturbed eigenfunctions can be considered a small correction
to the latter. By contrast, the expression for the eigenfunction perturbation derived by
Trofimov is a pure expansion over unperturbed eigenfunctions. As such, it is much less
robust, as the convergence of the series is quite slow.

In this study, we presented an example where the acoustical field is computed in a 3D
wedge benchmark problem. Even for this idealized scenario the computational time can
be reduced by a factor of 10 using our perturbative formulae. In more realistic problems,
the reduction in the computational cost can be even more significant, especially when it is
necessary to take mode coupling effects into account.
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