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Abstract: Recently, cargo ship detection in remote sensing images based on deep learning is of great
significance for cargo ship monitoring. However, the existing detection network is not only unable
to realize autonomous operation on spaceborne platforms due to the limitation of computing and
storage, but the detection result also lacks the directional information of the cargo ship. In order to
address the above problems, we propose a novel cargo ship detection and directional discrimination
method for remote sensing images based on a lightweight network. Specifically, we design an
efficient and lightweight feature extraction network called the one-shot aggregation and depthwise
separable network (OSADSNet), which is inspired by one-shot feature aggregation modules and
depthwise separable convolutions. Additionally, we combine the RPN with the K-Mean++ algorithm
to obtain the K-RPN, which can produce a more suitable region proposal for cargo ship detection.
Furthermore, without introducing extra parameters, the directional discrimination of the cargo ship
is transformed into a classification task, and the directional discrimination is completed when the
detection task is completed. Experiments on a self-built remote sensing image cargo ship dataset
indicate that our model can provide relatively accurate and fast detection for cargo ships (mAP of
91.96% and prediction time of 46 ms per image) and discriminate the directions (north, east, south,
and west) of cargo ships, with fewer parameters (model size of 110 MB), which is more suitable
for autonomous operation on spaceborne platforms. Therefore, the proposed method can meet the
needs of cargo ship detection and directional discrimination in remote sensing images on spaceborne
platforms.

Keywords: deep learning; remote sensing image; cargo ship; directional discrimination; faster-RCNN;
lightweight

1. Introduction

With the progress of science and technology and the development of world trade,
economic globalization has become the trend of world economic development. The trade
links between countries are becoming closer and closer, and maritime transportation has
become the main mode of transportation in foreign trade because of its advantages of large
volume and low-cost transportation. Cargo ships are the main means of transportation
for sea transportation. However, with the diversification of cargo ship types, the larger
and higher speed of cargo ships, and the increase of ports, the navigation environment of
cargo ships is becoming more and more complicated, causing the course of cargo ships
to deviate from their planned course. This leads to frequent problems such as channel
block, cargo ships collisions, and increased navigation costs. Therefore, if we can grasp the
navigation information of the cargo ship in time, it is of great significance for improving
the navigation environment of the cargo ship, ensuring the safe navigation of the cargo
ship, improving the navigation efficiency, and shortening the navigation time [1-4].
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In recent years, with the continuous development of satellite remote sensing technol-
ogy and the emergence of a large number of remote sensing images, facing the vast ocean,
remote sensing images have the advantages of wide coverage, high spatial resolution, fast
update speed, and low cost, which makes the use of remote sensing images for real-time
monitoring of ships in the ocean important [5,6]. However, in the face of massive remote
sensing images, if we only rely on manual interpretation to obtain cargo ship information
in remote sensing images, it can no longer meet the needs of modern society because of
the huge workload and low efficiency. Therefore, obtaining cargo ship target information
quickly and accurately from massive remote sensing images has become an urgent problem
to be solved.

Traditional ship detection algorithms in remote sensing images rely heavily on manual
design features, which require designers to understand relevant professional knowledge.
It is difficult to realize the rapid processing of massive amounts of remote sensing data,
and the accuracy of cargo ships under a complex background is low [7-9]. Compared
with traditional object detection algorithms, the algorithms based on deep learning can
independently extract object features, avoiding the complexity of manual design features,
and the extracted features are more robust. Therefore, deep learning makes it possible to
intellectualize cargo ship detection in remote sensing images.

Recently, with the substantial improvement of computer hardware performance and
the emergence of large-scale training samples, the deep learning techniques represented by
convolutional neural networks have shown strong performance in object detection applica-
tions [10-12]. At present, object detection algorithms based on the convolutional neural
network can be divided into two-stage object detection algorithms and one-stage object
detection algorithms according to whether region proposals are generated. Two-stage
object detection algorithms, such as R-CNN [13], fast-RCNN [14], and faster-RCNN [15],
firstly extract region proposals on the feature map where there may be objects, then further
classify and locate these areas, and finally the detection results are obtained. This type
of method achieves a high detection accuracy, but it cannot meet real-time requirements.
One-stage object detection algorithms, such as YOLO [16-19] and SSD [20], use the re-
gression method to establish an object detection framework, which removes the operation
of generating region proposals. This type of method has fast detection speed, but the
detection accuracy is low.

In view of the excellent performance of deep learning in computer vision, deep learn-
ing has been widely used in ship detection in remote sensing images [21-23]. However,
there are some problems in remote sensing images, such as diversified ship sizes and
complex backgrounds, which bring difficulties to ship detection. Many scholars have put
forward their own solutions to such problems. To efficiently detect ships with various
scales, Li et al. [24] proposed a hierarchical selective filtering layer based on the faster-
RCNN algorithm to map features in different scales to the same scale space. Although
this method can simultaneously detect inshore and offshore ships with dozens of pixels to
thousands of pixels, the detection results lack the directional information of the cargo ships.
Aiming at the problem of high false alarm ratio and the great influence of the sea surface in
traditional ship detection methods, Zhang et al. [25] adopted the idea of deep networks and
proposed a fast regional-based convolutional neural network (R-CNN) method to detect
ships from high-resolution remote sensing imagery. However, the proposed method con-
tains a complicated pre-processing stage, which cannot meet the requirements of real-time
detection. Wang et al. [26] proposed a fast-RCNN method based on the adversary strategy,
which adopted the adversarial spatial transformer network (ASTN) module to improve
the classification ability for ships in remote sensing images under complex backgrounds.
However, it is hard to realize autonomous operation on spaceborne platforms.

Although automatic identification system (AIS) data can provide some information
about the cargo ship, the information will be lost if the AIS does not keep the normal
opening statement or fails, and some cargo ships are not even loaded with AIS. However,
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the remote sensing satellite will not have a similar situation, so the remote sensing satellite
image has become an important data source to obtain cargo ship information.

In the face of massive satellite remote sensing images, the transmission bandwidth
from the satellite to ground is limited. Therefore, the real-time intelligent processing
of remote sensing images on spaceborne platforms must be the development trend in
the future. However, due to the limitation of computing and storage on the spaceborne
platform, complex and huge object detection models have not been widely used. In
particular, although the two-stage target detection algorithm has high accuracy, it has
high model complexity and low detection efficiency, resulting in poor availability of the
algorithm on the spaceborne platform.

The category and position information of cargo ships can be obtained by real-time de-
tection of cargo ships in remote sensing images. However, due to the unique perspective of
remote sensing images, the remote sensing images also contain rich directional information
of cargo ship targets. If the directional information of cargo ship targets can be obtained at
the same time, it not only can ensure the safe navigation of cargo ships but can also help
cargo ships navigate accurately along the route and reduce navigation costs.

In this paper, cargo ships in remote sensing images are taken as the research objects,
and the faster-RCNN algorithm is used as the basis to propose a novel cargo ship detection
and directional discrimination method for remote sensing images based on a lightweight
network. This model not only can accurately detect the category and position of cargo ship
targets in remote sensing images in real time but can also discriminate the direction of cargo
ships. Additionally, its lightweight advantage improves the availability of spaceborne
platforms. The rest of the paper is summarized as follows: Section 2 introduces the
proposed method, Section 3 describes the experimental dataset and the experimental
results, and Section 4 summarizes the whole paper and puts forward some suggestions for
future work.

2. Methodology
2.1. Faster-RCNN Network

Considering the application needs of cargo ship detection and direction recognition in
remote sensing images, this paper adopts the faster-RCNN model with high comprehensive
performance of detection accuracy and detection speed as the algorithm prototype. As
shown in Figure 1, faster-RCNN is composed of three parts: feature extraction network,
region proposal network (RPN), and region based convolutional neural networks (R-CNN).
The feature extraction network uses convolution to extract the features of the images, and
the extracted features are shared by the following RPN and R-CNN. The RPN is a fully
convolutional neural network used to generate region proposals for potential cargo ships
in the images, and the following ROI pooling layer is used to unify region proposals of
different sizes. R-CNN is used for coordinating regression and classification of the extracted
region of interest to realize the detection of the cargo ships.

Feature Extraction Network
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ResNet - 50 |
i —
[
([

Classification
Proposals

Feature Map
Bbox

l < FC Layer m2
FC Layer pug Regression

Figure 1. The architecture of faster-RCNN network.
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2.2. Proposed Model
2.2.1. Model Overview

The model of cargo ship detection and directional discrimination in remote sensing
images based on a lightweight network proposed in this paper is shown in Figure 2. In
this model, one-shot aggregation module [27] and depthwise separable convolution [28]
are used to build an efficient and lightweight feature extraction network, namely the one-
shot aggregation and depthwise separable network (OSADSNet). Second, K-Means++
clustering algorithm is introduced into RPN to generate high-quality candidate boxes.
Finally, without introducing extra parameters, the direction recognition problem of the
cargo ship in remote sensing images is converted to a classification problem, and the
directional discrimination is completed while the detection task is accomplished.

Feature Extraction Network

Conv + BN + Relu .| Feature map

I pepthwise Separable Conv + BN + Relu

Conv3x3 Conv 1 x1

(D Concatenation &5 Add [JlJ Conv+ Relu

- Upsampling Max Pooling
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B proposais ’ ROI Pooling

7 Fully Connected + Relu Fully Connected

Figure 2. The overall model structure.

2.2.2. Feature Extraction Network

The feature extraction network is an important module in the object detection model,
and its performance precisely influences the performance of the model. In this paper,
we propose a novel and efficient feature extraction network, the one-shot aggregation
and depthwise separable network (OSADSNet), to meet the specific needs of cargo ship
detection in remote sensing images. The network draws on the idea of the one-shot
aggregation module (Figure 3). Each layer of convolution has two connections: one is
directly connected to the next layer to acquire a larger receptive field, and the other is
connected to the last layer to aggregate features. Compared with the residual module [29],
the network integrates more low-level features, and the connection is not the point-to-
point addition of the feature map but the splicing between channels, which reduces the
number of parameters between layers. Compared with the dense connection module [30],
the connection is optimized, and all features are aggregated only before the last layer,
which realizes the efficient aggregation of different convolutional layers, avoids feature
redundancy, and performs at a faster speed. At the same time, the network uses depthwise
separable convolution (Figure 4b) to replace the standard convolution (Figure 4a), which
reduces the model parameters and effectively extracts features, finally realizing the light
weight of the model. Table 1 shows the implementation details of OSADSNet.
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Figure 3. The one-shot aggregation module, where xg, x1, xp, x3, X4, and x5 denote the input of each
layer of the convolution layer; yy denotes the output; and concat denotes the feature concatenation
operation. Rectified linear unit (ReLU) denotes an activation function. Batch normalization (BN)
denotes centering and scaling activations within mini-batches. Conv2d denotes a 2D convolutional
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Figure 4. Comparison of different convolutions. Depthwise separable convolutions are special cases
of standard convolution.

Table 1. An overview of the implementation details of OSADSNet.

Stage Structure

3 x 3 conv,64, stride =2
3 x 3 dsconv,64, stride =1

Stagel 3 x 3 dsconv,64, stride = 1
3 x 3 maxpool2d, stride = 2
Stage 2 [3 x 3 dsconv,128, stride =1] x 3
concat & 1 x 1 conv,256
Stage 3 [3 x 3 dsconv,160, stride =1] x 3
concat & 1 x 1 conv,512
Stage 4 [3 x 3 dsconv,192, stride =1] x 3
concat & 1 x 1 conv,768
Stage 5 [3 x 3 dsconv,224, stride =1] x 3
concat & 1 x 1 conv,1024
2.2.3. K-RPN

The faster-RCNN uses a region proposal network (RPN) to effectively generate high-
quality region proposals, where each of them corresponds to the probability and position
information of the cargo ship. Meanwhile, the network shares the feature maps with the
feature extraction network to shorten the computing time.

In order to locate objects of different sizes effectively, the anchors of different scales are
used in RPN, but the original anchors are designed manually without the prior information
of cargo ship sizes in remote sensing images. Therefore, in this paper, the K-Mean++
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algorithm [31] is used to cluster the bounding boxes of cargo ships in the dataset to obtain
anchors suitable for cargo ships. The structure of K-RPN is shown in Figure 5.

t
anchors

boxes |Z|
cls-layer reg-layer

K-Means++
cans i 512-d

[ 2t scores } ’4t coordinates‘

dataset \

A AN
\sliding window

conv feature map

Figure 5. The structure of K-RPN in proposed model.

In the process of clustering, the Euclidean distance clustering method will lead to a
greater error for the larger bounding boxes than for the smaller bounding boxes, resulting in
a greater error in the intersection over union (IOU) between the anchors and the bounding
boxes. In order to make the IOU of the anchors and the bounding boxes larger and obtain
better anchors, the IOU of the bounding boxes and the cluster center bounding boxes is
used as the distance function of the K-Mean++ algorithm to complete clustering:

d (box, centroid) =1 — 10U (box, centroid) 1)

where centroid represents the bounding boxes of the cluster centers; box represents the
bounding boxes of the cargo ships; IOU represents the intersection over union of the cargo
ship bounding boxes of cargo ships and the cluster center bounding boxes of the cluster
centers; and d represents the distance between the bounding boxes of cluster centers and
the bounding boxes of cargo ships.

2.2.4. Directional Discrimination

Since remote sensing images are taken above the cargo ships, the images contain
not only the category and location information of the cargo ships but also the directional
information of the cargo ships. Mastering the course information of cargo ships is im-
portant for cargo ships to sail along the expected route, which not only can ensure the
safe navigation of the cargo ships but also can help to reduce the cost of navigation. In
this paper, the problem of directional discrimination of cargo ships is transformed into
a classification problem. The direction of the cargo ship is divided into four directions:
east, south, west, and north (Figure 6). The object detection model is used to classify the
directional information into category information to learn, and the model outputs the
category of cargo ships and directional information at the same time. In this model, the
directional information of cargo ships can be obtained without adding extra parameters.
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Figure 6. The division of direction. N, E, S, and W, respectively, denote the north, east, south, and

west directions of the cargo ship.

3. Experiments
3.1. Experimental Dataset

@

@)

®)

Data collection. As far as we know, there is no publicly available remote sensing image
cargo ship dataset with category and directional information. To detect cargo ships
and discriminate directions of cargo ships, it is necessary to collect corresponding
remote sensing images. Remote sensing images selected in this experiment are from
Google Earth. The resolutions of images are 16, 17, and 18 levels. The bands of
images are red, green, and blue. The data content covers different backgrounds and
various positional relationships, which can meet the need for practical tasks. Due to
the limitation of computer memory capacity, the collected images are cropped into
800 x 800 pixels, and the images containing three types of cargo ships are filtered
out—bulk carrier, container, and tanker—ensuring that each image contains at least
one cargo ship. The examples are shown in the Figure 7.

Data annotation. In order to establish a cargo ship dataset of remote sensing images,
it is necessary to annotate the collected remote sensing images for the training and
testing of the models. In this paper, labeling software (Labelimg) [32] is used on the
cargo ships in remote sensing images. Labeled objects include bulk carrier, container,
and tanker. According to the directions of cargo ships, they can be divided into
four categories, east, south, west, and north, and the angle range of each category
is 90 degrees. After the labeling is completed, a corresponding labeling file will
be formed, which mainly records the location, category, and direction of the cargo
ship. The obtained annotated dataset is uniformly processed into the format of
VOC2007 [33] to provide a standard dataset for the training of models.

Data augmentation and splitting. In the process of model training, the larger and
more comprehensive the dataset, the stronger the model recognition ability. Therefore,
in this paper, the collected remote sensing images are rotated clockwise by 90 degrees,
180 degrees, and 270 degrees, as well as flipped horizontally and vertically, to expand
the data. The number of the dataset is expanded by six times, and its directional label
is adjusted accordingly. Finally, 15,654 remote sensing images are obtained. Table 2
shows the details of various cargo ships in the dataset. The dataset is randomly
divided into training set, validation set, and test set according to the ratio of 8:1:1.

Table 2. The number of cargo ships used per category after applying augmentation techniques.

Category East South West North Total
Bulk carrier 1505 1423 1505 1423 5856
Container 2207 2299 2207 2299 9012
Tanker 2013 1989 2013 1989 8004
Total 5725 5711 5725 5711 22,872
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(a) (b)
Figure 7. Examples of cargo ships in remote sensing images. (a) bulk carrier; (b) container; (c) tanker.

3.2. The Anchors Clustering

To obtain anchors suitable for cargo ships, this paper introduces the K-Mean++ al-
gorithm into the RPN to propose the K-RPN, and the K-Mean++ algorithm is used to
automatically generate the appropriate anchors instead of the manual method. If the
anchors are not selected properly, the final detection results will be affected. Figure 8 shows
the length and width distribution of cargo ships in the dataset and the clustering results
of K-Mean++. Table 3 shows the comparison between original anchors and K-Mean-++
anchors.

800 1

700 A

600

200 1

100 A

0 100 200 300 400 500 600 700 800
width

Figure 8. The distribution of width and height of annotated bounding boxes in the cargo ship dataset.
The red dots represent the clustering results.

Table 3. Comparison between original anchors and K-Mean++ anchors.

Width 91 128 181 181 256 362 362 512 724
Height 181 128 91 362 256 181 724 512 362

M Anch Width 37 128 101 103 114 210 259 279 474
-vieant++ ANCNOTS  Height 88 128 40 295 109 207 478 97 261

Original Anchors

3.3. Implementation Details

The experiments are conducted on a Dell T3640 workstation. The operating system is
Ubuntu 16.04 LTS. The model is written in Python and supported by Torch on the backend.
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The model input size is set to 800 x 800. Stochastic gradient descent is used in training to
minimize the loss function. The initial learning rate is set to 0.025, and the learning rate is
reduced by 0.1 times in 30,000 and 40,000 iterations. The batch size is two. The value of
momentum is set to 0.9. The value of weight decay is set to 0.0005. The model is trained for
50,000 iterations. Figure 9 shows the change of loss during training.

141 —— training loss

1.24

1.04

Loss

0.8 4

0.6 4

0.4+

0.2

0 10,000 20,000 30,000 40,000 50,000
Iteration

Figure 9. The curve of loss of training.

3.4. Evaluation Metrics

This paper used four evaluation metrics: precision (P), recall (R), average precision
(AP), and mean average precision (mAP) to evaluate the performance of the model. Preci-
sion indicates the percentage of true positives of cargo ships in the sum of true positives
of cargo ships and false positives of cargo ships. Recall indicates the percentage of true
positives of cargo ships to the ground truths of cargo ships. AP is the area under the
curve of precision-recall, which is the popular evaluation metric of object detection, and is
often used to measure the advantages and disadvantages of object detection models. mAP
indicates the mean of AP across all classes.

Precision: T
p
— _ 2
Tp+Fp @
Recall: T
_ p
- Tp+Fn @)
AP: )
AP = / P(R)dR 4)
0
mAP: ;
¥ AP(i)
mAP = :OT (5)

where Tp represents the number of cargo ships correctly identified in the detection results,
Fp represents the number of cargo ships falsely identified in the detection results, Fn
represents the number of cargo ships that have been missed, and # represents the number
of types of cargo ships.
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3.5. Experimental Results
3.5.1. Performance of Different Models

To quantitatively analyze the effectiveness of the proposed model, the self-built dataset
is used to train and test the model, and the evaluation indexes P, R, and AP are used to
evaluate the test results of the model. Table 4 lists the test results of our model on the test
set.

Table 4. The number of cargo ships for test set results and the evaluation of our model.

Number
Class P (%) R (%) AP (%)
Gt Tp Fp Fn
Bulk_Carrier_North 159 150 14 9 91.46 94.34 93.46
Bulk_Carrier_East 135 130 11 5 92.20 96.30 94.94
Bulk_Carrier_South 122 117 26 5 81.82 95.90 95.20
Bulk_Carrier_West 142 133 6 9 95.68 93.66 93.39
Container_North 192 181 27 11 87.02 94.27 93.17
Container_East 203 190 31 13 85.97 93.60 93.00
Container_South 226 207 34 19 85.89 91.59 90.10
Container_West 222 207 24 15 89.61 93.24 92.26
Tanker_North 207 185 41 22 81.86 89.37 88.10
Tanker_East 192 176 19 16 90.26 91.67 91.26
Tanker_South 205 184 26 21 87.62 89.76 88.77
Tanker_West 202 183 31 19 85.51 90.59 89.87

Table 5 gives statistics on model size, training duration, mAP, and single image
prediction duration of different models. As can be seen from the experimental results, in
terms of model size, our model has fewer parameters (model size of 110 MB) and a shorter
training time (79.5 min), so it is more suitable to be deployed on the spaceborne platform.
In terms of detection accuracy, our model can achieve a higher detection accuracy (mAP of
91.96%) similar to the two-stage object detection algorithm faster-RCNN (mAP of 94.41%).
In terms of detection speed, our model maintains a fast detection speed (prediction time of
46ms per image) and meets the requirements of real-time detection.

Table 5. Comparison of test performance between different models.

Model Feature Extraction Region Proposal Weight Training mAP Input Prediction
Network Network Size/MB Time/min Size Time/ms
Faster-RCNN ResNet50 RPN 319.5 100.4 94.41% 800 x 800 56
YOLOvV3 DarkNet53 None 235.0 758.0 83.98% 800 x 800 41
Our OSASPNet K-RPN 110.0 79.5 91.96% 800 x 800 46

Figure 10 shows the detection results of different models on test sets. It can be seen
from the figure that our model and faster-RCNN can complete the classification, positioning,
and directional discrimination of cargo ships in remote sensing images well, while the
YOLOV3 model has different degrees of missed detection.

3.5.2. Performance of Other Remote Sensing Images

Given that Google Earth images are the integration of multiple satellite images and
aerial images, this paper conducts tests on high-resolution remote sensing images of
multiple satellites, including Skysat 1.0 m/pixel resolution images (Figure 11), Deimos-2
0.5~2 m/pixel resolution images (Figure 12), and QuickBird 0.5~2 m/pixel resolution
images (Figure 13), to verify the performance of our model on remote sensing images of a
single source.
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(c) Our Model

Figure 10. The experiment result for cargo ships. (a—c) are the detection results of cargo ships by faster-RCNN, YOLOv3,
and our model, respectively.

Figure 11. The Skysat image of Tianjin Port.
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Figure 13. The QuickBird image of Pescara Port.

4. Discussion

Using remote sensing technology to obtain the remote sensing images of the cargo
ships, combined with the deep learning object detection algorithms to obtain the classi-
fication, position, and directional information of the cargo ship in real time, is of great
significance to cargo ship monitoring. In this paper, to further excavate the directional
information of cargo ships in remote sensing images, by using the unique perspective of
remote sensing images, the directional recognition problem of cargo ships is transformed
into a classification problem, so that the model can complete the directional discrimina-
tion while completing the detection task. By extracting the heatmap of the feature map
corresponding to the detection box, it is found that the model pays more attention to the
head of the cargo ship, which is consistent with the actual judgment of the direction of
the cargo ship (Table 6). At the same time, real-time processing of remote sensing images
on the space-borne platform is the future trend. However, due to the limited computing
and storage resources of the spaceborne platform, the complex and huge target detection
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model has not been widely used. Therefore, we propose a novel cargo ship detection
and directional discrimination method for remote sensing images based on a lightweight
network, which has important practical significance.

Table 6. Detection results and corresponding heatmaps.

Detection Result

Region Proposal Heatmap Class Prediction Direction Prediction

- -’ Bulk carrier East

‘ Container South

\ . .
\ : ‘
A\ Tanker North

5. Conclusions

This paper proposes a novel cargo ship detection and directional discrimination
method for remote sensing images based on a lightweight network, which can efficiently
and accurately classify, locate, and discriminate the direction of cargo ships in remote
sensing images. Aiming at the problem in which the complex and large object detection
network is not conducive to real-time autonomous operation on the spaceborne platform,
we use one-shot feature aggregation modules and depthwise separable convolutions
to design an efficient and lightweight feature extraction network, namely the one-shot
aggregation and depthwise separable network (OSADSNet). At the same time, the K-
Mean++ algorithm is introduced into the RPN to form the K-RPN to generate a more
suitable region proposal for cargo ship detection. The current detection results of the cargo
ship in the remote sensing image are output as the category and location of the cargo ship,
but the directional information of the cargo ship is lacking. To solve this problem, we
transform the directional recognition problem of the cargo ship in the remote sensing image
into a classification problem without introducing additional parameters, which completes
the directional estimation while completing the detection task. Finally, a comparative
experiment is conducted based on the self-built dataset. Experimental results show that
our model can meet the requirements of spaceborne platform cargo ship detection and
directional discrimination in terms of model size (110 MB), detection accuracy (mAP of
91.96%), and detection speed (prediction time of 46 ms per image). Considering that Google
Earth images are the integration of multiple satellite images and aerial images, to test the
effectiveness of the model for remote sensing images that are from a single spaceborne
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platform, remote sensing images from different satellites are selected for testing, and the
experimental results show the effectiveness of the model.

This study has some limitations. The proposed method can complete the classification,
positioning, and directional discrimination of cargo ships in remote sensing images well.
The direction of the cargo ship is divided into four directions: east, south, west, and north.
Remote sensing images of cargo ship contain rich information, and this paper only mined
part of this information. Therefore, the direction of cargo ship can be further refined to
obtain more detailed directional information. In the future, we will consider refining the
direction of the cargo ship into north, northeast, east, southeast, south, southwest, west,
northwest, or even a degree.
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The following abbreviations are used in this manuscript:
AP Average precision

AIS Automatic identification system
BN Batch normalization

CNN Convolutional neural network
Fn False negatives

Fp False positives

Gr Ground truth

(0)8) Intersection over union

mAP Mean average precision

P Precision

R Recall

R-CNN Region-based convolutional neural networks
ReLU Rectified linear unit

ROI Regions of interest

RPN Region proposal network
SSD Single shot multibox detector
Tp True positives

YOLO  You only look once
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