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Abstract: Currently, several ocean data assimilation methods have been adopted to increase the 
performance of air–sea coupled models, but inconsistent adjustments between the sea temperature 
with other oceanic fields can be introduced. In the coupled model CAS-ESM-C, inconsistent adjust-
ments for ocean currents commonly occur in the tropical western Pacific and the eastern Indian 
Ocean. To overcome this problem, a new ensemble-based bias correction approach—a simple mod-
ification of the Ensemble Optimal Interpolation (EnOI) approach for multi-variable into a direct ap-
proach for a single variable—is proposed to minimize the model biases. Compared with the EnOI 
approach, this new approach can effectively avoid inconsistent adjustments. Meanwhile, the com-
parisons suggest that inconsistent adjustment mainly results from the unreasonable correlations be-
tween temperature and ocean current in the background matrix. In addition, the ocean current can 
be directly corrected in the EnOI approach, which can additionally generate biases for the upper 
ocean. These induced ocean biases can produce unreasonable ocean heat sinking and heat storage 
in the tropical western Pacific. It will generate incorrect ocean heat transmission toward the east, 
further amplifying the inconsistency introduced through the tropical air–sea interaction process. 

Keywords: sea temperature bias; ocean data assimilation; bias correction; inconsistent adjustment; 
CAS-ESM-C 
 

1. Introduction 
The ocean records climate change information through air–sea interactions, playing 

an essential role in the climate system due to its own physical characteristics. The climate 
system model can reflect the complex interactions among the components of the climate 
system. It has been widely applied in various fields of climate research [1]. Thus, the cli-
mate system model is an irreplaceable tool to investigate the characteristics and behaviors 
of the current climate, understand the climate’s past evolution, and predict future changes 
of the climate [2]. However, the initial field of the climate system model remains uncer-
tain. Therefore, to provide more accurate initial conditions for forecast or prediction, 
ocean data assimilation is usually used to reduce biases in model simulation [3–9]. 

The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report 
(AR5) noted [1] that there are still many biases that cannot be ignored in the coupled 
model [10–20]. Based on the hypothesis of unbiasedness in data assimilation theories, the 
original biases of the coupled model are likely to affect the results of the data assimilation 
regardless of the assimilation method adopted [21–24]. In addition to the common sys-
tematic biases in most coupled models, differences still exist in the climate mean states 
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due to the different physical frames, parameter settings, etc. [25–27]. Meanwhile, the dif-
ferent climate mean states correspond to different climate backgrounds. For example, the 
different climate mean states may lead to incorrect relationships among multi-variables 
in the model. These incorrect relationships can affect the rationality and accuracy of the 
ocean data assimilation system [28–34]. 

The types and amounts of ocean observations are increasing with the progress of 
technology. Accordingly, the emergence and application of these observations also have 
time sequences. The assimilation of sea surface temperature (SST) observations is usually 
the first step to compare assimilating other ocean observations in a coupled model [35–
38]. In practical applications, most models assimilate as many different observations as 
possible to achieve a better assimilation effect. However, different data and model varia-
bles may affect each other. Notably, when several different observations are assimilated 
into the model at the same time, it is possible to weaken the effect of assimilation [39,40]. 

For the tropical Pacific, sea temperature changes the interaction between the higher 
sea temperature and the deep convection of the atmosphere in the warm pool area. The 
net heat flux is influenced by the sea temperature and the change in the surface wind field, 
thereby further stimulating anomalous large-scale atmospheric circulations, such as the 
Walker circulation, Hadley circulation, and normal Rossby wave [41–44]. The tropical cur-
rent field is also a feature in tropical air–sea interactions and ENSO evolution [45–49]. The 
ocean current may be affected by the model bias and coordination of various observa-
tional data in data assimilation. These influences may produce an incorrect current field, 
thus making the assimilation effect worse or increasing the bias of the model simulation 
[50]. 

CAS-ESM-C could successfully reproduce the interannual change in SST over the 
tropical Pacific and realistically simulate the climate mean states of other components, 
which was similar to the acceptable performance of the East Asian monsoon simulation. 
Except for the slight underestimation of the ENSO period and overestimation of the aver-
age amplitude, the other characteristics of interannual variability over the tropical Pacific 
are well reproduced in CAS-ESM-C [51]. The model has also been used to investigate the 
decadal variation in the Aleutian low–Icelandic low relationship [52]. In the evaluation of 
the ocean data assimilation system in CAS-ESM-C, we found that adjustments in the cur-
rent field are not significant when assimilating the SST [53], but when assimilating the 
Argo profiles (the configuration had been changed to suit 3D data, is not same as for SST), 
the adjusted current field and the model biases have a great influence on the assimilation, 
even resulting in a simulation that cannot be effectively improved by the assimilation. For 
this reason, we designed a new bias correction approach to deal with the effects of model 
biases on the assimilation of ocean observations [54]. Therefore, the main purpose of this 
study was to compare the effect of this new bias correction approach with the original 
EnOI approach for bias correction and investigate the reasons for the differences between 
these two approaches, especially the current inconsistent adjustments. In Section 2, we 
describe the model, data, the EnOI approach, and our new ensemble-based bias correction 
approach. Differences between the results of the two schemes and the causes of the most 
significant difference are provided in Section 3, followed by the discussion and conclu-
sions in Section 4. 

2. Materials and Methods 
2.1. Model 

The model used in this study is the fully coupled ESM version of CAS-ESM-C (Chi-
nese Academy of Sciences-Earth System Model-Climate system) developed at the Institute 
of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS) [55]. The atmospheric 
component (IAP AGCM4) in this climate model is a fourth-generation atmospheric model 
of the AGCM, which was developed at the IAP. The horizontal resolution of IAP AGCM4 
is 1.4°× 1.4°, with 26 vertical layers [56]. The oceanic component (LICOM 1.0) is a global 
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ocean circulation model that was developed from L30T63 at the State Key Laboratory of 
the Numerical Modeling of Atmospheric Sciences and Geophysical Fluid Dynamics 
(LASG/IAP). The horizontal resolution of LICOM 1.0 is 1° × 1°, with 30 vertical layers. 
LICOM 1.0 is a global ocean model, except that the North Pole is treated as an island [57]. 
The land component (CLM3), sea ice component (CSIM5), and coupler (CPL6) were all 
developed at NCAR [58]. These four components are simultaneously integrated at regular 
intervals to be exchanged with the coupler one day per integral operation. 

The air–sea heat flux in CAS-ESM-C is the summed estimates of their four compo-
nents: the shortwave flux, longwave radiation flux, sensible heat flux, and latent heat flux, 
which are computed by bulk formulae. The formulae compute the turbulent heat fluxes 
in terms of the near-surface atmospheric state (10 m wind, potential temperature, specific 
humidity, and air density) and the oceanic state (SST and ocean surface current). The CAS-
ESM-C has a good ability to reproduce the basic variables, especially for near-surface at-
mospheric states and upper ocean states; the corresponding air–sea heat flux can be rea-
sonably simulated [55]. 

2.2. Data 
All the data used in this paper are summarized in Table 1. The objectively analyzed 

sea temperature climatological data used for the EnOI approach and our new ensemble-
based bias correction approach are from the World Ocean Atlas 2013 Version 2 (WOA) 
[59] and have a horizontal resolution of 1° × 1°, with the vertical distribution at standard 
depth levels. The ocean reanalysis data obtained from the NCEP Global Ocean Data As-
similation System (GODAS) are applied to validate the correction results [60], which have 
a horizontal resolution of 1° × 1°, the vertical distribution interpolated as the ocean model 
layer. The data used to analyze and compare the sea level pressure (SLP) and wind results 
are from the ERA-Interim reanalysis dataset, which is an “interim” reanalysis used to re-
place ERA-40 [61]. 

Table 1. Datasets used in this study. 

Data Type Description Temporal Coverage Source Application 
Sea temperature 

climatological 
World Ocean Atlas 2013 12 months Boyer et al., 2013 Assimilation 

Ocean reanalysis GODAS  1980–2018 D. Behringer and Xue, 2004 Validation 
Atmospheric reanalysis ERA-Interim 1980–2018 Dee et al., 2011 Validation 

2.3. Assimilation Approach 
According to the use of the Bayesian theorem in estimation theory, Lorenc [62] and 

Cohn [63] described in detail the application of the Bayesian theorem in data assimilation. 
Based on the development of these theories, ensemble data assimilation is a method that 
combines ensemble forecasting with data assimilation [64,65]. The assimilation approach 
adopted in this paper is EnOI for the ocean component of CAS-ESM-C. The same assimi-
lation scheme was adopted for the establishment of a global ocean data assimilation sys-
tem [66], a regional system for Pacific–Indian oceans [67] used in CAS-ESM-C. 

The EnOI analysis is conducted by solving the following equation: 
1( ) ( ( ) ) ( )a b T T o bC P H H C P H R Hψ ψ α α ψ ψ−= + • • + −  (1)

where ψ = (h0, t, s, u, v) represents the model state vector (where h0 is sea surface height, 
t is the temperature, s is the salinity, and u and v are current fields). These five variables 
are also directly adjusted in the EnOI approach through the background error covariance 
matrix P. The superscripts a, b, o, and T represent the analysis, background, observation, 
and matrix transpose. C is a correlation function used to localize the background error 



J. Mar. Sci. Eng. 2021, 9, 925 4 of 16 
 

 

covariances. H is the observation operator used to map from the model space to the ob-
servation space. R is the observation error covariance matrix. α is a scalar used to tune the 
magnitude of the covariance to adjust the relative importance between the background 
error covariance matrix and the observation error covariance matrix. Here, we select val-
ues of α according to the observations, which typically range between 0.3 and 0.6, to avoid 
the influence of larger correction of WOA data; it is set to 0.3 in this paper. The background 
error covariance matrix P is defined by the following equation: 

TA'A'
P

(N 1)
=

−
, (2) 

where N is the ensemble size (here, N = 108). A is static sample matrix obtained via long-
term model integration to estimate the structure of the background error covariance, 
which also corresponds to the bias correction scheme we used for calculating model bias 
in the next section. 

2.4. Bias Correction Scheme 
We developed the strategy of constructing the background covariance to statistically 

model errors from the EnOI approach, thus, designing a bias correction scheme. The test 
results show that it can effectively improve the model simulation. The specific design of 
this scheme is as follows [56]: 
1. The observed climatological temperature field from the WOA data is interpolated in 

a three-dimensional direction according to the ocean model grid point, and the re-
sulting value is Twoa. 

2. The statistics of the model error Rm are established by the 108 model ensembles used 
in the EnOI approach, and the observation error Ro is calculated according to an em-
pirical function (exponential function) related to the ocean model depth; with an in-
crease in depth, Ro will decrease gradually. It is shown that the model error Rm and 
the observation error Ro in the EnOI approach and the bias correction approach are 
identical. 

3. The bias correction weight coefficient WK is calculated monthly as 

( )2 2 2

m m oWK R R R= + , (3) 

4. The bias of the sea temperature is corrected: 

( )cor mod woa modT T WK T T= + ∗ − , (4) 

where Tmod represents the temperature integrated from the previous model step, and Tcor 
is the temperature field after bias correction. 

Hence, WK represents the weight of the model error Rm relative to the observation 
error Ro. Since Ro is determined by the empirical function, if Rm is large, then WK ≈ 1; thus, 
Tcor ≈ Twoa, and the influence of the bias correction is readily observable, whereas if Rm is 
small, then WK ≈ 0, Tcor ≈ Tmod, and the bias correction has almost no effect. 
5. Tcor is then restored into the model, and the integration operation is continued until 

the next correction step. 
This correction scheme is a simple modification from EnOI for multi-variable assim-

ilation to a direct assimilation approach for a single variable. In this study, only the sea 
temperature is corrected in the correction step. 

3. Results 
3.1. Differences between the Two Schemes Are Due to the Correction of Sea Temperature Bias 

In this section, we highlight the different performance results of the two correction 
schemes in the ocean model and demonstrate the impact of these differences on the results 
of correction. For this process, we designed the following test and compared the results 



J. Mar. Sci. Eng. 2021, 9, 925 5 of 16 
 

 

with those of the control simulation; ocean reanalysis data are from GODAS, which is 
regarded as OBS in this paper (Table 2). All the results are analyzed according to the cli-
mate mean state of each test, except the correlation analysis. 

Table 2. Configuration of experiments using the correction scheme. 

Experiment Description Test Time 
OBS Ocean reanalysis data 30 years 

Control No correction 30 years 
EnOI_WOA Assimilated WOA by EnOI approach 30 years 
Cor_WOA Ensemble-based correction approach 30 years 

Since these two correction schemes are for the whole sea temperature, we take the 
depth of the thermocline (the depth of 20 centigrade isotherm) as a representative to re-
flect the changes in sea temperature in the upper tropical Pacific Ocean after correction 
(Figure 1a–c). In the western tropical Pacific Ocean, the deepest thermocline represented 
by OBS can be close to 180 m, which is about 30 m deeper than the model simulation. In 
the eastern tropical Pacific Ocean, the depth of OBS is slightly shallower than the model 
results—that is, the OBS thermocline has a large slope in the tropical Pacific Ocean (the 
thermocline depth of WOA data is similar to the OBS, with few small differences, so it is 
not given here). The results of the Control show that the thermocline in the western trop-
ical Pacific is shallow, and the slope is generally gentle. However, in the results of 
EnOI_WOA, there is a relatively obvious thermocline uplift phenomenon at about 20 lon-
gitudes near the International Date Line, which means that the sea temperature bias in-
creased after assimilating the WOA data. The Cor_WOA is similar to the results of the 
Control but with slightly more detail, showing that the simulation of the whole thermo-
cline is a positive improvement. 

 
Figure 1. Long-term average depth of the tropical Pacific thermocline (units: m). (a–d) represent 
OBS, Control, EnOI_WOA, and Cor_WOA. 

As mentioned earlier, the ocean current plays a role in the model simulation, and the 
SSH has good correspondence with the ocean current, allowing it to largely represent the 
thermal and dynamic changes in the whole upper layer of the ocean [68]. In the results of 
the two schemes, there are also some differences between the SSH and current field. 
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As shown in Figure 2, the OBS mainly shows an obvious westward current influ-
enced by the tropical trade wind, with a relatively small SSH in the east. These similar 
characteristics are reflected in the results of the Control but with a stronger westward flow 
than OBS in the whole tropical Pacific. The Cor_WOA has consistent features with the 
Control, but in the EnOI_WOA, there is no obvious coordination with the Control or OBS 
in the tropical western Pacific and eastern Indian Ocean, which the eastward countercur-
rent (−5–5° N, 160–190° E and 0°, 70–90° E) does not correspond to the position of the 
observed north equatorial countercurrent (5–10° N, 130–155° E and −5° N, 45–65° E). The 
SSH distribution (the three groups of model tests have similar geoids, so their spatial 
mean values are directly shown here, rather than the anomaly values of removing the 
mean values) simulated by the model is basically similar to the OBS distribution features. 
The SSH values in some regions are not in agreement between the OBS and the model 
results; they are mainly due to the bias of the model. The large value areas are located in 
the western Pacific and central Indian Ocean, while in the eastern tropical Pacific, the SSH 
is relatively small. The SSH of EnOI_WOA in the tropical western Pacific is lower than the 
Control and Cor_WOA. The current field and SSH are different in the tropical western 
Pacific, where the thermocline also shows a difference between the two correction 
schemes. Therefore, we can reasonably assume that the reason for this difference is the 
current field and sea temperature being inconsistent under EnOI_WOA. 

 
Figure 2. Long-term average horizontal distribution of the global sea surface height (shaded, unit: 
m) and current field (arrow, unit: m/s). (a–d) represent OBS, Control, EnOI_WOA, and Cor_WOA. 

To evaluate this inconsistency, we selected the tropical western Pacific with the most 
significant differences for further presentation and analysis. As shown in Figure 3, the 
results of the Control and Cor_WOA showed similar characteristics for the SSH and hor-
izontal current. The horizontal current is uniformly oriented westward in the tropical 
western Pacific, but the Cor_WOA indicates a low-value area of SSH around 10° S in the 
western Pacific. In the results of EnOI_WOA, there is an eastward current near the equa-
tor, which is diametrically opposite to the results of the Control and Cor_WOA. There are 
significant inconsistencies in the distribution and intensity between the eastward counter-
current in EnOI_WOA and OBS. According to the description of the two correction 
schemes in Sections 2.3 and 2.4, the setup of model error Rm and observation error Ro are 
identical. Therefore, the sea temperature obtained by them in their correction step should 
be the same. Consequently, the adjustment of the sea temperature bias in EnOI_WOA may 
produce inconsistent adjustments to the current field in data assimilation. In the next sec-
tion, we seek to uncover the cause of this mismatched countercurrent and determine 
whether it is affected by the weakening of trade winds or the influence of the ocean’s own 
multi-variable adjustment. 
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Figure 3. Long-term average horizontal distribution of the sea surface height (shaded, unit: m) and 
current field (arrow, unit: m/s) in the tropical western Pacific. (a–d) represent OBS, Control, 
EnOI_WOA, and Cor_WOA. 

3.2. Analysis of the Causes of the Inconsistent Current Field 
In the previous section, there were obvious differences between the results of the two 

correction schemes in the tropical Pacific. In the following section, we seek to explain these 
differences, especially the inconsistent adjustment of the current field and the reason why 
this inconsistency affected the correction process through the multi-variable adjustment 
in the EnOI. 

The air–sea interactions cannot be ignored in the coupled model, so we first consider 
whether the inconsistent current field is affected by atmospheric variables such as the 
wind. As shown in Figure 4, the three test results of the model simulation are basically 
consistent with the observed distribution. There are no obvious differences in the distri-
bution of the high- or low-pressure centers and horizontal wind. In the inconsistent areas 
(i.e., the western tropical Pacific and the eastern Indian Ocean), the southeast and north-
east trade winds are still dominant. In the EnOI_WOA, the results of the trade winds 
slightly weakened, which is consistent with the range of uplift thermocline in the tropical 
western Pacific. However, the original wind direction does not change here. This indicates 
that wind weakening is not the main reason for the above inconsistent current field but 
may still have a slight impact on the horizontal current field. 
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Figure 4. Long-term mean distribution of the global sea level pressure (unit: hPa) and surface wind 
(unit: m/s). (a–d) represent OBS, Control, EnOI_WOA, and Cor_WOA. 

If the weakened trade winds are not the main result of an inconsistent adjustment of 
the current field, it is possible that multi-variable adjustment in the ocean leads to the 
occurrence of a mismatched countercurrent. As shown in Figure 5, the temperature in the 
upper 400 m of the sea maintains a similar relationship between the Cor_WOA and Con-
trol. Both values show a high positive correlation with the surface, which quickly changes 
to 0 around 100 m and then maintains a high negative correlation after gradually deepen-
ing. OBS also shows similar characteristics. However, the results below 100 m show no 
negative correlation but remain largely around 0. The EnOI_WOA, on the other hand, is 
obviously different from the other tests. With the maximum positive correlation, the 
EnOI_WOA value decays rapidly to about 0.4 at a depth of around 100 m. With an increase 
in depth, the correlation coefficient no longer changes significantly. Compared with the 
negative correlation of other results below 100 m, the correlation coefficient remains 
around 0.4. That is to say, the change of sea temperature recorded in EnOI_WOA is obvi-
ously different from that in other tests (the correlation in WOA data is similar to the 
Cor_WOA, but quite different with the EnOI_WOA). 

 
Figure 5. The correlation between SST and the upper 400 m sea temperature in the western tropical 
Pacific: black solid line, OBS; blue solid line, Control; green dashed line, EnOI_WOA; red dashed 
line, Cor_WOA. 
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The change in the correlation between the temperature on the surface and upper lay-
ers of the sea could be the cause of the bias increase in EnOI_WOA. The cause of this 
change is likely related to other variables adjusted during assimilation, especially the in-
consistent horizontal current field mentioned above. As seen in Figure 6, the Cor_WOA 
and Control maintain the same relationship in the upper layers, which is basically 0.6 in 
the upper 100 m, then rapid attenuation at 100–200 m, rapid decrease by −0.6 below 200 
m, and then there are no significant changes. However, the OBS rarely shows a correlation 
between SST and the horizontal current field, with a correlation of only 0.2 at the surface 
layer and a correlation of 0–0.1 between other depths. The correlation with EnOI_WOA is 
similar to the correlation between SST and the upper 400 m sea temperature. The attenu-
ation of the correlation coefficient is obvious on the surface layer and is weakened and 
maintained between −0.2 and −0.3 after reaching 100 m, showing completely different 
characteristics from the other tests. 

 
Figure 6. The correlation between SST and the upper 400 m horizontal current in the western trop-
ical Pacific: black solid line, OBS; blue solid line, Control; green dashed line, EnOI_WOA; red dashed 
line, Cor_WOA. 

In our EnOI approach, the vertical current is not adjusted during assimilation; in-
stead, it changes in the next step of model integration after assimilation. Therefore, the 
differences between the results of the vertical current in the three model simulation tests 
are not obvious (Figure 7b–d), which basically reflects the characteristics of a strong down-
ward current in the eastern Pacific and a weak current in the western Pacific. The OBS is 
almost opposite the model results, showing obvious upwelling in the east and the main 
subsidence area in the west. This indicates that the vertical current may be the reason why 
the correlations between the current field and sea temperature in the model results are 
different with OBS but not why inconsistent adjustment occurs after assimilation. 
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Figure 7. Long-term mean vertical profile of the vertical current in the tropical Pacific (unit, m/s): 
(a) OBS; (b) Control; (c) EnOI_WOA; (d) Cor_WOA. 

There is a certain bias in the model’s current field that causes the unreasonable cor-
relations between temperature and ocean current in the background matrix (the correla-
tions between SST and the subsurface fields of temperature and current in the background 
matrix correspond to the correlations in the Control). This kind of unreasonable relation-
ship is introduced into the assimilation through the background matrix, which causes cur-
rent–field incongruity when assimilating sea temperature data, resulting in inconsistent 
adjustments. Our new bias correction scheme can adjust the sea temperature without in-
troducing too much information or adjusting other variables during correction. From the 
results, we can see that this method can successfully solve the inconsistent problem of the 
current field. 

According to the previous results, the inconsistency is most likely caused by an ad-
justment of the ocean interior. Therefore, we carried out a heat budget analysis on the 
tropical Pacific. The content discussed in this paper is the long-term mean state, so we 
only carried out a simple analysis of the climate mean state. To avoid the boundary prob-
lem, we chose the whole tropical Pacific for calculations, and Figure 8 illustrates the results 
of the inconsistent region. Among the four item results, Q is the largest, but the differences 
between the four tests are not obvious, indicating that Q is not the cause of the difference. 
The proportions of the other items are generally equal, but the proportion of EnOI_WOA 
is significantly larger than that of the other tests in Figure 8c. The item w*dT/dz is related 
to the increase in the vertical current and the cooling of the sea temperature in this area. 
This item only represents a numerical increase in EnOI_WOA. Indeed, compared to the 
two items influenced by the horizontal current field, this item is still not the main factor. 
As shown in Figure 8a,b, the results of the horizontal current field in EnOI_WOA directly 
change the sign, which is contrary to the other tests (especially the change in the u direc-
tion). This may indicate that the horizontal current field is the main cause of the incon-
sistency. 
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Figure 8. The average of the heat budget in the western tropical Pacific (−5–5° N, 160–190° E): (a) 
u*dT/dx; (b) v*dT/dy; (c) w*dT/dz; (d) Q; red, OBS; blue, Control; green, EnOI_WOA; orange, 
Cor_WOA. 

Since the first term in Figure 8a means that the impaction term of the u-directional 
current field could be the main factor, this term should be given further spatial distribu-
tion over the whole tropical Pacific. The EnOI_WOA (Figure 9c) presents exactly the op-
posite effect to the other tests in the almost equatorial Pacific. In the other tests, this item 
involves obtaining heat in the ocean (the symbols represent the opposite meaning), while 
this item in EnOI_WOA involves releasing heat in this area. Due to the inconsistent ad-
justment of the current field, the heat originally stored in the western Pacific is lost, lead-
ing to a decrease in sea temperature. This decrease in sea temperature, in turn, will pro-
duce an incorrect direction and change the horizontal current field under EnOI_WOA, 
thus further aggravating this inconsistency. 

 
Figure 9. Spatial distribution of u*dT/dx in the tropical Pacific: (a) OBS; (b) Control; (c) EnOI_WOA; 
(d) Cor_WOA. 
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To better describe the heat transfer in the upper layer of the ocean, we selected two 
areas with the same grid range on the eastern and western sides of the tropical Pacific and 
calculated the regional average of the sea temperature (Figure 10). After subtracting the 
east side from the west side, the sea temperature difference at a depth of 50–200 m was 
shown to be the most significant, while the sea temperature difference of the EnOI_WOA 
was more than 3 centigrade. This result is similar to the tropical thermocline shown in 
Figure 1c, corresponding to its shallowness. This means that the heat is not stored in the 
west but transferred to the east under the influence of the inconsistent current field, 
thereby warming the sea temperature in the east and reducing the sea temperature differ-
ence. Moreover, the difference in sea temperature below 200 m is close to −3 centigrade in 
the EnOI_WOA; that is, the sea temperature in the west is 3 centigrade lower than that in 
the east, meaning that under the influence of the current field, the heat was not stored 
after it was transferred down into the deeper ocean in the west. The new bias correction 
scheme results maintain good consistency with the observations in the above analysis, 
indicating that this scheme can not only overcome the aforementioned inconsistency but 
also improve the simulation results of the model. 

 
Figure 10. The vertical profile of the difference in sea temperature between the tropical western 
Pacific (−5–5° N, 140–170° E) and the eastern Pacific (−5–5° N, 240–270° E) (unit, °C): black solid, 
OBS; blue solid, Control; green dashed, EnOI_WOA; red dashed, Cor_WOA. 

4. Discussion 
The explanation for the current field inconsistent adjustments in this paper is still 

relatively preliminary and is only concerned with the heat transfer introduced by the as-
similated sea temperature. A coupled model that involves significant dynamic and ther-
mal conversion mechanisms is worthy of further discussion and analysis. For example, 
the influence of equatorial subsurface current and the important role of salinity in ocean 
change should be considered. In the future, correcting the salinity or other variables 
through different data should be considered to test the relevant changes and reveal the 
physical mechanisms. 

Because the new ensemble-based bias correction scheme does not produce incoordi-
nation in CAS-ESM-C, we thought there should be no adjustment needed for other varia-
bles except for sea temperature during corrections. Whether there are similar results in 
other coupled models, it is still necessary to carry out corresponding tests. Accordingly, 
whether the EnOI method, which is widely used in data assimilation of the coupled 
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model, has a similar problem to that mentioned in this paper during multi-variable assim-
ilation, it also needs more model results to test. In the new version of the CAS-ESM-C, the 
simulation of each sub-model and the flux exchange between them are improved. Based 
on the idea of ensemble forecast, we further superimposed the model disturbance with 
the sea temperature climate state observation data to correct the model bias more reason-
ably, such as in high-resolution regional ocean models without coupled atmospheric mod-
els, such as ROMs and HYCOM. Using coarse resolution sea temperature climate state 
observation data, whether this correction scheme could produce reasonable and effective 
results also needs to be further tested. 

5. Conclusions 
In this study, we used WOA13 sea temperature climate data based on the EnOI ap-

proach and ensemble idea to design two bias correction schemes of sea temperature bias 
in the coupled model (CAS-ESM-C) and compare the results of these two schemes. The 
ensemble-based bias correction scheme could effectively avoid the inconsistent adjust-
ments, and the model simulation bias increased, which are in EnOI scheme: 

(1) The main manifestation of inconsistency is in the tropical western Pacific and the 
eastern Indian Ocean. According to the correlation analysis of SST with upper sea tem-
perature and horizontal current field, we have determined that the main reason for in-
creased bias is the influence of the current field’s inconsistent adjustment. 

(2) The ensemble-based bias correction scheme could effectively overcome the incon-
sistent adjustment though only correcting the sea temperature at the correction step. The 
vertical velocity not involved in the EnOI approach has not changed significantly, mean-
ing that vertical current is not the main factor causing this inconsistency; on the other 
hand, it also suggests that other variables in the ocean model that are not directly adjusted 
in the correction are almost unaffected. Therefore, the ensemble-based bias correction 
scheme could reduce the original model sea temperature bias and achieved a reasonable 
model simulation. 

(3) The atmospheric model is not significant for the formation of this inconsistency, 
mainly due to the adjustment of the ocean model. Due to the negative bias of the model 
sea temperature in the tropic Pacific, a quantity of heat would be introduced into the up-
per ocean when assimilated sea temperature. The wind–evaporation feedback in the at-
mospheric model consumed part of this heat, but from our results, its influences on this 
heat should be small. In the ocean model, the vertical velocity is smaller on the tropical 
western Pacific, which is not conducive to the downward heat transfer and storage. Under 
the influence of the horizontal current field, the heat is mainly transferred to the east, 
weakening the trade wind through the air–sea interaction process, further strengthening 
the current field to east, and transferring more heat, which eventually leads to the in-
creased bias of sea temperature simulation. 
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