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Abstract: The hydrodynamic behaviour of floating regular polygonal platforms under wave action
was studied by conducting parametric studies. Considering triangular, square, hexagonal, and
circular platforms of similar size and draft, the results show that their added mass, radiation damping,
and RAOs are similar. However, the wave exciting forces are slightly different, particularly the
horizontal forces. The polygonal platforms oriented with one of its corners in line with the prevailing
wave direction can lead to a reduction in the horizontal force on the platform, a feature that helps
in reducing the cost of a mooring system. Moreover, such oriented platforms are able to disperse
the waves better in multiple directions and hence will not pose problems for ships or marine vessels
passing by the platform on the weather side. Thus, the orientation of a polygonal platform is an
important design consideration. From the comparison study among different polygonal platforms,
their wave attenuation performances are slightly similar. The hydrodynamic analyses performed
herein for the parametric studies were sped up considerably by using a significantly lesser number
of Fourier coefficient sets for the series functions that define the velocity potentials when compared
to those used by previous researchers in their analytical approaches. The adoption of the radius
function defined by cosine-type radial perturbation does not only generate the geometric boundaries
of polygonal platforms, but it also simplifies the formulation and quickens the computations.

Keywords: 3D hydrodynamic analysis; floating polygonal platform; Fourier expansion; cosine-type
radial perturbation; eigenfunction expansion method

1. Introduction

There is considerable interest in using large floating structures for creating land from
the sea in land scarce coastal cities and countries. These large floating structures have
many advantages over the traditional land reclamation technique, such as being more
environmentally friendly to the eco-marine system and cost-effective for birthing land
in deep waters [1]. Examples include Monaco’s 352 m long floating jetty/breakwater,
which also accommodates car parks and a shopping centre [2]; the Sebit islets, which are
artificial floating islands in the Han River of South Korea, which is used for exhibitions,
entertainment and leisure activities [3]; Denmark’s floating energy island in the North
Sea [4]; the Fjordmax platform for fish farming in Norway [5]; and the Oceanix floating
city [6].

Many researchers studied the 3D hydrodynamic analysis of floating structures to
understand the interaction between structures and waves with the view to produce optimal
floating structure designs and mooring systems. The analyses are generally performed
by numerical techniques such as the finite element method (e.g., [7,8]) and the boundary
element method (e.g., [9,10]) because they can handle any shape of floating structures or
seabed topology. However, such methods require large computational time for solutions
and for pre-processing jobs such as mesh discretization. Conversely, analytical methods
such as the eigenfunction expansion method can solve hydrodynamic problems of floating
structures quickly and furnish accurate results, provided that analytical solutions are
available.
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In the literature, hydrodynamic problems of different types of floating bodies have
been solved analytically. For example, Bhatta and Rahman [11] tackled the diffraction
and radiation problems of floating circular cylinders and Yeung [12] obtained the added
mass and radiation damping of a vertical cylinder while Chen and Mei [13] addressed
floating elliptical cylinders by using the Mathieu function and Williams and Darwiche [14]
developed two approximate solutions for the wave radiation by a truncated elliptical
cylinder in order to reduce computational efforts. Liu et al. and Yu et al. [15,16] presented
a semi-analytical method to handle the diffraction problem and radiation problem of
floating arbitrarily shaped cylinders, respectively. By using the semi-analytical method,
they investigated the hydrodynamic behaviour of a triangular cosine-type cylinder and a
quasi-elliptical cylinder.

Thus far, the hydrodynamic problem of floating polygonal platforms has not been
studied analytically, particularly the wave field around the platform. As the incident waves
scatter due to the floating platforms and the radiated waves are produced by the platform
motion, the resulting wave field may affect other facilities or vessels passing nearby.
This paper thus investigates the hydrodynamic behaviour of floating polygonal platforms
under wave action. The geometries of regular polygonal platforms were generated by
using the cosine-type radial perturbation [17]. Therefore, the formulation for the floating
polygonal platforms can be achieved in a straightforward manner. For the hydrodynamic
analysis, we developed two improved versions of semi-analytical methods based on
Liu et al. [15] quadruple Fourier expansions and Yu et al. [16] triple Fourier expansions.
One version is the use of double Fourier expansions, such that it eliminates the need to
establish the number of truncated terms for two Fourier expansions. In the second version,
quadruple Fourier expansions are still used, but the number of Fourier coefficient sets is
reduced to only three when compared to the need for 10 sets in Liu et al. [15] and 16 sets
in Yu et al. [16]. This results in a significant reduction of computational time (almost
30% faster). By using the latter version of a semi-analytical approach, 3D hydrodynamic
analysis for floating polygonal platforms can be quickened such that parametric studies
on hydrodynamic parameters and wave fields can be conducted readily. Hydrodynamic
results presented herein include added mass, radiation damping, wave exciting forces,
RAOs, wave runup, and wave field in the vicinity of the floating polygonal platforms.

The layout of the paper is as follows. Section 2 articulates the current problem.
Section 3 presents the governing equation and boundary conditions for the problem. Sec-
tion 4 presents the solutions of diffracted and radiated potentials using semi-analytical
approaches. Sections 5–7 handle the determination of the wave exciting forces, hydrody-
namic restoring forces, and motion responses of a floating platform, respectively. Section 8
concerns the verification of the present semi-analytical approaches and compares the com-
putational times required for ANSYS AQWA and the different analytical approaches. In
addition, the effective series terms to be considered are presented for a quick calculation of
hydrodynamic restoring forces and wave exciting forces. Section 9 presents the hydrody-
namic results for different polygonal-shaped platforms. Finally, conclusions are presented
in Section 10.

2. Problem Definition

Consider a floating rigid polygonal platform in a constant water depth h as shown in
Figure 1. The incident wave has a wave period T, a wave amplitude A, and incidents the
floating platform at an oblique angle of β. The freeboard is assumed to be high enough to
prevent wave overtopping. The draft of the platform is d. The floating platform is allowed
to oscillate freely but is assumed to be kept in place. The cylindrical coordinates (r, θ, z) are
adopted with its origin at the centre of the regular polygonal platform.
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Figure 1. Floating polygonal platform under wave action.

The plan shape of the polygonal platform is generated by using a radius function
defined by the cosine-type radial perturbation given by [17].

R(θ) = R0{1 + ε cos nr(θ − θ0)} (1)

where R0, ε, nr and θ0 are parameters to be chosen by a user. This radius function can be
used to construct all types of regular polygonal shapes. For example, polygonal shapes
such as a triangle, square, pentagon, hexagon and octagon can be straightforwardly created
by choosing the appropriate values for the dimensionless parameters ε, nr and θ0, which
are summarised in Table 1. The size of the polygonal shape is predominantly controlled
by R0. For a given R0 value, the polygonal shapes have similar plan areas S0 equal to
about πR2

0; which is convenient when comparing with a circular platform of a similar size.
In addition, one can freely orientate the polygonal shape by changing θ0.

Table 1. Various regular polygonal shapes created by the cosine-type radial perturbation. (Note: S0

denotes the plan area of platform).

Platform
shapes

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 3 of 34 
 

 

The plan shape of the polygonal platform is generated by using a radius function 
defined by the cosine-type radial perturbation given by [17]. 𝑅(𝜃) = 𝑅 1 + 𝜀 cos 𝑛 (𝜃 − 𝜃 )  (1) 

where 𝑅 , 𝜀, 𝑛  and 𝜃  are parameters to be chosen by a user. This radius function can 
be used to construct all types of regular polygonal shapes. For example, polygonal shapes 
such as a triangle, square, pentagon, hexagon and octagon can be straightforwardly cre-
ated by choosing the appropriate values for the dimensionless parameters 𝜀, 𝑛  and 𝜃 , 
which are summarised in Table 1. The size of the polygonal shape is predominantly con-
trolled by 𝑅 . For a given 𝑅  value, the polygonal shapes have similar plan areas 𝑆  
equal to about 𝜋𝑅 ; which is convenient when comparing with a circular platform of a 
similar size. In addition, one can freely orientate the polygonal shape by changing 𝜃 . 

 
Figure 1. Floating polygonal platform under wave action. 

The current problem is to determine (i) diffracted and radiated potentials, (ii) wave 
exciting forces, (iii) added mass, (iv) radiation damping, (v) RAOs (response amplitude 
operators), (vi) wave runup, and (vii) wave field. 

Table 1. Various regular polygonal shapes created by the cosine-type radial perturbation. (Note: 𝑆  denotes the plan area of platform) 

Platform 
shapes 

 
triangle 

 
square 

 
pentagon 

 
hexagon 

 
octagon 𝑆  1.005 × 𝜋𝑅  1.002 × π𝑅  1.001 × π𝑅  1.000 × π𝑅  1.000 × π𝑅  𝜀 0.1 0.06 0.04 0.03 0.02 𝑛  3 4 5 6 8 

𝜃  
π2 

π4 
π2 

π6 
π8 

3. Governing Equation and Boundary Conditions 
The hydrodynamic analysis will be performed in the frequency domain. The fluid 

domain is divided into two regions as shown in Figure 1. Region I is the sea space outside 
the platform domain while Region II is the sea space underneath the platform domain. 
The fluid is assumed to be incompressible, inviscid and irrotational, and hence the linear 

triangle

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 3 of 34 
 

 

The plan shape of the polygonal platform is generated by using a radius function 
defined by the cosine-type radial perturbation given by [17]. 𝑅(𝜃) = 𝑅 1 + 𝜀 cos 𝑛 (𝜃 − 𝜃 )  (1) 

where 𝑅 , 𝜀, 𝑛  and 𝜃  are parameters to be chosen by a user. This radius function can 
be used to construct all types of regular polygonal shapes. For example, polygonal shapes 
such as a triangle, square, pentagon, hexagon and octagon can be straightforwardly cre-
ated by choosing the appropriate values for the dimensionless parameters 𝜀, 𝑛  and 𝜃 , 
which are summarised in Table 1. The size of the polygonal shape is predominantly con-
trolled by 𝑅 . For a given 𝑅  value, the polygonal shapes have similar plan areas 𝑆  
equal to about 𝜋𝑅 ; which is convenient when comparing with a circular platform of a 
similar size. In addition, one can freely orientate the polygonal shape by changing 𝜃 . 

 
Figure 1. Floating polygonal platform under wave action. 

The current problem is to determine (i) diffracted and radiated potentials, (ii) wave 
exciting forces, (iii) added mass, (iv) radiation damping, (v) RAOs (response amplitude 
operators), (vi) wave runup, and (vii) wave field. 

Table 1. Various regular polygonal shapes created by the cosine-type radial perturbation. (Note: 𝑆  denotes the plan area of platform) 

Platform 
shapes 

 
triangle 

 
square 

 
pentagon 

 
hexagon 

 
octagon 𝑆  1.005 × 𝜋𝑅  1.002 × π𝑅  1.001 × π𝑅  1.000 × π𝑅  1.000 × π𝑅  𝜀 0.1 0.06 0.04 0.03 0.02 𝑛  3 4 5 6 8 

𝜃  
π2 

π4 
π2 

π6 
π8 

3. Governing Equation and Boundary Conditions 
The hydrodynamic analysis will be performed in the frequency domain. The fluid 

domain is divided into two regions as shown in Figure 1. Region I is the sea space outside 
the platform domain while Region II is the sea space underneath the platform domain. 
The fluid is assumed to be incompressible, inviscid and irrotational, and hence the linear 

square

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 3 of 34 
 

 

The plan shape of the polygonal platform is generated by using a radius function 
defined by the cosine-type radial perturbation given by [17]. 𝑅(𝜃) = 𝑅 1 + 𝜀 cos 𝑛 (𝜃 − 𝜃 )  (1) 

where 𝑅 , 𝜀, 𝑛  and 𝜃  are parameters to be chosen by a user. This radius function can 
be used to construct all types of regular polygonal shapes. For example, polygonal shapes 
such as a triangle, square, pentagon, hexagon and octagon can be straightforwardly cre-
ated by choosing the appropriate values for the dimensionless parameters 𝜀, 𝑛  and 𝜃 , 
which are summarised in Table 1. The size of the polygonal shape is predominantly con-
trolled by 𝑅 . For a given 𝑅  value, the polygonal shapes have similar plan areas 𝑆  
equal to about 𝜋𝑅 ; which is convenient when comparing with a circular platform of a 
similar size. In addition, one can freely orientate the polygonal shape by changing 𝜃 . 

 
Figure 1. Floating polygonal platform under wave action. 

The current problem is to determine (i) diffracted and radiated potentials, (ii) wave 
exciting forces, (iii) added mass, (iv) radiation damping, (v) RAOs (response amplitude 
operators), (vi) wave runup, and (vii) wave field. 

Table 1. Various regular polygonal shapes created by the cosine-type radial perturbation. (Note: 𝑆  denotes the plan area of platform) 

Platform 
shapes 

 
triangle 

 
square 

 
pentagon 

 
hexagon 

 
octagon 𝑆  1.005 × 𝜋𝑅  1.002 × π𝑅  1.001 × π𝑅  1.000 × π𝑅  1.000 × π𝑅  𝜀 0.1 0.06 0.04 0.03 0.02 𝑛  3 4 5 6 8 

𝜃  
π2 

π4 
π2 

π6 
π8 

3. Governing Equation and Boundary Conditions 
The hydrodynamic analysis will be performed in the frequency domain. The fluid 

domain is divided into two regions as shown in Figure 1. Region I is the sea space outside 
the platform domain while Region II is the sea space underneath the platform domain. 
The fluid is assumed to be incompressible, inviscid and irrotational, and hence the linear 

pentagon

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 3 of 34 
 

 

The plan shape of the polygonal platform is generated by using a radius function 
defined by the cosine-type radial perturbation given by [17]. 𝑅(𝜃) = 𝑅 1 + 𝜀 cos 𝑛 (𝜃 − 𝜃 )  (1) 

where 𝑅 , 𝜀, 𝑛  and 𝜃  are parameters to be chosen by a user. This radius function can 
be used to construct all types of regular polygonal shapes. For example, polygonal shapes 
such as a triangle, square, pentagon, hexagon and octagon can be straightforwardly cre-
ated by choosing the appropriate values for the dimensionless parameters 𝜀, 𝑛  and 𝜃 , 
which are summarised in Table 1. The size of the polygonal shape is predominantly con-
trolled by 𝑅 . For a given 𝑅  value, the polygonal shapes have similar plan areas 𝑆  
equal to about 𝜋𝑅 ; which is convenient when comparing with a circular platform of a 
similar size. In addition, one can freely orientate the polygonal shape by changing 𝜃 . 

 
Figure 1. Floating polygonal platform under wave action. 

The current problem is to determine (i) diffracted and radiated potentials, (ii) wave 
exciting forces, (iii) added mass, (iv) radiation damping, (v) RAOs (response amplitude 
operators), (vi) wave runup, and (vii) wave field. 

Table 1. Various regular polygonal shapes created by the cosine-type radial perturbation. (Note: 𝑆  denotes the plan area of platform) 

Platform 
shapes 

 
triangle 

 
square 

 
pentagon 

 
hexagon 

 
octagon 𝑆  1.005 × 𝜋𝑅  1.002 × π𝑅  1.001 × π𝑅  1.000 × π𝑅  1.000 × π𝑅  𝜀 0.1 0.06 0.04 0.03 0.02 𝑛  3 4 5 6 8 

𝜃  
π2 

π4 
π2 

π6 
π8 

3. Governing Equation and Boundary Conditions 
The hydrodynamic analysis will be performed in the frequency domain. The fluid 

domain is divided into two regions as shown in Figure 1. Region I is the sea space outside 
the platform domain while Region II is the sea space underneath the platform domain. 
The fluid is assumed to be incompressible, inviscid and irrotational, and hence the linear 

hexagon

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 3 of 34 
 

 

The plan shape of the polygonal platform is generated by using a radius function 
defined by the cosine-type radial perturbation given by [17]. 𝑅(𝜃) = 𝑅 1 + 𝜀 cos 𝑛 (𝜃 − 𝜃 )  (1) 

where 𝑅 , 𝜀, 𝑛  and 𝜃  are parameters to be chosen by a user. This radius function can 
be used to construct all types of regular polygonal shapes. For example, polygonal shapes 
such as a triangle, square, pentagon, hexagon and octagon can be straightforwardly cre-
ated by choosing the appropriate values for the dimensionless parameters 𝜀, 𝑛  and 𝜃 , 
which are summarised in Table 1. The size of the polygonal shape is predominantly con-
trolled by 𝑅 . For a given 𝑅  value, the polygonal shapes have similar plan areas 𝑆  
equal to about 𝜋𝑅 ; which is convenient when comparing with a circular platform of a 
similar size. In addition, one can freely orientate the polygonal shape by changing 𝜃 . 

 
Figure 1. Floating polygonal platform under wave action. 

The current problem is to determine (i) diffracted and radiated potentials, (ii) wave 
exciting forces, (iii) added mass, (iv) radiation damping, (v) RAOs (response amplitude 
operators), (vi) wave runup, and (vii) wave field. 

Table 1. Various regular polygonal shapes created by the cosine-type radial perturbation. (Note: 𝑆  denotes the plan area of platform) 

Platform 
shapes 

 
triangle 

 
square 

 
pentagon 

 
hexagon 

 
octagon 𝑆  1.005 × 𝜋𝑅  1.002 × π𝑅  1.001 × π𝑅  1.000 × π𝑅  1.000 × π𝑅  𝜀 0.1 0.06 0.04 0.03 0.02 𝑛  3 4 5 6 8 

𝜃  
π2 

π4 
π2 

π6 
π8 

3. Governing Equation and Boundary Conditions 
The hydrodynamic analysis will be performed in the frequency domain. The fluid 

domain is divided into two regions as shown in Figure 1. Region I is the sea space outside 
the platform domain while Region II is the sea space underneath the platform domain. 
The fluid is assumed to be incompressible, inviscid and irrotational, and hence the linear 

octagon

S0 1.005× πR2
0 1.002× πR2

0 1.001× πR2
0 1.000× πR2

0 1.000× πR2
0

ε 0.1 0.06 0.04 0.03 0.02

nr 3 4 5 6 8

θ0
π
2

π
4

π
2

π
6

π
8

The current problem is to determine (i) diffracted and radiated potentials, (ii) wave
exciting forces, (iii) added mass, (iv) radiation damping, (v) RAOs (response amplitude
operators), (vi) wave runup, and (vii) wave field.

3. Governing Equation and Boundary Conditions

The hydrodynamic analysis will be performed in the frequency domain. The fluid
domain is divided into two regions as shown in Figure 1. Region I is the sea space outside
the platform domain while Region II is the sea space underneath the platform domain.
The fluid is assumed to be incompressible, inviscid and irrotational, and hence the linear
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potential theory may be applied. Accordingly, the fluid motion is governed by the Laplace
equation as

1
r

∂

∂r

(
r

∂φ

∂r

)
+

1
r2

∂2φ

∂θ2 +
∂2φ

∂z2 = 0 (2)

where φ is the velocity potential. This velocity potential can be expressed as the sum of the
incident potential φI , diffracted potential φD, and radiated potential φR, i.e.,

φ = φI + φD + φR (3)

The radiated potential may be expressed as the sum of six radiation modes corre-
sponding to the six degrees of freedom, as

φR =
6

∑
j=1

(
−iωξ j ϕ

j
R

)
(4)

where i is the imaginary unit, ω the wave angular frequency, ξ j the motion amplitude of

the platform for the j-th radiation mode, and ϕ
j
R the normalised radiated potential for the

j-th radiation mode.
The velocity potential must satisfy the following free surface condition and seabed

condition
∂φ

∂z

∣∣∣∣
z=0

=
ω2

g
φ

∣∣∣∣
z=0

on the free surface (5)

∂φ

∂z

∣∣∣∣
z=−h

= 0 on the seabed (6)

where g is the gravitational acceleration. The diffracted and radiated potentials must satisfy
Sommerfeld’s radiation condition at infinity, that is

lim
r→∞

(
∂φD,R

∂r
− ikφD,R

)
= 0 (7)

where k is the wave number. At the wetted surface of the floating platform, the boundary
conditions for the diffraction and the radiation problems are, respectively, given by

∂φD
∂n

= −∂φI
∂n

(8)

∂ϕR
∂n

= n·nj (j = 1, 2, · · · , 6) (9)

where n is the unit normal vector pointing to the wetted surface of the platform and
nj is the generalised motion normal for 6 DOFs (degrees of freedom), i.e., n1 = nx,
n2 = ny, n3 = nz, n4 = −(z− zG)ny + (y− yG)nz, n5 = (z− zG)nx − (x− xG)nz and
n6 = −(y− yG)nx + (x− xG)ny, where (xG, yG, zG) are the coordinates of the platform’s
centre of gravity. The radial unit normal vector is nr = cos θnx + sin θny, which is used
for a circular platform. However, if the radius function with respect to θ is not constant,
the normal derivatives of Equations (8) and (9) must be modified by using the correspond-
ing unit normal vector. Therefore, let us introduce the surface function S(r, θ) = r− R(θ)
and its derivative with respect to θ defined as ∂S

∂θ = − ∂R(θ)
∂θ [18]. The surface function S

implies the distance from the surface of a platform to an arbitrary field point (r, θ) in a given
z-plane, which indicates that S is independent on the z-coordinates. A point with positive
S is located outside the platform domain while a point with a negative S is located within
the platform domain. S = 0 indicates the associated point is at the edge of the platform
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domain, which is equivalent to r = R(θ). By using the surface function, the unit normal
vector pointing to the water ns is given by [18].

ns =
∇S(r, θ)

|ns|
=

∂S
∂r
→
r + 1

r
∂S
∂θ

→
θ + ∂S

∂z
→
z

|ns|
=

1√
1 +

(
1
r

∂S
∂θ

)2

(
→
r +

1
r

∂S
∂θ

→
θ + 0

→
z
)

(10)

where∇ denotes the del operator in cylindrical coordinate system for obtaining the gradient
of a vector. Thus, the normal velocity on the platform wetted surface in the radial direction
can be calculated by using the divergence operator in the cylindrical coordinate system as

∇φ·ns =
1√

1 +
(

1
r

∂S
∂θ

)2

(
∂φ

∂r
+

1
r2

∂S
∂θ

∂φ

∂θ

)
(11)

4. Solutions for Diffracted and Radiated Potentials

The appropriate diffracted or radiated velocity potentials for each region are assumed
to be given by [11].

φ1 =
∞

∑
m=−∞

{
Am0

Hm(kr)
Hm(ka)

Z0(z)
Z0(0)

+
∞

∑
n=1

Amn
Km(knr)
Km(kna)

Zn(z)
Zn(0)

}
eimθ for Region I (12)

φ2 = φp2 +
∞

∑
m=−∞

{
Bm0

( r
b

)|m|
+

∞

∑
n=1

Bmn
Im(pnr)
Im(pnb)

cos pn(z + h)

}
eimθ for Region II (13)

where φp2 is the particular solution and the vertical eigenfunction Zn for Region I is
given by

Z0(z) =
cosh k(z + h)√

N0
, N0 =

1
2

[
1 +

sinh2kh
2kh

]
, (n = 0) (14)

Zn(z) =
cos kn(z + h)√

Nn
, Nn =

1
2

[
1 +

sin 2knh
2knh

]
, (n = 1, 2, · · · , ∞) (15)

Amn and Bmn are the unknown complex coefficients to be determined; Im and Km
are respectively the modified Bessel function of the first and the second kinds of order m;
a and b are respectively the shortest and the longest distance from the origin to the platform
surface along the radial direction, which may be calculated from the radius function R(θ).
The wavenumber k, and the vertical eigenvalue kn for Region I are given by

ω2

g
− ktanhk = 0 (16)

k0 = −ik,
ω2

g
+ kn tan kn = 0(n = 1, 2, ∞) (17)

and vertical eigenvalue pn for Region II is given by

pn =
πn

h− d
(n = 0, 1, 2, ∞) (18)

The particular solution must satisfy governing Equation (2), the seabed condition
Equation (6), and the wetted surface boundary conditions Equations (8) and (9) in the
vertical direction, i.e.,

∂ϕ
(j)
p2

∂z
= nz·nj = δ3j + (y− yG)δ4j − (x− xG)δ5j on z = −d (19)

where δij is the Kronecker delta (1 if i = j and 0 if i 6= j).
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For the diffraction problem, φp2 = −φI and for the radiation problem, ϕ
(j)
p2 is given by

ϕ
(j)
p2 (r, θ, z) =

4(z + h)2 −
(
1 + δ3j

)
r2

8(h− d)
{

δ3j + δ4j(r sin θ − yG)− δ5j(r cos θ − xG)
}

(20)

where the subscript or the superscript j denotes the radiation mode.
The incident velocity potential in the cylindrical coordinate system is given by

φI(r, θ, z) = − igA
ω

∞

∑
m=−∞

Jm(kr)eim(θ+ π
2 −β) cosh k(z + h)

cosh kh
(21)

where g is the gravitational acceleration, A the wave amplitude, β the oblique angle of the
incident waves, and Jm the Bessel function of the first kind of order m.

The matching conditions for the pressure and velocity continuities for the diffraction
problem are

φD1 ·ns =

{
−∇φI ·ns
∇φD2 ·ns

at r = R and
{
−d ≤ z ≤ 0
−h ≤ z ≤ −d

(22)

φD2 = φD1 at r = R and − h ≤ z ≤ −d (23)

where R denotes the radius function with respect to the angular coordinates R(θ). For cal-
culating the divergence operator in Equation (22), one can refer to Equation (11). The de-
nominator of Equation (11) may be cancelled out and r2 may be multiplied on both sides of
Equation (22) to remove the fractional terms.

The matching conditions for the pressure and velocity continuities for the radiation
problem are

∇ϕ
j
R1
·ns =

{
nj·ns

∇ϕ
j
R2
·ns

at r = R and
{
−d ≤ z ≤ 0
−h ≤ z ≤ −d

(24)

ϕ
j
R2

= ϕ
j
R1

at r = R and − h ≤ z ≤ −d (25)

In order to calculate nj·ns of Equation (24), another form of the unit normal vector ns
in the Cartesian coordinate system may be needed, which is given by

ns =
∇S(r,θ)
|ns| =

∂S
∂x
→
x+ ∂S

∂y
→
y+ ∂S

∂z
→
z

|ns|

= 1√
1+( 1

r
∂S
∂θ )

2

{(
cos θ − sin θ

r
∂S
∂θ

)→
x +

(
sin θ + cos θ

r
∂S
∂θ

)→
y + 0

→
z
} (26)

One can obtain the six normalised radiation velocity components of the platform at
r = R(θ) by applying the divergence operator (see Appendix A).

4.1. Solution for Diffraction Problem

For brevity, we consider the horizontal coordinates of the centre of gravity to coincide
with the origin, i.e., (xG, yG) = (0, 0), but the vertical coordinate of the centre of gravity
is not zero, zG 6= 0. For diffraction problems, the assumed velocity potentials given
in Equations (12), (13) and (21) are substituted into the matching conditions given in
Equations (22) and (23). This furnishes

∞
∑

m=−∞

∞
∑

n=0
Amn K′mn(r)|r=R(θ) exp(imθ)

Zn(z)
Zn(0)

= igA
ω cosh kh

∞
∑

m=−∞
eim( π

2 −β) J′m0(r)
∣∣
r=R(θ) exp(imθ) cosh k(z + h)

(−d ≤ z ≤ 0, 0 ≤ θ ≤ 2π)

(27)



J. Mar. Sci. Eng. 2021, 9, 923 7 of 30

∞
∑

m=−∞

∞
∑

n=0
Amn K′mn(r)|r=R(θ) exp(imθ)

Zn(z)
Zn(0)

−
∞
∑

m=−∞

∞
∑

n=0
Bmn I′mn(r)|r=R(θ) exp(imθ) cos pn(z + h)

= igA
ω cosh kh

∞
∑

m=−∞
eim( π

2 −β) J′m0(r)
∣∣
r=R(θ) exp(imθ) cosh k(z + h)

(−h ≤ z ≤ −d, 0 ≤ θ ≤ 2π)

(28)

∞
∑

m=−∞

∞
∑

n=0
Amn Kmn(r)|r=R(θ) exp(imθ)

Zn(z)
Zn(0)

−
∞
∑

m=−∞

∞
∑

n=0
Bmn Imn(r)|r=R(θ) exp(imθ) cos pn(z + h)

= igA
ω cosh kh

∞
∑

m=−∞
eim( π

2 −β) Jm(kr)|r=R(θ) exp(imθ) cosh k(z + h)

(−h ≤ z ≤ −d, 0 ≤ θ ≤ 2π)

(29)

where Kmn, Imn, K′mn, I′mn and J′m0 are given by for n = 0,

Km0(r) =
Hm(kr)
Hm(ka)

, Im0(r) =
( r

b

)|m|
(30)

K′m0(r) = r2 H′m(kr)
Hm(ka)

+ im
∂S
∂θ

Hm(kr)
Hm(ka)

, I′m0(r) = r2 |m|
b

( r
b

)|m|−1
+ im

∂S
∂θ

( r
b

)|m|
(31)

J′m0(r) = r2 J′m(kr) + im
∂S
∂θ

Jm(kr) (32)

for n > 0,

Kmn(r) =
Km(knr)
Km(kna)

, Imn(r) =
Im(pnr)
Im(pnb)

(33)

K′mn(r) = r2 K′m(knr)
Km(kna)

+ im
∂S
∂θ

Km(knr)
Km(kna)

, I′mn(r) = r2 I′m(pnr)
Im(pnb)

+ im
∂S
∂θ

Im(pnr)
Im(pnb)

(34)

Km
′, Im

′, Hm
′, and Jm

′ denote derivatives with respect to r of Km, Im, Hm, and Jm, respectively.

4.2. Solution for Radiation Problem

For radiation problems, we substitute Equations (12), (13) and (20) into
Equations (24) and (25) to obtain

∞
∑

m=−∞

∞
∑

n=0
A(j)

mn K′mn(r)|r=R(θ) exp(imθ)
Zn(z)
Zn(0)

= R2

√
1 + S2

θ
R2 f (j)

R (r, θ, z)
∣∣∣
r=R(θ)

(−d ≤ z ≤ 0, 0 ≤ θ ≤ 2π)

(35)

∞
∑

m=−∞

∞
∑

n=0
A(j)

mnK′mn(r)
∣∣∣∣
r=R(θ)

exp(imθ) Zn(z)
Zn(0)

−
∞
∑

m=−∞

∞
∑

n=0
B(j)

mn I′mn(r)
∣∣∣∣
r=R(θ)

exp(imθ) cos pn(z + h)

= R2

√
1 + s2

θ
R2 ϕ

(j)
p2 (r, θ, z)

∣∣∣∣∣
r=R(θ)

(−h ≤ z ≤ −d, 0 ≤ θ ≤ 2π)

(36)

∞
∑

m=−∞

∞
∑

n=0
A(j)

mn Kmn(r)|r=R(θ) exp(imθ)
Zn(z)
Zn(0)

−
∞
∑

m=−∞

∞
∑

n=0
B(j)

mn Imn(r)|r=R(θ) exp(imθ) cos pn(z + h)

= ϕ
(j)
p2 (r, θ, z)

∣∣∣
r=R(θ)

(−h ≤ z ≤ −d, 0 ≤ θ ≤ 2π)

(37)

where Sθ denotes ∂S
∂θ . Kmn, Imn, K′mn, I′mn are given in Equations (30), (31), (33) and (34),

f (j)
R (r, θ, z) in Appendix A and ϕ

(j)
p2 (r, θ, z) in Equation (20). ϕ

(j)′
p2 (r, θ, z)

∣∣∣∣
r=R(θ)

can be
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obtained by substituting the particular solutions of the radiation problem into Equation (11).
Thus, one has

ϕ
(3)′
p2 (r, θ, z)

∣∣∣∣
r=R(θ)

= − R

2(h− d)

√
1 + S2

θ
R2

(38)

ϕ
(4)′
p2 (r, θ, z)

∣∣∣∣
r=R(θ)

=
4(z + h)2

(
sin θ + cos θ

R Sθ

)
− R2

(
3 sin θ + cos θ

R Sθ

)
8(h− d)

√
1 + S2

θ
R2

(39)

ϕ
(5)′
p2 (r, θ, z)

∣∣∣∣
r=R(θ)

= −
4(z + h)2

(
cos θ − sin θ

R Sθ

)
− R2

(
3 cos θ − sin θ

R Sθ

)
8(h− d)

√
1 + S2

θ
R2

(40)

By multiplying the corresponding vertical eigenfunctions 1
h Zn(z) and 1

h−d cos pn(z + h)
and the angular eigenfunction e−imθ in Equations (27)–(29), Equations (35)–(37) and inte-
grating the equations for the associated integral intervals, one can combine Equation (27)
with (28) and (35) with (36), respectively. By truncating the series terms at m = M and
n = N, 2(2M + 1)(N + 1) equations and unknowns are given for the diffraction problem
and each radiation mode. Consequently, the unknown complex coefficients (Amn, Bmn,
A(j)

mn, B(j)
mn) can be solved by the linear algebra. The functions describing the incoming

waves (r|m| and Im) diverge at the far-field, whereas the functions describing the outgoing
waves (Hm and Km) diverge at the near-field. Hence, when the numerical integration
is conducted, slightly inaccurate results may be obtained, or the integration may take
considerable time to satisfy the required accuracy. In order to avoid these problems, those
functions were normalised as given in Equations (30)–(34) by applying the longest distance
b to the incoming waves and the shortest distance a to the outgoing waves.

Note that in view of an arbitrary radius function that describes the platform plan
geometry, the integration cannot be performed analytically, and thus numerical integration
must be resorted. This approach will be referred herein as semi-analytical approach 1.

Liu et al. [15] replaced the radial terms expressed by the radius function with the
Fourier expansion series such that the integration can be performed analytically. However,
the approach in Liu et al. [15] suffers the following drawbacks:

• the quadruple summation series are required as compared to semi-analytical approach
1, which only requires double summation series;

• the Fourier coefficients must be numerically calculated in advance;
• the convergence analysis is required to determine the truncation numbers of additional

series (Nr and Q).

Nr-series represents the radius function R(θ) while Q-series represents the radial
functions with respect to r. These radial functions include the Bessel function, Hankel
function, the modified Bessel functions and exponential function. If the geometry of the
platform is complicated, more Nr- and Q-series terms may be required, which will increase
the computational effort considerably.

A significant contribution of the present study is the reduction of Liu et al. [15]
10 sets of Fourier coefficients for solving the diffraction problem and Yu et al. [16] 16 sets of
Fourier coefficients for solving the radiation problem to only three sets such as am,n,q, bm,n,q
and fm,q for determining the diffracted and radiated potentials. As a result, it leads to a
significant reduction in computational effort and mitigates the abovementioned drawbacks.
This second approach will be referred to as semi-analytical approach 2. The applied Fourier
expansions used in semi-analytical approach 2 are given by

Hm(kr)|r=R(θ) =
∞

∑
q=−∞

am,0,qeiqθ (n = 0) (41)
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Km(knr)|r=R(θ) =
∞

∑
q=−∞

am,n,qeiqθ (n = 1, 2, · · · , ∞) (42)

r|m|
∣∣∣
r=R(θ)

=
∞

∑
q=−∞

bm,0,qeiqθ (n = 0) (43)

Im(pnr)|r=R(θ) =
∞

∑
q=−∞

bm,n,qeiqθ (n = 1, 2, · · · , ∞) (44)

Jm(kr)|r=R(θ) =
∞

∑
q=−∞

fm,qeiqθ (45)

The derivatives with respect to r of Equations (41)–(45) can be directly obtained by
using am,n,q, bm,n,q and fm,q, i.e.,

H′m(kr)
∣∣
r=R(θ) =

k
2

∞

∑
q=−∞

(
am−1,0,q − am+1,0,q

)
eiqθ (n = 0) (46)

K′m(knr)
∣∣
r=R(θ) = −

kn

2

∞

∑
q=−∞

(
am−1,n,q + am+1,n,q

)
eiqθ (n = 1, 2, · · · , ∞) (47)

|m|r|m|−1
∣∣∣
r=R(θ)

=
1
r
|m|

∞

∑
q=−∞

bm,0,qeiqθ (n = 0) (48)

I′m(pnr)
∣∣
r=R(θ) = +

pn

2

∞

∑
q=−∞

(
bm−1,n,q + bm+1,n,q

)
eiqθ (n = 1, 2, · · · , ∞) (49)

J′m(kr)
∣∣
r=R(θ) =

k
2

∞

∑
q=−∞

(
fm−1,q − fm+1,q

)
eiqθ (50)

The radius function and the derivative of surface function with respect to θ can be
obtained by using bm,0,q.

r|r=R(θ) =
∞

∑
nr=−∞

b1,0,nr einrθ (51)

∂S
∂θ

∣∣∣∣
S=0

= −
∞

∑
nr=−∞

(inr)b1,0,nr einrθ (52)

The foregoing derivatives (Equations (46)–(50)) have the same coefficients as in Equa-
tions (41)–(45). In contrast, Liu et al. [15] derivatives have a different set of coefficients. As
a result of this smaller number of coefficients for semi-analytical approach 2, the computa-
tional time is significantly reduced.

The necessary normal derivatives for solution can now be expressed in terms of the
coefficients am,n,q, bm,n,q and fm,q, as

R2H′m(kR) + imSθ Hm(kR)

=
∞
∑

nr=−∞

∞
∑

q=−∞

{
k
2 b2,0nr

(
am−1,0,q − am+1,0,q

)
+ mnrb1,0,nr am,0,q

}
ei(nr+q)θ (53)

R2K′m(knR) + imSθKm(knR)

=
∞
∑

nr=−∞

∞
∑

q=−∞

{
− kn

2 b2,0nr

(
am−1,n,q + am+1,n,q

)
+ mnrb1,0,nr am,n,q

}
ei(nr+q)θ (54)

R2|m|R|m|−1 + imSθ R|m|

=
∞
∑

q=−∞

{
|m|b1,0,nr bm,0,q + mnrb1,0,nr bm,0,q

}
ei(nr+q)θ (55)
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R2 I′m(pnR) + imSθ Im(pnR)

=
∞
∑

nr=−∞

∞
∑

q=−∞

{ pn
2 b2,0nr

(
bm−1,n,q + bm+1,n,q

)
+ mnrb1,0,nr bm,n,q

}
ei(nr+q)θ (56)

R2 J′m(kR) + imSθ Jm(kR)

=
∞
∑

nr=−∞

∞
∑

q=−∞

{
k
2 b2,0nr

(
fm−1,q − fm+1,q

)
+ mnrb1,0,nr fm,q

}
ei(nr+q)θ (57)

By substituting Equations (41)–(57) into Equations (27)–(29) for the diffraction problem,
one obtains

∞
∑

m=−∞

∞
∑

nr=−∞

∞
∑

q=−∞

[
Am0

Hm(ka)

{
k
2 b2,0,nr

(
am−1,0,q − am+1,0,q

)
+mnrb1,0,nr am,0,q

} Z0(z)
Z0(0)

+
∞
∑

n=1

Amn
Km(kna)

{
− kn

2 b2,0,nr

(
am−1,n,q + am+1,n,q

)
+mnrb1,0,nr am,n,q

} Zn(z)
Zn(0)

]
ei(m+nr+q)θ

= igA cosh k(z+h)
ω cosh kh

∞
∑

m=−∞
eim( π

2 −β)
∞
∑

nr=−∞

∞
∑

q=−∞

{
k
2 b2,0,nr

(
fm−1,q − fm+1,q

)
+ mnrb1,0,nr fm,q

}
ei(m+nr+q)θ

(−d ≤ z ≤ 0, 0 ≤ θ ≤ 2π)

(58)

∞
∑

m=−∞

∞
∑

nr=−∞

∞
∑

q=−∞

[
Am0

Hm(ka)

{
k
2 b2,0,nr

(
am−1,0,q − am+1,0,q

)
+mnrb1,0,nr am,0,q

} Z0(z)
Z0(0)

+
∞
∑

n=1

Amn
Km(kna)

{
− kn

2 b2,0,nr

(
am−1,n,q + am+1,n,q

)
+mnrb1,0,nr am,n,q

} Zn(z)
Zn(0)

]
ei(m+nr+q)θ

−
∞
∑

m=−∞

∞
∑

nr=−∞

∞
∑

q=−∞

[
Bm0
b|m|
{
|m|b1,0,nr bm,0,q + mnrb1,0,nr bm,0,q

}
+

∞
∑

n=1

Bmn
Im(pnb)

{ pn
2 b2,0,nr

(
bm−1,n,q + bm+1,n,q

)
+mnrb1,0,nr bm,n,q

}
cos pn(z + h)

]
ei(m+nr+q)θ

= igA cosh k(z+h)
ω cosh kh

∞
∑

m=−∞
eim( π

2 −β)
∞
∑

nr=−∞

∞
∑

q=−∞

{
k
2 b2,0,nr

(
fm−1,q − fm+1,q

)
+ mnrb1,0,nr fm,q

}
ei(m+nr+q)θ

(−h ≤ z ≤ −d, 0 ≤ θ ≤ 2π)

(59)

∞
∑

m=−∞

∞
∑

q=−∞

{
Am0

Hm(ka) am,0,q
Z0(z)
Z0(0)

+
∞
∑

n=1

Amn
Km(kna) am,n,q

Zn(z)
Zn(0)

}
ei(m+q)θ

−
∞
∑

m=−∞

∞
∑

q=−∞

{
Bm0
b|m|

bm,0q +
∞
∑

n=1

Bmn
Im(pnb) bm,nq cos pn(z + h)

}
ei(m+q)θ

= igA cosh k(z+h)
ω cosh kh

∞
∑

m=−∞
eim( π

2 −β)
∞
∑

q=−∞
fm,qei(m+q)θ

(−h ≤ z ≤ −d, 0 ≤ θ ≤ 2π)

(60)

By comparing Equations (27)–(34) of semi-analytical approach 1 with Equations (58)–(60)
of semi-analytical approach 2, it can be seen that the latter set of equations for the solution
is more complicated but obtaining the solution is faster.
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By substituting Equations (42)–(57) into Equations (35)–(37) for the radiation problem,
one obtains

∞
∑

m=−∞

∞
∑

nr=−∞

∞
∑

q=−∞

[
A(j)

m0
Hm(ka)

{
k
2 b2,0,nr

(
am−1,0,q − am+1,0,q

)
+mnrb1,0,nr am,0,q

} Z0(z)
Z0(0)

+
∞
∑

n=1

A(j)
mn

Km(kna)

{
− kn

2 b2,0,nr

(
am−1,n,q + am+1,n,q

)
+mnrb1,0,nr am,n,q

} Zn(z)
Zn(0)

]
ei(m+nr+q)θ

= R2

√
1 + S2

θ
R2 f (j)

R (r, θ, z)
∣∣∣
r=R(θ)

(−d ≤ z ≤ 0, 0 ≤ θ ≤ 2π)

(61)

∞
∑

m=−∞

∞
∑

nr=−∞

∞
∑

q=−∞

[
A(j)

m0
Hm(ka)

{
k
2 b2,0,nr

(
am−1,0,q − am+1,0,q

)
+mnrb1,0,nr am,0,q

} Z0(z)
Z0(0)

+
∞
∑

n=1

A(j)
mn

Km(kna)

{
− kn

2 b2,0,nr

(
am−1,n,q + am+1,n,q

)
+mnrb1,0,nr am,n,q

} Zn(z)
Zn(0)

]
ei(m+nr+q)θ

−
∞
∑

m=−∞

∞
∑

r=−∞

∞
∑

q=−∞

[
B(j)

m0
b|m|
{
|m|b1,0,nr bm,0,q + mnrb1,0,nr bm,0,q

}
+

∞
∑

n=1

B(j)
mn

Im(pnb)

{ pn
2 b2,0,nr

(
bm−1,n,q + bm+1,n,q

)
+mnrb1,0,nr bm,n,q

}
cos pn(z + h)

]
ei(m+nr+q)θ

= R2

√
1 + S2

θ
R2 ϕ

(j)′
p2 (r, θ, z)

∣∣∣∣
r=R(θ)

(−h ≤ z ≤ −d, 0 ≤ θ ≤ 2π)

(62)

∞
∑

m=−∞

∞
∑

q=−∞

{
Am0

Hm(ka) am,0,q
Z0(z)
Z0(0)

+
∞
∑

n=1

Amn
Km(kna) am,n,q

Zn(z)
Zn(0)

}
ei(m+q)θ

−
∞
∑

m=−∞

∞
∑

q=−∞

{
Bm0
b|m|

bm,0,q +
∞
∑

n=1

Bmn
Im(pnb) bm,n,q cos pn(z + h)

}
ei(m+q)θ

= ϕ
(j)
p2 (r, θ, z)

∣∣∣
r=R(θ)

(−h ≤ z ≤ −d, 0 ≤ θ ≤ 2π)

(63)

The detailed expressions for R2

√
1 + S2

θ
R2 f (j)

R (r, θ, z)
∣∣∣
r=R(θ)

, R2

√
1 + S2

θ
R2 ϕ

(j)′
p2 (r, θ, z)

∣∣∣∣
r=R(θ)

and ϕ
(j)
p2 (r, θ, z)

∣∣∣
r=R(θ)

and other useful expressions are given in Appendix B. Similarly

to semi-analytical approach 1, the corresponding vertical eigenfunctions 1
h Zn(z) and

1
h−d cos pn(z + h) and the angular eigenfunction e−imθ are multiplied in Equations (58)–(63)
and integrating the equations for the associated integral intervals, one can combine Equa-
tion (58) with (59) and (61) with (62), respectively. By truncating the series terms at m = M,
n = N, nr = Nr and q = Q, 2(2M + 1)(N + 1) equations and unknowns are given for
the diffraction problem and each radiation mode. Consequently, the unknown complex
coefficients (Amn, Bmn, A(j)

mn, B(j)
mn) can be solved by the linear algebra.

By comparing Equations (35)–(40) of semi-analytical approach 1 with Equations (61)–(63)
of semi-analytical approach 2, it can be seen that the latter set of equations for solution is
more complicated but obtaining the solution is faster.
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5. Determination of Wave Exciting Force

From the Bernoulli’s equation, the fluid pressure p is

p = ρiωφ (64)

where ρ is the water density.
By integrating over the wetted areas Sw, the wave exciting force and rotational moment

for six DOFs are obtained by

Fwj = ρiω
∫

Sw

(φI + φD)·njdSw (65)

Considering the oblique incident wave angle β = 0 and symmetrical geometry of
platform about x-axis, the problem becomes simpler as we need to handle only three
DOFs. Thus, the wave exciting forces in the x- and z-axis are Fw1 (surge force), Fw3 (heave
force), and rotational moment about the y-axis Fw5 (pitch moment) are only needed to be
calculated. Their expressions are given below:

Fw1 = ρiω
∫

Sw

(φI + φD)·n1dSw = ρiω
∫ 2π

0

∫ 0
−d
(
φI + φD1

)∣∣
r=Rnx·(−ns)Rdzdθ

= − ρgA
cosh kh

∞
∑

m=−∞
eim( π

2 −β)
∫ 2π

0 Jm(kR)eimθ R cos θ−sin θSθ√
1+
(

Sθ
R

)2
dθ
∫ 0
−d cosh k(z + h)dz

−ρiω
∞
∑

m=−∞

∞
∑

n=0
Amn

∫ 2π
0 Kmn(R)eimθ R cos θ−sin θSθ√

1+
(

Sθ
R

)2
dθ
∫ 0
−d

Zn(z)
Zn(0)

dz

(66)

Fw3 = ρiω
∫

Sw
(φI + φD)·n3dSw = ρiω

∫ 2π
0

∫ R
0

(
φI + φD2

)∣∣
z=−dnz·(nz)rdrdθ

= ρiω
∞
∑

m=−∞

∞
∑

n=0
Bmn cos pn(h− d)

∫ 2π
0

∫ R
0 Imn(r)eimθrdrdθ

(67)

Fw5 = ρiω
∫

Sw
(φI + φD)n5dSw

= ρiω
∫ 2π

0

{∫ 0
−d

(
φI + φD1

)∣∣
r=R(z− zG)nx ·(−ns)Rdz−

∫ R
0

(
φI + φD2

)∣∣
z=−d(r cos θ)nz·(nz)rdr

}
dθ

= − ρgA
cosh kh

∞
∑

m=−∞
eim( π

2 −β)

∫ 2π
0 Jm(kR)eimθ R cos θ−sin θSθ√

1+
( Sθ

R

)2
dθ
∫ 0
−d(z− zG) cosh k(z + h)dz + cosh k(h− d)

∫ 2π
0

∫ R
0 Jm(kr)eimθr2 cos θdrdθ


−ρiω

∞
∑

m=−∞

∞
∑

n=0

Amn
∫ 2π

0 Kmn(R)eimθ R cos θ−sin θSθ√
1+
( Sθ

R

)2 dθ
∫ 0
−d(z− zG)

Zn(z)
Zn(0)

dz + Bmn cos pn(h− d)
∫ 2π

0

∫ R
0 Imn(r)eimθr2 cos θdrdθ



(68)

Apart from the aforementioned special conditions, the other DOFs have to be treated
and they are also similarly obtained by using the unit normal vector (−ns + nz) and the
generalised motion normal nj.

6. Determination of Radiation Forces

The radiation force is obtained by

F(j)
Ri

= iωρ
∫

Sw

{
−iωξ j ϕ

(j)
R

}
njdSw = ξ j

(
ω2µij + iωλij

)
(69)

where µij and λij are the added mass and the radiation damping for the i-th mode of force
and the j-th mode of motion, which are respectively defined as

µij = Re
(
ρ fij
)

(70)

λij = Im
(
ρω fij

)
(71)
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Re(·) denotes the real part and Im(·) the imaginary part. fij is the integral form for
i-th mode of force and j-th mode of motion. As we have assumed β = 0, only f11, f15, f51,
f33 and f55 are to be calculated in this section, which are given by

f11 =
∫

Sw

ϕ
(1)
R ·n1dSw =

∫ 2π
0

∫ 0
−d ϕ

(1)
R1

∣∣∣
r=R

nx·(−ns)Rdzdθ

=
∫ 2π

0

∫ 0
−d− ϕ

(1)
R1

∣∣∣
r=R

R cos θ−sin θSθ√
1+
(

Sθ
R

)2
dzdθ

= −
∞
∑

m=−∞

∞
∑

n=1
A(1)

mn
∫ 2π

0 Kmn(R)eimθ R cos θ−sin θSθ√
1+
(

Sθ
R

)2
dθ
∫ 0
−d

Zn(z)
Zn(0)

dz

(72)

f51 =
∫

Sw

ϕ
(1)
R n5dSw =

∫
Sw

{
ϕ
(1)
R1

(z− zG)nx − ϕ
(1)
R2

(r cos θ)nz

}
dSw

=
∫ 2π

0

{∫ 0
−d ϕ

(1)
R1

∣∣∣
r=R

(z− zG)nx·(−ns)Rdz−
∫ R

0 ϕ
(1)
R2

∣∣∣
z=−d

(r cos θ)nz·(nz)rdr
}

dθ

= −
∞
∑

m=−∞

∞
∑

n=0
A(1)

mn
∫ 2π

0 Kmn(R)eimθ R cos θ−sin θSθ√
1+
(

Sθ
R

)2
dθ
∫ 0
−d(z− zG)

Zn(z)
Zn(0)

dz

−
∞
∑

m=−∞

∞
∑

n=0
B(1)

mn cos pn(h− d)
∫ 2π

0

∫ R
0 Imn(r)eimθ(r cos θ)rdrdθ

(73)

f33 =
∫

Sw

ϕ
(3)
R n3dSw =

∫ 2π
0

∫ R
0 ϕ

(3)
R2

∣∣∣
z=−d

nz·(nz)rdrdθ

=
∫ 2π

0

∫ R
0

{
(h−d)

2 − r2

4(h−d)

}
rdrdθ +

∞
∑

m=−∞

∞
∑

n=0
B(3)

mn cos pn(h− d)
∫ 2π

0

∫ R
0 Imn(r)eimθrdrdθ

(74)

f55 =
∫

Sw

ϕ
(5)
R n5dSw =

∫
Sw

{
ϕ
(5)
R1

(z− zG)nx − ϕ
(5)
R2

(r cos θ)nz

}
dSw

=
∫ 2π

0

{∫ 0
−d ϕ

(5)
R1

∣∣∣
r=R

(z− zG)nx·(−ns)Rdz−
∫ R

0 ϕ
(5)
R2

∣∣∣
z=−d

(r cos θ)nz·(nz)rdr
}

dθ

= −
∞
∑

m=−∞

∞
∑

n=0
A(5)

mn
∫ 2π

0 Kmn(R)eimθ R cos θ−sin θSθ√
1+
(

Sθ
R

)2
dθ
∫ 0
−d(z− zG)

Zn(z)
Zn(0)

dz

−
[∫ 2π

0

∫ R
0

{
− (h−d)

2 + r2

8(h−d)

}
r cos θ(r cos θ)rdrdθ +

∞
∑

m=−∞

∞
∑

n=0
B(5)

mn cos pn(h− d)
∫ 2π

0

∫ R
0 Imn(r)eimθ(r cos θ)rdrdθ

]
(75)

f15 =
∫

Sw

ϕ
(5)
R n1dSw =

∫
Sw

ϕ
(5)
R1

nxdSw

=
∫ 2π

0

∫ 0
−d ϕ

(5)
R1

∣∣∣
r=R

nx·(−ns)Rdzdθ

= −
∞
∑

m=−∞

∞
∑

n=0
A(5)

mn
∫ 2π

0 Kmn(R)eimθ R cos θ−sin θSθ√
1+
(

Sθ
R

)2
dθ
∫ 0
−d

Zn(z)
Zn(0)

dz

(76)

It should be noted that f15 and f51 are the same from the symmetry.

7. Determination of Motion Responses of Floating Platform

It is assumed that the motion of the floating platform is small enough to satisfy the
following equation of motion[

Mij + µij
]{ ..

ξ j

}
+
[
λij
]{ .

ξ j

}
+
[
Cij
]{

ξ j
}
= {Fi} (77)

where Mij is the matrix components of the body mass, µij the added mass, λij the radiation

damping, Cij the hydrostatic restoring coefficient,
..
ξ the unknown acceleration,

.
ξ the
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unknown velocity, ξ the unknown displacement, and Fi the external force. The matrices
[M] and [C] are given by [19]

[M] =



m 0 0 0 mzG −myG
0 m 0 −mzG 0 mxG
0 0 m myG −mxG 0
0 −mzG myG I11 I12 I13

mzG 0 −mxG I21 I22 I23
−myG mxG 0 I31 I32 I33

 (78)

[C] = g



0 0 0 0 0 0
0 0 0 0 0 0
0 0 ρAwp ρAwp

(
yG − y f

)
−ρAwp

(
xG − x f

)
0

0 0 ρAwp

(
yG − y f

)
ρ(Vwzb + L22)−mzG −ρL12 −ρVwxb + mxG

0 0 −ρAwp

(
xG − x f

)
−ρL12 ρ(Vwzb + L11)−mzG −ρVwyb + myG

0 0 0 0 0 0


(79)

where m is the mass of a floating body, (xG, yG, zG) is the centre of gravity,
Iij (i, j = 1, 2, 3) the mass moment of inertia, Awp the water plane area,

(
x f , y f

)
the centre

of flotation, (xb, yb, zb) the centre of buoyancy, Vw the wetted volume of a floating body,
and Lij (i, j = 1, 2) the second moment over the waterplane area.

Consider the special case of oblique incident wave angle β = 0 and the symmetrical
geometry of platform about x-axis; the radiation modes are reduced to three DOFs (i.e.,
surge, heave, and pitch). Thus, the surge force, heave force, and pitch moment are presented
whilst the sway force, roll moment, and yaw moment become zeros. Consequently, the
motion equation in three DOFs are given by[

−ω2(m + µ11)− iωλ11

]
{ξ1}+

[
−ω2(mzG + µ15)− iωλ15

]
{ξ5} = {F1} (80)[

−ω2(m + µ33)− iωλ33 + ρgAwp

]
{ξ3} = {F3} (81)[

−ω2(mzG + µ51)− iωλ51

]
{ξ1}+

[
−ω2(I22 + µ55)− iωλ55 + mgGM

]
{ξ5} = {F5} (82)

where GM
(
= L11

Vw
+ zb − zG

)
is the metacentric height.

8. Verification of Semi-Analytical Approach and Computer Code

In order to verify the semi-analytical approaches and the computer code, we compare
the hydrodynamic results (i.e., added mass, radiation damping, wave exciting forces, RAO,
and wave field) with those obtained from the commercial software ANSYS AQWA based
on the boundary element method.

For the verification exercise, we consider a floating hexagonal platform defined by
radius function in Equation (1) with R0 = 100 m, ε = 0.03, nr = 6 and θ0 = π

6 and the
draft is 10 m. Figure 2 shows the platform shape. It is assumed that the centre of gravity
coincides with the origin and the water depth is 50 m. The incident wave is along the x-axis
(i.e., β = 0◦).
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For the 3D model in AQWA, the maximum mesh size is 2.6 m, which leads to a total
of 17,087 diffracting elements to be used. The regular wave angular frequency domain is
divided into 15 frequencies for the interval [0.1 rad/s, 1.2528 rad/s].

Figure 3a–d present the added mass and radiation damping obtained from present
semi-analytical approaches and AQWA. The numbers of truncated terms for the hexagonal
platform were conservatively taken as M = 18, N = 10, Nr = 6, Q = 12 for parametric studies.
The two semi-analytical approaches provided the same results. The added masses were
normalised by

µ11 =
µ11

ρS0d
; µ33 =

µ33

ρS0d
; µ55 =

µ55

ρS2
0d

; µ15 =
µ15

ρS1.5
0 d

(83)

while the radiation damping was normalised by

λ11 =
λ11

ρωS0d
; λ33 =

λ33

ρωS0d
; λ55 =

λ55

ρωS2
0d

; λ15 =
λ15

ρωS1.5
0 d

(84)

where S0 is the cross-sectional area of the platform. The present semi-analytical results and
AQWA results are in excellent agreement, thereby confirming the validity, convergence,
and accuracy of the semi-analytical approaches.

In view of the cosine-type radius function, it is unnecessary to perform the integration
for all the series terms, but series index m can be restricted to

m = ±1, ±(nr ± 1) for surge or sway

m = 0, ±nr for heave

m = 0∗,±1, ±(nr ± 1), ±(2nr ± 1), ±nr
∗ for roll or pitch

m = 0,±1∗,±2,±nr, ±(nr ± 1)∗, ±(nr ± 2),±(2nr ± 1), ±2nr for yaw

(85)

where nr is the parameter of the radius function given in Equation (1) and the superscript *
denotes that it is only effective when xG or yG is nonzero. For example, if nr = 6 is taken
for a hexagonal platform, one can choose m = ±1, ±5 and ±7 for surge. This rule can be
equally applied for calculating the wave exciting forces.

The wave exciting forces and RAOs were calculated for β = 0◦. The surge force, heave
force, and pitch moment were normalised as follows:

Fx =
Fx

ρgAS0
; Fz =

Fz

ρgAS0
; My =

My

ρgAS0d
(86)

The RAO (response amplitude operator) is defined as the motion response normalised
by the incident wave amplitude A. Figure 4 compares the wave exciting forces and the
RAOs obtained from the present semi-analytical approaches and those computed from
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ANSYS AQWA. It can be seen that the results are in close agreement, thereby verifying the
present semi-analytical formulation and method of solution.
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The wave field around the hexagonal platform was calculated for the sea domain size
of 800 m× 800 m for shorter waves (T = 5 s) and for longer waves (T = 10 s). Figures 5 and 6
show the wave fields and the wave profiles along the x-axis at y = 0 m and y = 50 m,
which are normalised by the incident wave amplitude for the wave periods 5 s and 10 s,
respectively. It can be seen that the wave fields obtained from the present approach and
AQWA were well matched. The wave field belonging to AQWA was extracted from a large
amount of AQWA FLOW raw data by writing a computer code to process the raw data at
selected points.
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Samples of the computational times required by different methods such as AQWA,
the quadruple Fourier expansions by [15], semi-analytical approach 1, and semi-analytical
approach 2 are noted and compared with one another in Table 2. The computation was
conducted by using a personal computer with Intel(R) Core(TM) i7-7700 CPU @ 3.60 GHz
and 16 GB RAM. Suitable truncation numbers M, N, Nr, and Q were used for each case.
The wave periods considered were T = 5 s and 10 s. The computational time of AQWA
was obtained by checking the file created time in Windows Explorer. It can be seen that
AQWA takes a significantly more computational time, when compared to the other three
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analytical methods, for determining the velocity potentials as the wave period becomes
shorter. AQWA uses eight CPU cores and the computation runs in a console environment
that enables the computation to be extremely fast, whereas the present semi-analytical
approaches run on the MATLAB application platform with the default number of CPU
cores. Of the three semi-analytical approaches, the semi-analytical approach 2 uses the
least computational time, and hence this method is recommended for determining velocity
potentials for floating platforms and for performing parametric studies.
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Table 2. Comparison of computational times of different methods. (Note: values in parentheses
denote the truncated numbers of M, N, Nr, and Q; NA, not applicable; and ∆ denotes the maximum
mesh size.)

T (s) AQWA Fourier Expansion
[15]

Semi-Analytical
Approach 1

Semi-Analytical
Approach 2

5
(∆ = 2.6 m) (18, 5, 6, 12) (18, 5, NA, NA) (18, 5, 6, 12)

8 min 18 s 26 s 48 s 16 s

10
(∆ = 10 m) (10, 10, 6, 12) (10, 10, NA, NA) (10, 10, 6, 12)

24 s 30 s 23 s 19 s
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9. Hydrodynamic Results of Polygonal Platforms

Based on semi-analytical approach 2, one may obtain the hydrodynamic coefficients
(added mass and radiation damping), wave exciting forces, RAOs, and wave fields for
various platform shapes. In this section, we present results for triangular, square, hexagonal,
and circular platforms. The platforms have almost the same plan area of πR2

0 . Consider a
radius R0 of 100 m, draft of 10 m, and water depth h = 50 m. We assume wave periods to
range from 5 s to 10 s. Based on this wave period and the assumed water depth, relative
wave number kh ranges from 2 to 8.

For the triangular, square, and hexagonal platforms, two cases were considered
according to their orientation. For Case 1, the triangular platform was orientated 30◦ in the
counter-clockwise direction based on Equation (1), but the square and hexagonal platforms
were not orientated, while for Case 2, the triangular, square, and hexagonal platforms were
respectively orientated 60, 45, and 30◦ from Case 1. The inset in Figure 7 shows the cases
considered.

It was found that the added mass, radiation damping, and RAOs for the polygonal
platforms considered were not distinctively different, and thus they are not presented.
Figure 7 shows the variations of the surge, heave forces, and pitch moments on the plat-
forms with respect to the relative wave number kh for Cases 1 and 2. For a given polygonal
shaped platform, Case 2 curves are generally below Case 1 curves, which shows that the
wave exciting forces and rotational moment can be reduced by orientating the polygonal
platform with one of its corners in alignment with the wave incident direction. The reason
may be explained by wave phase variations. When the incident wave is acting normal
to the platform surface, the phase for the surge force is the same throughout that surface
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length, and thus the waves are amplified. However, when the waves impact on an inclined
surface, the phase of the surge force varies along the length of the inclined surface, resulting
in the reduction of the nett surge forces on the inclined surface of the platform. The results
for the heave force and pitch moment behave in a similar manner. Case 1 curves are
generally above the circular platform, with a downward trend with respect to increas-
ing kh, whereas Case 2 curves are below the circular platform with irregular variations.
This implies that polygonal platforms can have better hydrodynamic performance than the
circular platform by appropriate orientation with respect to the prevailing wave direction
(i.e., orientation of platform as in Case 2). The square platform with Case 2 orientation
is hardly affected by the wave frequencies for the surge and heave forces when kh ≥ 3.
Similarly, for triangular platform with Case 1, the surge force is not significantly affected
by a range of wave frequencies. It is clear that the circular platform is most suitable when
there is no prevailing wave direction, i.e., the waves can approach from any direction.
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Next, the wave fields around the different platforms were investigated for the wave
periods T = 5 s and 10 s. Figure 8 represents the wave fields for T = 5 s. The coordinates
x and y were normalised by the wavelength L. It can be seen that platforms for Case 1
are more likely to reflect the incident waves back to the incoming wave direction, while
platforms for Case 2 are observed to redirect the incident waves to other directions such
that the reflected waves for Case 2 are less amplified than Case 1. In the figure, the darker
shades represent more wave crests and troughs. The circular platform is able to distribute
the reflected waves in multiple directions, thus it creates relatively less reflected waves
than the triangular, square, and hexagonal platforms with Case 1 orientation. This point
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is clearly seen by the wave profiles in the sea side at the centreline y = 0 m for T = 5 s as
presented in Figure 9a. Figure 9b shows that the polygonal platforms for Case 2, which
reduce the wave amplitude in the sea side more than the circular platforms.
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Generally, the considered polygonal platforms have slightly similar wave transmis-
sion performance as the circular platform as shown by the variation of the ratio of the
transmitted wave elevation to the incident wave amplitude along the centreline y = 0 m for
T = 5 s (see Figure 9c,d). All platform shapes provide a reasonably large area of sheltered
sea space (normalised wave elevation of less than 0.5 as far as 10 wave lengths or about
400 m from the centre of the platform).

Figure 9e,f shows the wave runups around the perimeter of platforms. It can be seen
that the hexagonal platform for Case 1 has greater wave runup than the triangular and
square platforms for Case 1. Thus the hexagonal platform for Case 1 will perform well for
installation of wave energy converters for harvesting wave energy. For Case 2, however,
the wave runup by the triangular platform is observed to be more pronounced than those
by other platforms, and hence it will be a better platform shape for Case 2 for wave energy
harvesting. It is clear that the best place for placing wave energy converters is where the
wave runup is high. Many researchers ([20,21]) have studied the performance of wave
energy converters placed in front of a breakwater. Moreover, the wave run-up information
is useful in designing the freeboard to prevent wave overtopping.

The wave fields for T = 10 s are shown in Figure 10. It can be clearly seen that Case
1 is more reflective than Case 2, whereas Case 2 is more dispersive than Case 1. In the
dark shaded region, wave crests and troughs are concentrated and the areas of the darkest
shades for Case 1 are larger than Case 2. The wave fields allow the designer to know
how best to orientate the polygonal platform to reduce the reflected waves that may cause
problems for ships or marine vessels passing by the platform. Regarding the reduction of
reflected waves, it is clear that the polygonal platform should be orientated as in Case 2.

The corresponding wave profiles for T = 10 s are presented in Figure 11. It can be
seen from Figure 11a,b that all platform shapes show coincidentally similar wave reflection
profiles.

With regard to transmitted waves on the lee side of the platform, all polygonal
platforms are able to provide a normalised transmitted wave elevation less than 0.5 for
about three wavelengths (i.e., 450 m) from the centre of the platform (see Figure 11c,d).

Figure 11e,f shows the wave runups around the perimeter of platforms. It can be
seen that the variations of the wave runups around the perimeter of all platform shapes
are similar for long wave periods (e.g., T = 10 s). When compared to the figures for the
shorter wave case, the enclosed area for the longer wave case is smaller. This implies wave
energy harvesting will be more efficient for a shorter wave condition. Under a short-wave
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condition, wave overtopping may be more serious than under a long wave condition,
depending on the platform’s wave transmission performance.
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10. Conclusions

By using the proposed semi-analytical approach based on the eigenfunction expansion
method, hydrodynamic performances of triangular, square, hexagonal, and circular plat-
forms of similar size were investigated. The results show that these similar-sized platforms
have similar added mass, radiation damping, and RAOs. However, the wave exciting
forces and rotational moments differ for the different polygonal shapes. The surge force is
observed to be reduced significantly when the polygonal platform is oriented such that one
of its corners is in the direction of the incident wave angle (i.e., Case 2). The reason may
be explained by wave phase variations. When the incident wave is acting normal to the
platform surface, the phase for the surge force is the same throughout the surface length
and thus, the waves are amplified. However, when the waves impact on an inclined surface,
the phase of the surge force varies along the length of the inclined surface, resulting in the
reduction of the nett surge forces on the inclined surface of the platform. This reduction
in surge force due to platform orientation with respect to the prevailing wave direction is
beneficial as it leads to a more cost-effective mooring system.

By observing the wave fields, platforms associated with Case 1 reflect more waves
than Case 2 because platforms with Case 2 are better in dispersing the waves. Thus,
platforms oriented according to Case 2 will reduce the wave amplitudes in the sea side,
which in turn will lessen problems for ships or marine vessels passing by the platform on
the weather side.

From the comparison study between different polygonal platforms, their wave attenu-
ation performances are slightly similar. These platforms can provide a normalised wave
amplitude in the lee side of less than 0.5 for about 400 m from the centre of the platform of
radius 100 m. The sheltered area on the lee side of the platform may be used for berthing
of ships and for other sea activities.

With regard to wave runups around the perimeter of platforms, it is clear that these
runups are larger on the weather side than the lee side, which indicates that the freeboard
must be designed to be larger on the weather side, accordingly, to avoid wave overtopping.
Wave energy converters should be placed on the weather side of the platform. The hexago-
nal platform for Case 1 and triangular platform for Case 2 are found to have larger wave
runups along their perimeters on the weather side for shorter wave period (e.g., T = 5 s),
which make them better platform shapes for harvesting wave energy. For a long wave
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period (e.g., T = 10 s), the variations of wave runups among all the platform shapes are
slightly similar.

The semi-analytical methods developed herein for hydrodynamic analysis of floating
polygonal platforms have the following advantages. Semi-analytical approach 1 involves
numerical integration to calculate the functional orthogonality, which is a part of the
process of the eigenfunction expansion method. In view of an arbitrary radius function
that describes the platform plan geometry, the integration cannot be performed analytically,
but numerical integration must be resorted to. Its advantage lies in avoiding the need
to establish the additional numbers of terms to be used for the Fourier expansion series
when compared to semi-analytical approach 2. Semi-analytical approach 2 improves on
Liu et al. [15] Fourier expansion series by reducing the number of Fourier coefficient sets
from 10 to only 3 resulting in a significant reduction of computational time. Thus, solutions
can be obtained faster by using this second approach.
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Appendix A

The normalised radiation velocities of the platform at r = R(θ) for six DOFs are
obtained by applying the divergence operator to nj and ns, i.e.,

f (1)R (r, θ, z) = n1·ns = nx·ns =
cos θ − sin θ

r Sθ√
1 + S2

θ
R2

(A1)

f (2)R (r, θ, z) = n2·ns = ny·ns =
sin θ + cos θ

r Sθ√
1 + S2

θ
R2

(A2)

f (3)R (r, θ, z) = n3·ns = nz·ns = 0 (A3)

f (4)R (r, θ, z) = n4·ns = −(z− zG)ny·ns + (y− yG)nz·ns = −
(z− zG)

(
sin θ + cos θ

r Sθ

)
√

1 + S2
θ

R2

(A4)

f (5)R (r, θ, z) = n5·ns = (z− zG)nx ·ns − (x− xG)nz·ns =
(z− zG)

(
cos θ − sin θ

r Sθ

)
√

1 + S2
θ

R2

(A5)

f (6)R (r, θ, z) = n6·ns = −(y− yG)nx·ns + (x− xG)ny·ns =
Sθ + (yG − xG)

(
cos θ + sin θ − sin θ−cos θ

r Sθ

)
√

1 + S2
θ

R2

(A6)



J. Mar. Sci. Eng. 2021, 9, 923 28 of 30

If Sθ = 0, it can be applied to a circular platform.

Appendix B

R2

√
1 + S2

θ
R2 f (j)

R (r, θ, z)
∣∣∣
r=R(θ)

, R2

√
1 + S2

θ
R2 ϕ

(j)′
p2 (r, θ, z)

∣∣∣∣
r=R(θ)

and ϕ
(j)
p2 (r, θ, z)

∣∣∣
r=R(θ)

in

Equations from (61)–(63) can be expressed by applying the Fourier expansion, which are
given by

R2

√
1 +

S2
θ

R2 f (1)R (R, θ, z) = R2 cos θ − RSθ sin θ =
1
4

∞

∑
nr=−∞

{(nr + 1)b2,0,nr−1 − (nr − 1)b2,0,nr+1} exp(inrθ) (A7)

R2

√
1 +

S2
θ

R2 f (2)R (R, θ, z) = R2 sin θ + RSθ cos θ =
1
4i

∞

∑
nr=−∞

{(nr + 1)b2,0,nr−1 + (nr − 1)b2,0,nr+1} exp(inrθ) (A8)

R2

√
1 +

S2
θ

R2 f (3)R (R, θ, z) = 0 (A9)

R2

√
1 + S2

θ
R2 f (4)R (R, θ, z) = −(z− zG)

(
R2 sin θ + RSθ cos θ

)
= − (z−zG)

4i

∞
∑

nr=−∞
{(nr + 1)b2,0,nr−1 + (nr − 1)b2,0,nr+1} exp(inrθ)

(A10)

R2

√
1 + S2

θ
R2 f (5)R (R, θ, z) = (z− zG)

(
R2 cos θ − RSθ sin θ

)
= (z−zG)

4

∞
∑

nr=−∞
{(nr + 1)b2,0,nr−1 − (nr − 1)b2,0,nr+1} exp(inrθ)

(A11)

R2

√
1 +

S2
θ

R2 f (6)R (R, θ, z) = R2Sθ = − inr

3

∞

∑
nr=−∞

b3,0,nr exp(inrθ) (A12)

R2

√
1 +

S2
θ

R2 ϕ
(3)′
p2 (R, θ, z) = − R3

2(h− d)
= − 1

2(h− d)

∞

∑
nr=−∞

b3,0,nr exp(inrθ) (A13)

R2

√
1 + S2

θ
R2 ϕ

(4)′
p2 (R, θ, z)

= 1
8(h−d)

{
4(z + h)2(R2 sin θ + RSθ cos θ

)
−
(
3R4 sin θ + R3 cos θSθ

)}
= − 1

64(h−d)

∞
∑

nr=−∞

[
8(z + h)2{(nr + 1)b2,0,nr−1 − (nr − 1)b2,0,nr+1

}
−{(nr + 11)b4,0,nr−1 + (nr − 11)b4,0,nr+1}] exp(inrθ)

(A14)

R2

√
1 + S2

θ
R2 ϕ

(5)′
p2 (R, θ, z)

= − 1
8(h−d)

{
4(z− zG)

2(R2 cos θ − RSθ sin θ
)
−
(
3R4 cos θ − R3 sin θSθ

)}
= − 1

64(h−d)

∞
∑

nr=−∞

[
8(z + h)2{(nr + 1)b2,0,nr−1 − (nr − 1)b2,0,nr+1

}
−{(nr + 11)b4,0,nr−1 − (nr − 11)b4,0,nr+1}] exp(inrθ)

(A15)

R2

√
1 +

S2
θ

R2 ϕ
(1)′
p2 (R, θ, z) = R2

√
1 +

S2
θ

R2 ϕ
(2)′
p2 (R, θ, z) = R2

√
1 +

S2
θ

R2 ϕ
(6)′
p2 (R, θ, z) = 0 (A16)
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where ϕ
(j)′
p2 denotes ∇ϕ

(j)
p2 ·ns.

ϕ
(3)
p2 (R, θ, z) =

2(z + h)2 − R2

4(h− d)
=

(z + h)2

2(h− d)
− 1

4(h− d)

∞

∑
nr=−∞

b2,0,nr exp(inrθ) (A17)

ϕ
(4)
p2 (R, θ, z) =

4(z + h)2 − R2

8(h− d)
R sin θ = − i

16(h− d)

∞

∑
nr=−∞

{
4(z + h)2(b1,0,nr−1 − b1,0,nr+1)− (b3,0,nr−1 − b3,0,nr+1)

}
exp(inrθ) (A18)

ϕ
(5)
p2 (R, θ, z) = − 4(z + h)2 − R2

8(h− d)
R cos θ = − 1

16(h− d)

∞

∑
nr=−∞

{
4(z + h)2(b1,0,nr−1 + b1,0,nr+1)− (b3,0,nr−1 + b3,0,nr+1)

}
exp(inrθ) (A19)

ϕ
(1)
p2 (R, θ, z) = ϕ

(2)
p2 (R, θ, z) = ϕ

(6)
p2 (R, θ, z) = 0 (A20)

Euler’s equation was used for the terms multiplied by a trigonometric function, i.e.,

r|r=R(θ)F (θ) =
∞

∑
nr=−∞

b1,0,nr einrθ

(
eiθ ± e−iθ

2iα

)
=

∞

∑
nr=−∞

(b1,0,nr−1 ± b1,0,nr+1)

2iα
einrθ (A21)

where F (θ) can be replaced by cos θ or sin θ. If F (θ) = cos θ, α = 0 and the positive sign is
taken from ± while, if F (θ) = sin θ, α = 1 and the negative sign is taken from ±. Other
useful expressions used for the radiation problem are given by

r|m|
∣∣∣
r=R(θ)

F (θ) =
∞

∑
nr=−∞

bm,0,nr−1 ± bm,0,nr+1

2iα
einrθ (A22)

Sθ |r=R(θ)F (θ) =
∞

∑
nr=−∞

(nr − 1)b1,0,nr−1 ± (nr + 1)b1,0,nr+1

2iα+1 einrθ (A23)

rm Sθ |r=R(θ)F (θ) = − 1
m+1

∂Rm+1

∂θ

∣∣∣
r=R(θ)

F (θ)

= 1
m+1

∞
∑

nr=−∞

(nr−1)bm+1,0,nr−1±(nr+1)bm+1,0,nr+1
2iα+1 einrθ

(A24)
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