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Abstract: According to the statistics of maritime accidents, most collision accidents have been 
caused by human factors. In an encounter situation, the prediction of ship's trajectory is a good way 
to notice the intention of the other ship. This paper proposes a methodology for predicting the ship's 
trajectory that can be used for an intelligent collision avoidance algorithm at sea. To improve the 
prediction performance, the density-based spatial clustering of applications with noise (DBSCAN) 
has been used to recognize the pattern of the ship trajectory. Since the DBSCAN is a clustering al-
gorithm based on the density of data points, it has limitations in clustering the trajectories with 
nonlinear curves. Thus, we applied the spectral clustering method that can reflect a similarity be-
tween individual trajectories. The similarity measured by the longest common subsequence (LCSS) 
distance. Based on the clustering results, the prediction model of ship trajectory was developed 
using the bidirectional long short-term memory (Bi-LSTM). Moreover, the performance of the pro-
posed model was compared with that of the long short-term memory (LSTM) model and the gated 
recurrent unit (GRU) model. The input data was obtained by preprocessing techniques such as fil-
tering, grouping, and interpolation of the automatic identification system (AIS) data. As a result of 
the experiment, the prediction accuracy of Bi-LSTM was found to be the highest compared to that 
of LSTM and GRU. 

Keywords: ship trajectory prediction; intelligent collision avoidance; maritime accidents; spectral 
clustering; Bi-LSTM; GRU 
 

1. Introduction 
According to statistics compiled by Korea Maritime Safety Tribunal (KMST), a total 

of 13,687 marine accidents occurred over the last five years (2016–2020), and among them, 
collision accidents between ships account for 45% of the total, which account for the larg-
est proportion [1]. Since 2016, the number of collision accidents has increased by an aver-
age of 4% annually. As a result of the analysis on the causes of collision accidents in the 
last 5 years, 95% of all collision accidents were caused by human factors, and 70% of them 
were known as negligence on look-out [1]. This situation is due to the erroneous judgment 
of the risk of collision despite the provision of the navigation information from the radio 
detection and ranging (RADAR), electric chart display and information system (ECDIS), 
and the automatic identification system (AIS). When two ships are meeting, predicting 
the future path of own ship and a target ship is important to make the right decision and 
avoid collision. McLane and Wolf proved through their experiments that the trajectory 
prediction helps to prevent the collisions [2].  
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Inoue et al. and Fossen predicted the ship trajectory using a ship hydrodynamic 
model that can calculate the ship motion based on the actual ship data, such as the prin-
cipal particulars of ship hull, rudder, propulsion system, ocean current velocity, and wind 
force [3,4]. Passenier presented a track predictor for ships based on a relatively simple 
mathematical model that can adapt to continuously changing navigation conditions and 
applied the extended-Kalman filtering technique as a method for online identification and 
adaptation to the disturbances and the parameters of the prediction model [5]. Czapiew-
ska and Sadowski compared the performance of the Kalman filtering technique and the 
linear algorithm as a method of predicting the trajectory of a ship [6]. The linear algorithm 
is a very simple extrapolation method that calculates the future position based on the ob-
served information, on the assumption that the state information such as the speed, 
course, and position of the vessel observed in the most recent time period will remain 
constant in the future [7–10]. Breda and Passenier compared the three different path pre-
dictors through the ship simulation experiments [11]. The first of those was based on the 
hydrodynamic model of the ship; the second predictor was based on a speed and rate of 
turn extrapolator; the third predictor was based on a linear speed and course extrapolator. 
Laxhammar predicted the patterns of the ship traffic for anomaly detection using the un-
supervised clustering method. The gaussian mixture model (GMM) is used as cluster 
model and the expectation maximization (EM) algorithm is used as clustering algorithm 
[12]. Ristic et al. extracted ship motion patterns from the historic AIS data of the confined 
ports and waterways using statistical analysis, which were then used for a motion anom-
aly detection through the kernel density estimation (KDE) and particle filter [13]. 
Aarsæther and Moan also estimated the patterns of the ship trajectory based on the com-
puter vision technique using AIS data [14]. The navigation patterns that were recognized 
by their work can be applied for providing navigation plans in a confined area. Tang et 
al. showed the ship trajectory obtained from the AIS data on a grid plane and predicted 
the future path of the ship based on the probabilistic directed graph model and the ex-
trapolation method [15]. The neural network, which is an artificial intelligence model in 
the form of a neuron in a biological brain, was also used to predict the trajectory of the 
ship. Łącki presented the intelligent ship maneuvering prediction system using the neu-
roevolution and the evolutionary algorithms [16]. Xu et al. and Zhou et al. adopted the 
back-propagation neural network algorithm to predict the ship trajectory [17,18]. The tra-
jectory prediction based on such a neural network can derive relatively accurate results 
through the learning process of the observed data of parameters of the ship navigation 
without applying the hydrodynamic model of the ship or collecting the accurate disturb-
ance data at sea. Zhao and Shi adopted the density-based spatial clustering of applications 
with noise (DBSCAN) to cluster the ship trajectory and predicted the ship trajectory based 
on the long short-term memory (LSTM), which is one of the recurrent neural network 
(RNN) models [19]. Since the ship trajectory data are time series data, it is necessary to 
consider not only the trajectory data of the current time step but also previously observed 
trajectory data to predict future trajectory data. A representative neural network that can 
predict future data by applying time series data is the RNN [20]. However, since a back-
propagation algorithm is basically used for training RNN, when error information is prop-
agated back through time, the vanishing gradient problem generally occurs. Models that 
can manage this problem are the LSTM [21] and the gated recurrent unit (GRU) [22]. In 
the field of aviation, Shi et al. also adopted the LSTM to predict aircraft trajectory [23]. 
However, Graves and Schmidhuber and Siami-Namini et al. proved that the bidirectional 
LSTM (Bi-LSTM) that is an extended model of the LSTM provides better performance than 
the LSTM [24,25]. Therefore, it is necessary to apply the Bi-LSTM in this study to in-
crease the accuracy of the prediction model. As a part of the methodology applied by Zhao 
and Shi, the DBSCAN is a density-based clustering algorithm that is frequently used for 
trajectory pattern recognition [26]. However, since the trajectory of a ship is a nonlinear 
curve composed of several position data, the clustering algorithm based on the density of 
the data point has limitations in clustering the ship trajectory. To solve this problem, it is 
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necessary to apply the spectral clustering that can reflect the similarity between individual 
trajectories on the result. 

The purpose of this study is to propose the methodology of ship trajectory prediction 
that can be used for the intelligent ship collision avoidance algorithm. Based on the results 
of trajectory pattern recognition through the spectral clustering, we developed the models 
to predict the ship's trajectory by applying the Bi-LSTM, and its performance was com-
pared with the LSTM and the GRU. For the experiment, the AIS data collected in confined 
coastal waters were used as input data. 

The remainder of this article is organized as follows: Section 2 proposes the method 
for predicting the ship trajectory using the spectral clustering and the extended RNNs. 
Section 3 shows the results of the experiment using AIS data. Sections 4 present the con-
clusions that include the limitations and further works of this study. 

2. Methodology 
Machine learning is the methods that make it possible to identify the properties and 

patterns of a defined problem through the data training. Because the navigation of a ship 
is fraught with too many uncertainties, in order to deal with this uncertainty problem such 
as the trajectory prediction, a proper way is recognizing patterns through the training of 
observed data using a machine learning method rather than a method for deriving results 
through theoretical correlations between the various factors. Therefore, the ship trajecto-
ries were predicted by unsupervised and supervised learning tools using the historic tra-
jectory data that were extracted from the AIS data in the confined area. The AIS data were 
preprocessed using several methods such as filtering, grouping, scaling, and interpola-
tion. In order to accurately predict the trajectories, it is necessary to first analyze the pat-
terns of them in the target area because that area has a dense pattern of trajectories gener-
ated by many ships. As mentioned earlier, the DBSCAN [27] used by Zhao and Shi [19] to 
recognize the pattern of the trajectory is a clustering algorithm based on the density of 
data points, so there is a limit to clustering the trajectories that can be curved, straight, or 
wavy. This is because the similarity between the tracks was not considered. Therefore, we 
clustered the trajectories by applying the spectral clustering technique that can consider 
the similarity between the trajectories. The similarity between trajectories measured based 
on the longest common subsequence (LCSS) [28] in consideration of the characteristics of 
the ship trajectories having different shapes and lengths. 

After the trajectory clustering procedure, we prepared the trajectory data with the 
same pattern for using as input data into the regression models of neural networks, the 
supervised learning tools, to predict the future trajectory. The trajectory data are time se-
ries data composed of data points indexed in time sequence. Since the values of previous 
time step affect the current value, it is reasonable to apply the RNN that can reflect past 
information on the outputs of current information. We can obtain the trajectory data of 
future time step for each time step by training the RNN. However, since the gradient of 
the error function tends to vanish quickly in the general RNN training, the Bi-LSTM was 
applied to alleviate this phenomenon. In order to assess the performance of the developed 
model through the Bi-LSTM, it was compared with the other models applied by the LSTM 
and the GRU using the value of the root mean square error (𝑅𝑀𝑆𝐸). Figure 1 gener-
ally shows the process diagrams of the methodology mentioned above. 
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Figure 1. The proposed method for ship trajectory prediction. 

2.1. Preprocessing AIS Data 
The AIS data were used to develop the model for predicting the ship trajectory. Be-

fore being used as input data, they require appropriate preprocessing to ensure reliability, 
accuracy, and availability of them. First, we extracted necessary information, which con-
sisted of the following variables: the maritime mobile service identity (MMSI) number, 
time stamps, latitude, longitude, course, and speed, from the AIS data of ships in the con-
fined coastal waters. Using the MMSI number, the AIS data were grouped by ship to per-
form the trajectory interpolation. According to the ship's AIS performance standards re-
quired by the international maritime organization (IMO), the static information should be 
updated every 6 minutes or on demand, and the dynamic information should be reported 
at intervals of at least 2 seconds and at most 3 minutes depending on the speed of the ship 
[29]. However, since most of the ship dynamic information among the collected AIS data 
was not updated according to the performance standards, the procedure for interpolating 
the missing ship dynamic information was required. The observed trajectory data that 
consisted of the latitude, the longitude, the course, and the speed of the target vessel were 
interpolated at 1 second intervals by applying a cubic spline function. The performance of 
this interpolation method had proven in [30,31]. Then, the data reduction was performed 
in the light of moving speed of the ships, so that the intervals of the time stamps were 
changed from 1 second to 2 minutes. Therefore, if the interval of data points exceeds 2 
minutes, we considered that they are different from each other and separated them at that 
position. Based on this method, the AIS data were grouped by trajectory as follows: 𝑇𝑟 = 𝐿𝑎𝑡 , 𝐿𝑜𝑛𝑔 , 𝐶𝑜 , 𝑉  (1)

where 𝑇𝑟 denotes individual trajectory dataset, 𝑛 denotes the index of the trajectory da-
taset, 𝐿𝑎𝑡 denotes the latitude, 𝐿𝑜𝑛𝑔 denotes the longitude, 𝐶𝑜 denotes the ship course 
over ground, 𝑉 denotes the ship speed over ground, and 𝑡 denotes the time stamps. 
Lastly, the scaling process was conducted on the input data of the Bi-LSTM, the LSTM, 
and the GRU. Each variable was scaled to the distribution centered on 0, with a standard 
deviation of 1. 

2.2. Application of Spectral Clustering 
Since the trajectories have various patterns and lengths in the confined coastal wa-

ters, it would be difficult to expect a result with high prediction accuracy if the trajectory 
data have been applied to the neural network model as they stand [32]. To increase the 
accuracy of the trajectory prediction, trajectory clustering is necessary to recognize their 
pattern. Through the process, we can identify various trajectory groupings that have dif-
ferent patterns. The trajectories in the same group are more similar to each other than to 
those in other groups. There is the dynamic time warping (DTW) and the longest common 
subsequence (LCSS) methods that can measure the similarity between two trajectories re-
gardless of their length. As a result of comparing the performance of the two methods, it 
is known that the LCSS is superior to the DTW in the noise and outliers [33]. Therefore, 
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the LCSS was adopted in this study, and the LCSS distances between each pair of trajec-
tories were calculated according to [28].  

Let 𝑎 , 𝑎 , . . . , 𝑎  and 𝑏 , 𝑏 , . . . , 𝑏  be the data sets of trajectories 𝐴 and 𝐵, re-
spectively. The LCSS distance between 𝐴 and 𝐵, 𝐷 (𝐴, 𝐵) is obtained by 𝐷 (𝐴, 𝐵) = 1 − 𝐿(𝐴, 𝐵)min (𝑙, 𝑚) (2)

where 

𝐿(𝐴, 𝐵) = 0,1 + 𝐿 𝐻(𝐴), 𝐻(𝐵) ,max 𝐿(𝐻(𝐴), 𝐵), 𝐿(𝐴, 𝐻(𝐵) ,  𝑛 = 0 or 𝑚 = 0𝑑 (𝑎 , 𝑏 ) ≤ 𝜖 and |𝑙 − 𝑚| ≤ 𝛿otherwise  (3)

In equation (3), 𝐻(𝐴) = 𝑎 , 𝑎 , . . . , 𝑎 , 𝐻(𝐴) = 𝑏 , 𝑏 , . . . , 𝑏 , and 𝑑  denotes 
the Euclidean distance. The constant 𝜖 denotes the matching threshold, and constant 𝛿 
controls the range of time intervals for matching two trajectories. In this study, 𝜖 and 𝛿 
were set to 1 and 60 respectively, through iterative experiments. Based on the LCSS dis-
tances through pairwise calculation between the trajectories, a similarity matrix 𝑆 can be 
obtained by (𝑆 ) , ,…, = exp −(𝐷 (𝑇𝑟 , 𝑇𝑟 )/2𝜎 )  , (4)

where 𝜎 represent a kernel width that affects the performance of the spectral clustering. 
We estimated the best 𝜎 as 0.93 through iterative experiments. Each trajectory has a sim-
ilarity of 1 to itself, and as the LCSS distance increases, the value of similarity decreases 
and gets closer to 0. This measured similarity was used to calculate a graph Laplacian 
matrix in the process of the spectral clustering. The spectral clustering is a method of 
grouping data into arbitrary clusters using eigenvectors of the graph Laplacian matrix 
that contains graph information [34,35]. The graph Laplacian matrix 𝐿 can be obtained 
by 𝐿 = 𝐷 − 𝑆 (5)

where 𝐷 denotes a degree matrix that can be obtained as follows: 

𝐷 = diag 𝑆 , , . . . , 𝑆 ,  (6)

However, in most cases, a normalized Laplacian matrix is used to improve the per-
formance of the spectral clustering. There are two types of the normalized graph Lapla-
cian matrix: the random-walk Laplacian matrix, 𝐿  [34] and the normalized symmetric 
Laplacian matrix, 𝐿  [36]. They can be calculated as follows:  𝐿 = 𝐷 𝐿 = 𝐼 − 𝐷 𝑆 (7)𝐿 = 𝐷 / 𝐿𝐷 / = 𝐼 − 𝐷 / 𝑆𝐷 /  (8)

In the spectral clustering method, it is recommended to use 𝐿  rather than 𝐿  as 
the normalized graph Laplacian matrix [35]. Therefore, in this study, 𝐿  was used to 
construct the graph Laplacian matrix. Based on the obtained graph Laplacian matrix, clus-
tering of trajectory was performed using the 𝑘-means [37] clustering algorithm. As the k-
means process, the first step is to choose 𝑘 data points from all data and set each as the 
center of the initial cluster. The second step is to calculate the distance between each data 
point and each cluster centroid. The third step if to assign each data to the closest cluster. 
The fourth step is to calculate the average of all assigned data in each cluster to obtain 𝑘 
new cluster center. It repeats the second step through fourth step until there is not a 
change in the cluster compared to the previous state. To perform the 𝑘-means clustering, 
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it is necessary to estimate the value of 𝑘 denotes the number of clusters in the data. We 
used a similarity graph to estimate the number of clusters according to [36] in this study. 
The similarity graph can be created from the similarity matrix, and we can find the num-
ber of connected components in the graph as the value of 𝑘. Through the iterative process, 
we limited the similarity values to 0.7 and estimated the value of 𝑘 to 29. 

2.3. Application of Recurrent Neural Networks 
Based on the results of the spectral clustering, the trajectory data with the same pat-

tern were prepared for the model development. Considering that the trajectory data cor-
responds to the time series data indexed in time order, the RNNs such as Bi-LSTM, LSTM, 
and GRU were applied to the model development. To predict the value of future time step 
of each the trajectories, as represented in Equation (1), the explanatory and response var-
iables were equally specified as the latitude (𝐿𝑎𝑡) and the longitude (𝐿𝑜𝑛𝑔) of the ship 
position, the ship course over ground (𝐶𝑂𝐺), and the ship speed over ground (𝑆𝑂𝐺). The 
trajectory data of response variables were shifted forward by one time step from that of 
explanatory variables, which was illustrated in Figure 2. Thus, the RNNs learns the pre-
pared data to predict the value of the next time step. In the prediction step, we updated 
the RNNs state with the observed value of time steps between predictions in consideration 
of the actual navigation environment in which the input can be obtained in real time 
through navigation equipment such as AIS or RADAR. 

 

Figure 2. Structure of trajectory data for training of RNNs. 

2.3.1. LSTM 
The LSTM was proposed by Hochreiter and Schmidhuber in 1997 [21]. They 

managed the vanishing gradient problem using the LSTM that has the memory cells, 
input, and output gates. In 1999, Ger et al. improved the initial LSTM by introducing a 
forget gate that enables the LSTM to learn to reset itself [38]. The modified LSTM model 
was shown in Figure 3 [21]. 
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Figure 3. LSTM model. 

In Figure 3 [38], 𝑥  and ℎ  are the input and the hidden state at time 𝑡, respectively. 
Unlike the general RNN model, it has a cell state 𝑐 , and the three gates that are the forget 
gate 𝑓 , the input gate 𝑖 , and the output gate 𝑜  in the hidden state. The forget gate 𝑓  
decides how many rates should be maintained from the value of the previous cell state 𝑐  at the time 𝑡. It can be obtained as follows [21]: 𝑓 = 𝜎 𝑈 𝑥 + 𝑊 ℎ + 𝑏  (9)

where 𝜎 is the sigmoid function, 𝑈  and 𝑊  are the weight values, and 𝑏  is the bias 
value. The sigmoid function is the most commonly used as an activation function of the 
neural network along with the hyperbolic tangent function. Since they are differentiable 
function, the optimization algorithms such as the gradient descent can be adopted as a 
learning method in the neural networks. In the LSTM and GRU models, the sigmoid func-
tion is applied to each gate as follows:  𝜎(𝑥) = 11 + 𝑒  (10)

The hyperbolic tangent function tanh is applied to update the cell or hidden state in the 
LSTM and GRU model as follows: tanh(𝑥) = 1 − 𝑒1 + 𝑒  (11)

The input gate 𝑖  at time 𝑡 decides how much of the processing result of the input 𝑥  
should be reflected in the cell state 𝑐 . It can be obtained as follows [21]: 𝑖 = 𝜎(𝑈 𝑥 + 𝑊 ℎ + 𝑏 ) (12)

where 𝑈  and 𝑊  are the weight values, and 𝑏  is the bias value.  
The output gate 𝑜  at time 𝑡 adjusts the output of the value stored in the cell state 𝑐 , and it can be obtained as follows [21]: 𝑜 = 𝜎(𝑈 𝑥 + 𝑊 ℎ +𝑏 ) (13)

where 𝑈  and 𝑊  are the weight values, and 𝑏  is the bias value.  
The cell state 𝑐  at time 𝑡 can be obtained as follows [21]: 𝑐 = 𝑖 ∘ 𝑎 + 𝑓 ∘ 𝑐  (14)

where 𝑎  and ∘ are the new cell state at time 𝑡 and an element-wise product, respec-
tively. 𝑎  can be obtained as follows: [21]: 𝑎 = tanh(𝑈 𝑥 + 𝑊 ℎ + 𝑏 ) (15)
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where 𝑈  and 𝑊  are the weight values, and 𝑏  is the bias value. Finally, the hidden 
state ℎ  can be obtained as follows [21]: ℎ = 𝑜 ∘ tanh(𝑐 ) (16)

2.3.2. Bi-LSTM 
Bi-LSTM is a neural network using the LSTM model for each hidden node of a bidi-

rectional RNN [39], in which the output value is affected by the values of the input and 
hidden state at both the previous and later time as the hidden layer of that is separated in 
forward and backward directions [24]. Figure 4 [39] shows the structure of this Bi-LSTM 
model, and the output 𝑦 is calculated based on the hidden states of both the forward layer 
and backward layer. At time 𝑡, the forward hidden state ℎ⃗  can be obtained as follows 
[39]: ℎ⃗ = 𝜎 𝑈→𝑥 + 𝑊→ℎ⃗ + 𝑏→ , (17)

where 𝑈→ and 𝑊→ are the weight values, and 𝑏→ is the bias value.  
The backward hidden state ℎ⃖  at time 𝑡 can be obtained as follows [39]: ℎ⃖ = 𝜎 𝑈←𝑥 + 𝑊←ℎ⃖ + 𝑏← , (18)

where 𝑈← and 𝑊← are the weight values, and 𝑏← is the bias value.  
The output 𝑦  at time 𝑡 can be obtained as follows [39]: 𝑦 = 𝑉→ℎ⃗ + 𝑉←ℎ⃖ + 𝑏 , (19)

where 𝑉→ and 𝑉← are the weight values, and 𝑏  is the bias value. 

 
Figure 4. Bi-RNN model. 

 

2.3.3. GRU 
The GRU is a neural network model proposed in [22] (2014), compared with the 

LSTM, the internal operation is simple. The LSTM consists of the three gates, whereas the 
GRU consists of a reset gate 𝑟  and an update gate 𝑧  as shown in Figure 5 [22]. 
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Figure 5. GRU model. 

In Figure 5, 𝑥  denotes the input to the hidden state at time 𝑡, and ℎ  denotes the 
output of the hidden state at time 𝑡. The reset gate 𝑟  decides how to combine the input 𝑥  and the previous hidden state ℎ , and it is computed by [22]: 𝑟 = 𝜎(𝑈 𝑥 + 𝑊 ℎ + 𝑏 ) (20)

The new hidden state ℎ  at time 𝑡 is computed by [22]: ℎ = tanh 𝑈 𝑥 + 𝑊 (𝑟 ∘ ℎ )  (21)

The update gate 𝑧  decides how much rate of the previous hidden state ℎ  is to 
be updated with the new hidden state ℎ . Based on the 𝑧 , the hidden state ℎ  can be 
obtained as follows [22]: 𝑧 = 𝜎(𝑈 𝑥 + 𝑊 ℎ + 𝑏 ) (22)

ℎ = 𝑧 ∘ ℎ + (1 − 𝑧 ) ∘ ℎ  (23)

3. Simulations and Results  
3.1. Data Collection 

To generate neural network models for predicting the ship trajectory, the actual AIS 
data were used as input data. The AIS data were collected for 14 days in the coastal waters 
near the entrance to the port of Busan in Korea [40]. The selected sea area had the highest 
number of vessel traffic and marine accidents in Korea over the past five years (2016–2020) 
[1,41]. The collected AIS data includes a total of 1,351 ships and 2,816 trajectories with four 
types of ships: cargo ship, passenger ship, oil tanker, dangerous cargo ship. Figure 6 
shows the ship trajectories classified by ship type in the universal transverse Mercator 
(UTM) coordinate system. The entrance to the port of Busan is located at the top left corner 
in Figure 6. As shown in Figure 6, it can be seen that ship trajectories of various patterns 
are concentrated in the target area. If these trajectory data are directly used to develop a 
predictive model, it will be difficult to expect good performance. 
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Figure 6. Total trajectories detected from the AIS data. 

3.2. Results of Ship Trajectory Clustering 
The ship trajectories were grouped together by similar patterns using the spectral 

clustering. Table 1 shows the results of the ship trajectory clustering, which include the 
label, the quantity, and the ratio of each cluster. As shown in Table 1, a total of 2816 tra-
jectories were grouped into 29 clusters. It was found that the cluster of label 12 contains 
the maximum number of trajectories (7.63%), and the cluster of label 2 contains the mini-
mum number of trajectories (1.17%). Based on these results, each trajectory cluster was 
illustrated in Figure 7. Although some abnormal trajectories were included in the overall 
results, it can be seen that there were clear differences in the patterns among each cluster. 

Table 1. Result of ship’s trajectory clustering. 

Label Quantity Ratio (%) Label Quantity Ratio (%) Label Quantity Ratio (%) 
1 104 3.69 11 104 3.69 21 89 3.16 
2 33 1.17 12 215 7.63 22 75 2.66 
3 124 4.40 13 94 3.34 23 88 3.13 
4 102 3.62 14 80 2.84 24 62 2.20 
5 77 2.73 15 195 6.92 25 100 3.55 
6 108 3.84 16 64 2.27 26 102 3.62 
7 101 3.59 17 75 2.66 27 51 1.81 
8 58 2.06 18 165 5.86 28 81 2.88 
9 87 3.09 19 101 3.59 29 121 4.30 

10 85 3.02 20 75 2.67 - - - 
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(a) Label 1–8. 

 
(b) Label 9–16. 
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(c) Label 17–24. 

 

(d) Label 25–29. 

Figure 7. Ship trajectory plot of each cluster. 

In Figure 7, since the entrance to the port of Busan is located at the top left corner in 
the trajectory plot of each cluster, the clusters of label 3, 7, 10, 12, 15, 19, 21 represent the 
inbound or outbound ship trajectories, and the clusters of label 1, 4, 9, 11, 13, 14, 17, 20, 22, 
23, 25–29 represent passing ship trajectories in front of the port of Busan. According to the 
above clustering results, the patterns of trajectory were found to have two major patterns: 
northeast or southwest direction, northwest or southeast direction, which accounted for 
the largest proportion of the total trajectories, neglecting the abnormal trajectories. There-
fore, two corresponding patterns were designated as group A and group B, respectively, 
and the trajectory data were extracted and classified by the groups as Table 2. Thus, the 
amount of sample data was 565 and 535 for group A and B, respectively. 
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Table 2. Classification of ship’s trajectory pattern. 

Group Cluster label Direction Quantity 
A 9, 13, 17, 22, 26, 27, 28 Northeast / Southwest 565 (20.1%) 
B 3, 7, 8, 19, 21, 24  Northwest / Southeast 535 (19.0%) 

3.3. Results of Ship Trajectory Prediction 
The trajectory prediction is performed by the two groups based on the Bi-LSTM, the 

LSTM, and the GRU. To avoid the data overfitting, we used a 5-fold cross-validation for 
training sample data, which is a method of training a model by using 4 equal parts, as 
training data among the entire data were partitioned into 5 parts, and evaluating the ac-
curacy of the model by using the remain 1 equal parts as test data. The model is built 5 
times with each equal part being used as test data once, and the accuracy of each model is 
calculated. As previously stated, the input data of each group were scaled so that we can 
make an appropriate fit and prevent the training from diverging. The accuracy of the final 
model is estimated as the average of the accuracy values calculated during cross-valida-
tion. To measure the accuracy of the model, the root means square error (𝑅𝑀𝑆𝐸) value 
was used. The 𝑅𝑀𝑆𝐸 measures the prediction error that indicates the difference between 
the predicted trajectory (𝑇𝑟) of the model and the observed value (𝑇𝑟) by inputting the 
test data to the trained model. The 𝑅𝑀𝑆𝐸 is defined as:  

𝑅𝑀𝑆𝐸 = ∑ 𝑇𝑟 − 𝑇𝑟𝑛  (24)

A model that has the lower value of the 𝑅𝑀𝑆𝐸 on new data has the better generali-
zation performance and can solve the problem of overfitting. To compare the performance 
of the Bi-LSTM, the LSTM, and the GRU, they were constructed under the same conditions 
[42]. The hidden layer was specified to have 200 hidden units. The adaptive moment esti-
mation (ADAM) which is a method of training weights while adjusting the learning rate 
for each weight was used. The train epoch was set to 300, and the gradient threshold was 
set to 1. The initial learning rate was set to 0.005 and the learning rate drop after 120 epochs 
by multiplying by a factor of 0.2. The results of each prediction model are shown in Figure 
8 using the 5th test data among cross-validation partitions. 

 
(a) Predicted trajectory for group A using Bi-LSTM. 
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(b) Error scatter plot for group A using Bi-LSTM. 

 
(c) Predicted trajectory for group A using LSTM 
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(d) Error scatter plot for group A using LSTM. 

 
(e) Predicted trajectory for group A using GRU. 
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(f) Error scatter plot for group A using GRU. 

 
(g) Predicted trajectory for group B using Bi-LSTM. 



J. Mar. Sci. Eng. 2021, 9, 1037 17 of 22 
 

 

 
(h) Error scatter plot for group B using Bi-LSTM. 

 
(i) Predicted trajectory for group B using LSTM. 
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(j) Error scatter plot for group B using LSTM. 

 
(k) Predicted trajectory for group B using GRU. 
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(l) Error scatter plot for group B using GRU. 

Figure 8. Results of trajectory prediction. 

Figure 8 consists of the trajectory plots (a), (c), (e), (g), (i), (k) and the error scatter 
plots (b), (d), (f), (h), (j), (l). In the trajectory plots, the red trajectories represent the actual 
data observed by the AIS, and the blue trajectories represent the predicted data by each 
RNN model. The error scatter plots display the distance error between the observed data 
and the predicted data for each trajectory. According to each trajectory plot in Figure 8, 
the Bi-LSTM models accurately predict the trajectory in comparison with other models 
since the blue trajectories of Bi-LSTM were distributed closer to red trajectories than other 
models, and the LSTM and the GRU models showed a similar performance. The error 
scatter plots also showed that the Bi-LSTM models have the lower prediction errors for 
each data compared to the other two models. Moreover, according to (g), (i), and (k) of 
Figure 8, the Bi-LSTM showed superior prediction performance compared to the LSTM 
and the GRU models for the trajectory with a lot of changes in the course of the ship. The 
results of trajectory prediction applying the Bi-LSTM, the LSTM, and the GRU models to 
the group A and B are summarized in Figure 9 and Table 3. As shown in Figure 9, we can 
easily recognize that the prediction of the Bi-LSTM model is more accurate than the LSTM 
and the GRU in both group A and B. According to the normalized RMSE average in Table 
3, the accuracy of the prediction model applied with the Bi-LSTM was higher than that of 
the LSTM and the GRU models, and the difference between the LSTM and the GRU was 
small. The prediction accuracy for the position was the highest among the position, 
course, and speed. In the comparison of the training times for the three models, the GRU 
model took less training time than the Bi-LSTM and the LSTM models, and the Bi-LSTM 
recorded the longest training time in both groups. The LSTM and the GRU take a longer 
training time compared to the general RNN because they have more weights and bias 
terms to be trained. In addition, since the Bi-LSTM is a structure in which backward train-
ing is added to the structure of the LSTM, it takes longer to learn than the LSTM. 
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Figure 9. Comparison of distance 𝑅𝑀𝑆𝐸 for each model. 

Table 3. Results comparison among BLSTM, LSTM, and GRU. 

Group Method Avg. elapsed 
training time 

𝑅𝑀𝑆𝐸 
Normalized 
Avg. 𝑅𝑀𝑆𝐸  Dis-

tance 
Course Speed 

A 

Bi-LSTM 22m1s 
0.0104 
(101m) 

0.0345 
(3.1°) 

0.0275 
(0.1knot) 0.26 

LSTM 9m8s 0.0224 
(217m) 

0.1495 
(13.4°) 

0.1042 
(0.3knot) 

1.00 

GRU 8m20s 0.0202 
(194m) 

0.1464 
(13.1°) 

0.1041 
(0.3knot) 0.98 

B 

Bi-LSTM 22m26s 
0.0113 
(107m) 

0.0219 
(2.0°) 

0.0219 
(0.2knot) 0.27 

LSTM 9m45s 0.0201 
(191m) 

0.1242 
(11.4°) 

0.0583 
(0.6knot) 1.00 

GRU 8m24s 
0.0177 
(169m) 

0.1251 
(11.49°) 

0.0583 
(0.6knot) 0.99 

4. Conclusions 
In this study, we proposed a methodology for predicting the ship trajectory that can 

be used for an intelligent collision avoidance algorithm at sea. The Bi-LSTM, known as the 
RNN, was applied to predict the future trajectory of the ship by using the spectral clus-
tered AIS data in the confined coastal waters. The results of the Bi-LSTM were compared 
to ones of the LSTM and the GRU models. For preparing the input data of the three mod-
els, the ship trajectories with the similar patterns were extracted by the spectral clustering 
method. The spectral-clustered AIS data were learned by using the RNN models to predict 
the trajectories of future time steps. The 𝑅𝑀𝑆𝐸s of ship parameters—i.e., position, course, 
and speed—were calculated to compare with each other. It concludes that the Bi-LSTM 
model presents the better accuracy, compared with the LSTM and the GRU models. It has 
been proven that the performance of the Bi-LSTM is better than the LSTM applied in pre-
vious studies. In the future, performance comparison through quantitative evaluation be-
tween the DBSCAN and the spectral clustering should be implemented. Moreover, in the 
procedure of the trajectory clustering, it is necessary to define the major traffic patterns 
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based on the clear evidence. In relation to the considerable low accuracy of prediction for 
some trajectories, the cause should be identified. This may be due to the absence of an 
optimization process for the hyper-parameters required for model development. Regard-
ing the evaluation of the developed model, the 𝑅𝑀𝑆𝐸 alone cannot sufficiently evaluate 
and compare the model. The application of various evaluation metrics can block qualita-
tive evaluations, such as comparison of graphs with large amounts of data. Furthermore, 
despite the collection of large amounts of data, only 1,098 out of 2816 trajectories were 
used in this study. Considering the scalability of future research, the inefficiency of data 
utilization must be addressed. We constructed the prediction model for the ship trajectory 
based on the spectral clustering and the Bi-LSTM. It is expected that the proposed model 
contributes to developing an intelligent collision avoidance algorithm, which can reduce 
the human error in determining the risk of collision between ships and take collision 
avoidance actions at an early stage. 
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