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Abstract: Braided corrugated hoses are widely used in displacement compensation and vibration
absorption environments due to their excellent flexibility and energy dissipation properties; however,
the axial stiffness has rarely been discussed before as an important physical property of braided
corrugated hoses. In this paper, the theoretical axial stiffness model for braided corrugated hoses is
established based on the energy method and the theory of the curved beam. The influences of the
braiding parameters of the metallic braided tube and the structural parameters of the bellows on
the axial stiffness are also discussed. Through finite element tensile testing, the axial stiffness curves
of the braided corrugated hose under different braiding angles and different wire diameters are
obtained. The theoretical axial stiffness model is in good agreement with the simulation experiment,
which reflects the nonlinear effects of the braiding angle and wire diameter on the braided corrugated
hose. This paper provides an accurate method and basis for the design of braided corrugated hoses
in the future.

Keywords: axial stiffness; energy method; curved beam; braided corrugated hose

1. Introduction

Braided corrugated hoses are important connection components in pressure vessels
and pipeline systems, providing compensation displacement, vibration absorption, and
noise reduction. They are widely used in petrochemical, aerospace, automotive, marine,
and other fields [1,2]. The performance of a braided corrugated hose directly affects the
normal work of the pipeline system and is vital to its reliability.

A braided corrugated hose is composed of metal bellows and a metallic braided
tube. Over the years, there have been many studies on the axial mechanical properties of
metal bellows. Anderson [3] used the simple beam approximation method to obtain the
displacement and stress solutions for U-shaped bellows by decomposing the asymptotic
integral, then further derived the approximate formulae on this basis. Based on the theory
of having a thin annular shell, Qian [4] calculated the stress and strain for C-shaped bellows
under internal pressure and axial force with the given calculation formula, which can be
used in engineering design. They also obtained an accurate linear analytical solution for
U-shaped bellows based on the exact solution of the annular shell. Huang [5] obtained the
numerical solution for C-shaped bellows using the initial numerical integration parameters
and improved the calculation accuracy for the stress and deformation under axial force and
uniform distribution pressure using an extrapolation formula. Laupa [6] used the energy
method to analyze the mechanical properties of the U-shaped bellows under axial load and
external force and obtained the load–displacement and load–stress expressions.

Many researchers have also used the finite element method to analyze the mechanical
properties of bellows. Chen [7] established the finite element analysis model for U-shaped
bellows. The results of the analysis using the finite element analysis showed that this
method can simulate the load–stress response of U-shaped bellows well. Yang [8] carried
out a finite element analysis on multilayer bellows and found that this method can better
simulate the characteristics of multi-layer bellows by comparing the results with the
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experimental values. Zhu [9] established a finite element model of multi-layer U-shaped
bellows with sandwich damping. The simulation results were compared with the EJMA
formula to verify the rationality of the model. Zhou [10] used ABAQUS to establish an
axisymmetric finite element model of the bellows with different numbers of layers and
simulated the axial stiffness and stress–strain distribution of the multi-layer U-shaped
bellows. The results showed that the stiffness of the bellows decreased significantly with
the increase in the number of layers at constant thickness, while the overall stiffness of the
bellows changed significantly under large deformation, which was divided into elastic and
plastic stiffness.

Regarding braided tubes, many researchers have tried to investigate the structural
and mechanical properties. Brunnschweiler [11] first derived the structural parameters of
the diamond-shaped woven mesh and described the practical method used to derive the
mechanical properties. Hristov [12] investigated the mechanical behavior of a woven mesh
sleeve without an inner core under axial tension. A predictive model of the mechanical
response of the braids based on the constituent yarn characteristics and machine parameters
was also developed. Phoenix [13] established a response for a braided tube with an elastic
inner core and found that the braiding angle, crimp angle, modulus of the inner core, and
Poisson’s ratio all affect the mechanical properties of the entire braided tube.

Many researchers have used the energy method to analyze the mechanical properties
of braided tubes. Grosberg [14] first established the energy equation for a plain weave fabric,
which was found to be a good description of the mechanical properties of woven meshes via
experimentation. Hearle [15] studied the basic theory of the energy method and discussed
the elastic responses of plain weave fabrics. Dabiryan [16] used the energy method to
analyze the mechanical properties of the diamond braid, deduced the equivalent elastic
moduli of the different stages, and verified the reliability of the model through experiments.

Overall, the mechanical properties of metal bellows and braids have been widely
researched separately, although the mechanical properties of braided corrugated hoses
have rarely been studied. The axial stiffness and tensile properties of braided corrugated
hoses are very important in determining their service range and life; therefore, in this paper
we adopt a method involving curved beam element analysis to establish an axial stiffness
model for the metal bellows, while for the metallic braided tube, the energy method is
used to establish the axial stiffness model. For the nonlinear phenomenon of the metallic
braided tube, the Taylor series expansion is used to fit the axial stiffness. Finally, the axial
stiffness model of the metal hose is established by combining the two models. The accuracy
of the model is verified through experiments.

2. Mathematic Model of Braided Corrugated Hose
2.1. The Structure of the Metallic Braided Tube

The structure of the metallic braided tube is shown in Figure 1. The braided corrugated
hose is made up of an external metallic braided tube and internal metal bellows. The
metallic braided tube is made up of two sets of metal fibers, which are interwoven in
opposite directions, with the model geometry parameters shown in Figure 1b. The key
geometrical parameters are the diameter of the metal wire (d), the inner diameter of the
metal braided tube (D) (also the outer diameter of the bellows), the equivalent diameter of
the metallic braided tube (De), and the braiding angle (α). The diamond trellis structure
(ABCD) shown in Figure 2 can be obtained by unrolling the braided tube along the axial
direction. AC is the axis direction of the braided tube and x is the spacing of the one plait.
When the braided tube is stretched or compressed, x increases or decreases, respectively,
while the braiding angle decreases or increases accordingly. The braiding angle can be
defined by the pitch or the length of one side of the diamond trellis (q).

sinα =
πDe

Nq
(1)

where N is the number of filaments.
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The spacing of one plait x can be defined as:

x = 2qcosα (2)

In Figure 2, p is the projection of the strand length normal to the direction of crossing
strands, while θ is the angle between p and q. Figure 3 shows a projection of section EE’
of the braid normal to the plane. The crimp of the braid thread will be defined as the
difference in length between the actual length of the thread in diamond trellis unit (BC)
and the length of its projection on the plane (B′C). The crimp c can be defined as:

c =
(l − q)

q
(3)

The crimp angle of the yarns in the braid structure can be given by:

sinβ =
BB′

B′C
(4)

BB′ is approximately equal to the yarn diameter (d) and B′C is approximately equal to
the straight line, hence:

β = arcsin
(

d
l

)
(5)
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2.2. The Mechanical Properties of Wires under Tensile Load

We assume that the metallic braided tube is subjected to an axial force, Fb. As shown
in Figure 4, the load acting on each wire can be expressed as:

fu =
Fb
n

(6)

where n is number of wires in the braid structure and fu is in the direction of the braid axis.
To analyze the mechanical behavior of metallic braided tube, the unit cell of the 1/1

pattern is considered, as Figure 5 shows. The wires are assumed to have the following
properties:

(1) Assuming that the wire has a circular cross-section, the diameter and cross-section of
the wire are unaffected by the applied load;

(2) The wire elongation is based on Hooke’s law, σ = Eε, where σ is the stress in the wire,
E is the modulus of elasticity of the wire, and ε is the strain in the wire;

(3) The bending of the filament is based on the theory M = B·κ, where M is the moment,
κ is the yarn curvature, and B = EI.

In its normal state, the wire is woven in a spiral around the axis. According to
Brunnschweiler’s theory [17], the wire in the unit cell is an arc, the length of which can be
obtained by elliptic integrals, which makes the calculation considerably more difficult. To
simplify the calculation, the length in the unit cell is simplified to the length of the line BC,
as Figure 3 shows. It is assumed that the internal force and the contact force of the wires
are ignored and the strain energy is mainly generated under the action of the external force
fu. The strain energy of the unit cell can be expressed as:

UT = Ue + Ub (7)
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where UT is the total strain energy of the unit cell, Ue is the extension energy of the unit
cell, and Ub is the bending energy of the unit cell.

Since the deformation of the wire is elastic, the tensile strain energy and the bending
strain energy can be calculated using the following formula.

Ue =
∫ q

0

F2

2EA
=

q·T2

2EA
(8)

Ub =
∫ q

0

M2

2EI
=

q·M2

2EI
(9)

where T is the tension force of the unit cell, q is the length of the wire in the unit cell, E is
the Young’s modulus of the wire, and I is the cross-sectional moment of inertia.

T = f ·cosβ (10)

M = f ·sinβ·s (11)

where f is the force along the wire plane (COB).
As such, the strain energy for the AB’ part can be derived as follows:

Ue =
q·( f cosβ)2

2EA
(12)

Ub =
∫ q

0

( f sinβ)2·s2

2EI
ds =

( f sinβ)2·q3

6EI
(13)

where A = πd2

4 and I = πd4

64 , while d is the diameter of the wire.
The total strain energy of the unit cell is as follows:

UT = 4(Ue + Ub) = 4
(

6q f 2cosβ2d2 + 32 f 2sinβ2q3

3Eπd4

)
(14)

For the unit cell, the external force fu and the force f in the unit cell are shown in
Figure 4 and the relationship between them can be expressed as follows:

f =
fu

cosα
(15)

For the metallic braided tube, the relationship between the total tensile force and the
tensile force on the unit cell is:

Fb = n·Vf · fu (16)

where n is the total wires in the metallic braided tube and Vf is the wire packing factor,
defined as the ratio of the fiber volume to the yarn volume. According to the study by
Hachemi [18], this can be expressed as:

Vf =
n· d2

cosα(
(D + 5d)2 − D2

) (17)

According to the principle of the virtual work, the work done by the unit cell under
axial load should be equal to the total internal strain energy. The work done by the unit
cell and the total internal energy can be expressed as below:

WF = UT (18)

Ue + Ub =
1
2
· fu·∆ (19)
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4
(

6q f 2cosβ2d2 + 32 f 2sinβ2q3

3Eπd4

)
=

1
2
· fu·∆ (20)

fu =
3Eπd4cosα2

8(6qcosβ2d2 + 32sinβ2q3)
·∆ (21)

where ∆ is the axial deformation of the unit cell.
The force–deformation relationship for the entire metallic braided tube can be obtained

by putting the fu into Fb.

Fbraid = n·Vf ·
3Eπd4cosα2

8(6qcosβ2d2 + 32sinβ2q3)
·∆ (22)

The axial stiffness of the entire metallic braided tube can then be expressed as:

Kbraid = n·Vf ·
3Eπd4cosα2

8(6qcosβ2d2 + 32sinβ2q3)
(23)

When the metallic braided tube is subjected to the axial load, the volume of the metallic
braided tube changes with axial elongation and the metal wires rub and contact each other,
meaning the axial stiffness of the metallic braided tube presents nonlinear characteristics.
According to the theories of previous scholars [19–21], the axial stiffness of the metallic
braided tube can be expanded by repeating the Taylor series three times, as shown below:

Fbraid = n·Vf · 3Eπd4cosα2

8(6qcosβ2d2+32sinβ2q3)
·∆ +

(
n·Vf · 3Eπd4cosα2

8(6qcosβ2d2+32sinβ2q3)

)2
∆2

+
(

n·Vf · 3Eπd4cosα2

8(6qcosβ2d2+32sinβ2q3)

)3
∆3

(24)

By adding the correction coefficients A1, A2, and A3, the nonlinear equation of the
metallic braided tube under axial loading can be obtained as follows:

Fbraid = n·Vf · 3Eπd4cosα2

8(6qcosβ2d2+32sinβ2q3)
·A1∆ + A2

(
n·Vf · 3Eπd4cosα2

8(6qcosβ2d2+32sinβ2q3)

)2
∆2

+A3

(
n·Vf · 3Eπd4cosα2

8(6qcosβ2d2+32sinβ2q3)

)3
∆3

(25)

The correction coefficients A1, A2, and A3 can be obtained from the experiment results.
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Figure 5. Diagram of the unit cell.

2.3. The Stiffness of the Bellows

The structure of the bellows is shown in Figure 6. Here, D is the out diameter, din
is the inner diameter, r1 is the radius of the crest, r2 is the radius of the trough, w is the
pitch of convolution, and t is the thickness of the bellows. As the bellows have a periodic
structure, it is sufficient to consider only half waves in the study of their deformation law.
The wave height of the bellows and the radius of the circular shell section are very small,
so the curved beam with a width of one is intercepted along the circumference [22], which
is subjected to external forces and each internal force component, as shown in Figure 7.
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We assume that point H is supported and point K can move along the direction of the
force but cannot rotate. Relative to point K, the rotation θ1 and the vertical displacement
w1 of point J are shown in Equations (26) and (27), respectively:

θ1 =
1

EJ
[F(2r2

0 + πr0r1 + r2
1)−M

(
2r0 +

π

2
r1

)
] (26)

w1 =
1

EJ
[F
(

8
3

r3
0 + 2πr2

0r1 + 4r0r2
1 +

π

4
r3

1

)
−M(2r2

0 + πr0r1 + r2
1)] (27)

where E is the modulus of elasticity and J is the moment of inertia.
Relative to point H, the rotation angle θ2 of point K and the vertical displacement w2

are as follows:
θ2 =

1
EJ

(
Fr2

2 +
π

2
r2M

)
(28)

w2 =
1

EJ
(

π

4
Fr3

2 + Mr2
2 (29)

According to the principle of deformation coordination, the θ1 = θ2 and M can be
expressed as:

M =
F
(
2r2

0 + πr0r1 + r2
1 − r2

2
)

2r0 +
π
2 r1 +

π
2 r2

(30)

The axial deformation of a single wave δ0 can be obtained by:

δ0 = 2(w1 + w2) (31)

By subbing Equations (27), (29) and (30) into Equation (31), the single-wave stiffness
formula of the bellows can be obtained as follows:

k =
πDmEt3

24
·
{

1/[
2
3

r3
0 +

π

2
r2

0(r1 + r2) + 2r0

(
r2

1 + r2
2

)
+

π

4

(
r3

1 + r3
2

)
−

(r1 − r2)
2(π

2 r0 + r1 + r2
)2

2r0 +
π
2 r1 +

π
2 r2

]

}
(32)

As such, the stiffness of the bellows for m waves is:

Km =
k
m

(33)
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When r1 = r2 = r and the wave height H = 2r0 + r1 + r2, Equation (33) can be
written as:

Km =
π

24m
EDmC1

(
t
H

)3
(34)

where C1 = 1/[0.046
( r

H
)3 − 0.142

( r
H
)2

+ 0.285 r
H + 0.083], while the relationship between

force and deformation can be expressed as follows:

Fbellows = Km·∆ (35)

2.4. The Axial Stiffness of the Braided Corrugated Hose

The braided corrugated hose is made of a metallic braided tube and metal bellows
arranged in parallel. The stiffness of the braided corrugated hose can be superimposed
from the stiffness of the metallic braided tube and the metal bellows. The relationship
between the axial force and the deformation can be expressed by the following equation:
F = Fbraid+ Fbellows

= n·Vf · 3Eπd4cosα2

8(6qcosβ2d2+32sinβ2q3)

·[A1∆ + A2(n·Vf · 3Eπd4cosα2

8(6qcosβ2d2+32sinβ2q3)
)

2
∆2

+A3(n·Vf · 3Eπd4cosα2

8(6qcosβ2d2+32sinβ2q3)
)

3
∆3] + Km·∆

(36)

F =
(

n·Vf · 3Eπd4cosα2

8(6qcosβ2d2+32sinβ2q3)
A1 +

π
24m EDmC1

( t
H
)3
)
·∆

+A2(n·Vf · 3Eπd4cosα2

8(6qcosβ2d2+32sinβ2q3)
)

2
∆2 + A3(n·Vf · 3Eπd4cosα2

8(6qcosβ2d2+32sinβ2q3)
)

3
∆3

(37)

3. Numerical Experiment with the Braided Corrugated Hose
3.1. The Material and Structure of the Braided Corrugated Hose

The braided corrugated hose used in the numerical simulation is shown in Figure 8,
while the material used for the bellows and the metallic braided tube was 304 stainless
steel. The wires in the metallic braided tube underwent a cold-drawing treatment, while
the physical properties of the 304 stainless steels are shown in Table 1. The structural
parameters of the metallic braided tube and the bellows are shown in Tables 2 and 3, respec-
tively. In order to explore the effects of the braiding angle and wire diameter on the axial
stiffness of the braided corrugated hose, three different braiding angles and two different
wire diameters of the braided corrugated hose model were assessed in this experiment.
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Table 1. Physical properties of 304 stainless steel.

Young’s
Modulus

/MPa

Poisson’s
Ration

Ultimate Strength
σb/MPa

Yield Strength
σ0.2/MPa

Elongation Rate
δ/%

1.96× 105 0.3 ≥ 520 ≥ 205 ≥ 40

Table 2. Structural parameters of the metallic braided tube.

Number Number of
Strands Wires per Strand Braiding Angle Diameter of Wire

/mm
Length of Unit Cell

/mm

A 36 1 41◦ 0.6 4.4109
B 36 1 45◦ 0.6 4.0855
C 36 1 46◦ 0.6 4.0077
D 36 1 45◦ 0.3 4.0855

Table 3. Structural parameters of the metal bellows.

Outer
Diameter

/mm

Inner
Diameter

/mm

Pitch of
Wave
/mm

Wave Height
/mm

Radius of
Wave

Trough/mm

Radius of
Wave Crest

/mm

Thickness
/mm Length/mm

31.5 25.4 3.7 2.8 0.8 0.8 0.25 200

3.2. Simulation Setup

The bellows model was meshed as the shell element (SHELL 181) and the braid
model was meshed as the beam element (BEAM 188). The meshed model is shown in
Figure 9, containing 110,564 nodes and 104,164 elements. The contact between the bellows
and the metallic braided tube was frictional with a coefficient 0.2. The right side of the
braided corrugated hose was constrained in six degrees of freedom and fixed. The left side
was constrained in five degrees of freedom and could move along the axis, as shown in
Figure 10.
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3.3. Numerical Results and Analysis

It can be seen from Figure 11 that the stretching deformation of the braided corrugated
hose occurs in three stages. The first stage is linear stage, involving very little displacement.
At the beginning of the stretching period, the metallic braided tube undergoes slight axial
deformation. The axial stiffness of the braided corrugated hose is mainly provided by the
metal bellows. The second stage is the soft characteristic stage, with the increase in the
tensile force, the deformation of the metallic braided tube occurs as the geometry transition.
The diamond trellis changes from slight deformation (first stage) to large deformation,
whereby the braiding angle also changes. During this process, the friction between the
wires and the change of the braiding angle cause nonlinear phenomena. The third stage
is also a linear stage. After the second stage, the diamond trellis and braiding angle do
not change with increases in the tensile force. The elongation of the metallic braided tube
mainly results from elongation of the metal wires under tensile force. The third stage is
determined mainly by the characteristics of the wire.
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Figure 11. Load–deformation curve.

Figure 12 shows the axial stiffness values of the different braiding angles. It can be
seen that the different braiding angles cause different levels of axial stiffness in the braided
corrugated hose. The first stage of axial stiffness, involving different braiding angles, is
almost the same. The greatest difference is in the second stage, whereby a critical braiding
angle is assumed to exist between the second and third stages. When suffering under
tensile force, a small braiding angle will achieve this critical braiding angle faster than
a larger braiding angle and will enter the third stage earlier, meaning the axial stiffness
will be larger than that with a larger braiding angle. When the diameter of the wire
changes from 0.6 mm to 0.3 mm, the axial stiffness of the braided corrugated hose decreases
significantly. This shows that the diameter of the wire is also an important factor affecting
the nonlinear phenomenon.
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4. Model Validation

In order to verify the correctness of the axial stiffness model for the braided corrugated
hose, data from sample B were selected for identification of the model parameters (as
Table 4 shows) and the coefficients of the cubic polynomial were fitted using the least
squares method. The parameters obtained from the fit were used with the other sample
data for comparison. A comparison of the numerical experimental values with the values
calculated by the theoretical model is shown in Figure 13.

Table 4. Parameters of the correction coefficients in Equation (37).

Coefficients A1 A2 A3

Value 0.4578 0.001728 0.000001763
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With braiding angles of 41◦, 45◦, and 46◦, the theoretical fitting curves matched the
numerical results well. Some points did not match exactly; the maximum error occurred
at the braiding angle of 41◦, which was 21.9%. The reasons for the errors were due to
changes in the diameter of the metal wire when subjected to tensile load, although it was
assumed that the diameter of the wire remained constant. When the diameter of the wire
was 0.3 mm, the theoretical fitting curve also matched the numerical results well. Some
errors were caused by not considering the radial variation of the wire.

5. Conclusions

In this paper, a nonlinear axial stiffness model of a braided corrugated hose is es-
tablished based on the energy method and the curved beam model. The simulation
experimental results are used to fit the established axial stiffness model of the braided
corrugated hose and the fitting coefficients are determined. The theoretical fitting curve
and the simulation curve show good agreement, while the established axial stiffness model
can describe the nonlinear mechanical properties of the braided corrugated hose well. In
addition, the established axial stiffness model of the braided corrugated hose can also
reflect the influence of the braiding angle, wire diameter, and other related parameters on
its nonlinear mechanical properties, thereby allowing prediction of the structural stiffness,
providing a theoretical basis for the production and design of the braided corrugated
hose. These results will have important significance, guiding practical applications in
pipeline engineering.
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