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Abstract: The motion control of a surface ship based on a four degrees of freedom (4-DoF) (surge,
sway, roll, and yaw) maneuvering motion model is studied in this paper. A time-scale decomposition
method is introduced to solve the path-following problem, implementing Rudder Roll Stabilization
(RRS) at the same time. The control objectives are to let the ship to track a predefined curve path
under environmental disturbances, and to reduce the roll motion at the same time. A singular
perturbation method is used to decouple the whole system into two subsystems of different time
scales: the slow path-following subsystem and the fast roll reduction subsystem. The coupling effect
of the two subsystems is also considered in this framework of analysis. RRS control is only possible
when there is the so-called bandwidth separation characteristic in the ship motion system, which
requires a large bandwidth separation gap between the two subsystems. To avoid the slow subsystem
being affected by the wave disturbances of high frequency and large system uncertainties, the L1

adaptive control is introduced in the slow subsystem, while a Proportion-Differentiation (PD) control
law is adopted in the fast roll reduction subsystem. Simulation results show the effectiveness and
robustness of the proposed control strategy.

Keywords: singular perturbation; L1 adaptive control; rudder roll stabilization; path following

1. Introduction

The path-following and roll reduction are two important control objectives in ship
motion control problems. Traditionally, the path-following problem and roll reduction
problem are studied separately, due to the fact that they have totally different control
objectives and strategies. In path-following problem, the rudder is usually the only control
input if the propeller revolution is constant. However, in the roll reduction problem,
additional devices are usually used to provide effective roll reduction; for example, moving
weights [1], anti-rolling tanks [2], bilge keels [3], gyroscopic stabilizers [4], and stabilizing
fins [5] were widely studied and used as roll reduction devices.

Rudders are designed to control the heading and position of a ship, to make the ship
move along the given course, or turn when required. In the process of course-keeping
or path-following, the relatively small rudder force often limits the use of the rudder in
roll reduction control, mainly due to the following facts: firstly, the slew rate saturation of
the steering gear makes it difficult to control the high-frequency roll motion; secondly, the
high-frequency rudder operation may cause the wear and tear of the rudder; thirdly, the
fast rudder operation may affect the course-keeping or path-following performance.

Despite the above limitations, for a long time the Rudder Roll Stabilization (RRS)
control system has attracted great interest from the ship motion control community. This is
mainly because the RRS control system does not need any additional expensive devices,
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thus is cheap and convenient. In the 1980s, the basic RRS control strategies were put
forward by Källström [6], Van der Klugt [7], Källström et al. [8]. During the 1990s, more
advanced control laws and analyses were presented by Blanke et al. [9], Van Amerongen
et al. [10], Blanke and Christensen [11], Lauvdal and Fossen [12]. In the last two decades,
Perez [13], Perez and Blanke [14] carried out a comprehensive study on RRS in the course-
keeping problem; Ren et al. [15] introduced singular perturbation method for the RRS
problem.

Nowadays, by designing a more powerful rudder, it is possible for the rudder to have
a large enough bandwidth to control the high-frequency roll motion. On the other hand,
the RRS control should only be used in some emergency situations, such as when the ship
encounters severe wave disturbances which may cause a dangerous roll motion. For the
most time, the RRS control is not used, thus the wear and tear problem is very limited. It is
well known that there exists the so-called bandwidth separation characteristic in many of
the four degrees of freedom (4-DoF) (surge, sway, roll, and yaw) motion systems of surface
ships [14,16]. This bandwidth separation characteristic guarantees that there is a large
enough bandwidth separation gap between the yaw motion system and the roll motion
system, thus the control input in a system has a very limited interference effect on the other
system.

The study on RRS control system may be traced back to the pioneering work by
Cowley and Lambert [17], and the original research on the design of RRS was carried out
mainly in the 1980s. The studies that were the basis for real implementations can be found
in Källstrom [6], Van der Klugt [7], Van Amerongen et al. [10], Blanke et al. [9,18], Grimble
et al. [19], Lauvdal and Fossen [12], and Crossland [20], among others. In these studies,
however, the control objective was limited to RRS control in the course-keeping problem.
During the last two decades, the roll reduction control in the path-following problem has
drawn a lot of interest from the ship motion control community. Most of the analyses
are in the time-domain framework, where the state space equations are given and the
details of the system information can be tracked. Besides, the stability analysis can also be
conducted in the time domain. Fang and Luo [21] studied the track-keeping problem with
roll reduction control by using separated sliding mode controllers. Li et al. [22] considered
the roll angle constraints in the path-following problem by using the model predictive
control (MPC) approach. Liu et al. [23] combined the line-of-sight strategy and the MPC
method to the roll control in the path-following problem. However, most of the studies
used the separated model of the 4-DoF ship motion system, and there were seldom an
analytical framework and techniques to handle the coupling effects between the roll motion
and the maneuvering motion in the horizontal plane. Few studies concentrated on the
analysis of the 4-DoF ship motion system with different time-scale characteristics.

In this paper, a time-scale decomposition method is introduced to the RRS control
system in the path-following problem, where the rudder is the only input for both the
heading control and the roll reduction control. The time-scale analysis strategy offers a
new analytical framework for considering the coupling effects of the 4-DoF ship motion
system. This technique is used to decouple the ship motion system into a subsystem of
slow heading control and a subsystem of fast roll motion control. The coupling effects
between the two subsystems of different time scales are taken into account, which is of
great importance in a path-following problem.

It is well known that the roll motion is generally much faster than the motions of
other DoFs. The interaction between the opposite effects of fast and slow dynamic systems
causes the non-minimum phase (NMP) phenomenon in the 4-DoF ship motion system. The
NMP system has an inverse initial response and a large phase lag, which is considered as a
major challenge for RRS control system design [13,24]. In this paper, a time-scale analysis
technique based on a singular perturbation strategy is used to decouple the motions of
different time scales. The possibility for the singular perturbation method being used in
the RRS control system in course-keeping problems has been explored in the previous
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study [15]. In this paper, the singular perturbation equations are introduced to describe the
4-DoF motion of a surface ship in the path-following problem with RRS control.

The overall scheme of the time-scale analysis is shown in Figure 1. By following
the standard singular perturbation procedures, the whole system is decoupled into two
subsystems of different time scales, namely the slow path-following subsystem and the
fast roll motion subsystem. A new time scale τ is introduced to describe the roll motion
subsystem. Under such a time scale, the coupling effect from the slow subsystem can be
regarded as a constant disturbance to the fast subsystem. The so-called quasi-steady-state
equilibrium (QSSE) is introduced to pass information between the subsystems of different
time scales. The control objectives and strategies of these two subsystems are treated
separately, and the overall control input is set as the sum of the rudder commands of these
two subsystems.
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Different from the typical course-keeping problem, the RRS control in the path-
following problem is much more complicated. Due to the complex curve path tracking
motion and time-varying wave disturbances, large uncertainties of the model and its pa-
rameters are added into the motion system. Enough input bandwidth separation should
be guaranteed to avoid the interference between different subsystems in the RRS control
system [15], which is particularly difficult during the path-following problem. In reality, the
fast time-varying wave disturbances may cause the slow motion of some high-frequency
components; if these high-frequency components are fed into the slow path-following
subsystem, the control performance of the fast roll motion will be severely affected [25].
Thus, to gain good performances in both of the two time-scale subsystems, the control
strategy in the slow path-following subsystem is most important.

To deal with this system uncertainty and filter the high-frequency disturbances in the
slow subsystem, the L1 adaptive control strategy is introduced. It was first introduced in
aircraft control community [26]. This adaptive control strategy has a fast adaption speed
and is applicable for systems with a large system uncertainty and time-varying characteris-
tics. It has been introduced to the field of ship motion control in recent years [27–29], but
has not yet been used for RRS control.

In this paper, the slow path-following subsystem is decoupled into a guidance subsys-
tem and a control subsystem. A revised Serret–Frenet frame is adopted in the guidance
subsystem to describe the ship motion in a path-fixed frame [30]. An adaptive Nomoto
model is used in the control subsystem to describe the dynamics of the yaw motion in
the revised Serret–Frenet frame. A time-varying parameter is introduced to capture the
uncertainty of the model and is identified by the L1 adaptive law. The L1 adaptive control
has a fast adaption speed and can deal with system uncertainties, thus is quite suitable for
the path-following subsystem, which has large system uncertainties [28]. Moreover, there
is a low-pass filter in the L1 adaptive law which can filter the high-frequency components
and give a smooth control input to the slow path-following subsystem, thus guaranteeing
the input bandwidth separation.
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In the roll reduction subsystem, a Proportion-Differentiation (PD) controller has a
good roll reduction performance in the wave regime it is tuned for. Yet, different from the
traditional separate control, where the interaction between the roll motion and the motions
of other DoFs is seldom considered [21], the coupling effect is considered by introducing
QSSE in this paper. In the stretched time scale τ, the coupling effect from the slow path-
following subsystem in terms of rudder offsets can be regarded as a constant disturbance
to the roll reduction subsystem. The coupling effect is important in the path-following
problem. For example, there is a steady roll angle during the steady turning of a ship,
which should be taken into the feedback law of the roll reduction control. In fact, this roll
angle reflects the interaction effect of the slow path-following dynamics on the fast roll
motion.

In this paper, the ship motion control problem of path-following in the horizontal
plane with a simultaneous roll reduction is studied. By neglecting the heave and pitch
motions in the vertical plane, a 4-DoF (surge, sway, roll, and yaw) maneuvering motion
model is adopted. A comprehensive 4-DoF maneuvering motion model of a high-speed
container ship [16,31] is used for the simulation study. Based on a set of captive model tests
with varying heel angles, the 4-DoF equations of coupled surge–sway–roll–yaw motions
are derived [31]. This maneuvering motion model is often used as the benchmark model to
evaluate ship motion control performance, especially when taking the effect of roll motion
into account.

The rest of the paper is structured as follows: In Section 2, a brief introduction of the
singular perturbation approach used for the 4-DoF ship motion control system is given. In
Section 3, the control laws for the slow and fast subsystems are designed. Section 4 shows
the simulation results. The conclusions drawn from this study are presented in Section 5.

2. Time-Scale Analysis for Ship Motion System

The singular perturbation method has been used in the control industry for separating
motions of different time scales since the 1960s. Nowadays, it is still widely used in
the aerospace control community [32,33]. This time-scale decomposition technique was
introduced to the ship motion control problem in the previous work [28]; however, the
result was only limited to the RRS control in the course-keeping problem. In this paper, the
RRS control in the path-following problem is addressed.

2.1. Singular Perturbation

In order to use the time-scale decomposition strategy, the real system must be modeled
in the form of singular equations. Then, the standard singular perturbation procedure is to
decouple the system into two subsystems: a slow subsystem with an ordinary form, and a
fast subsystem, whose highest order derivatives of the state variables are multiplied by a
small positive parameter ε [32]:

.
x = f(x, z, ε, t), x(t0) = x0, x ∈ Rn (1)

ε
.
z = g(x, z, ε, t), z(t0) = z0, z ∈ Rm (2)

where x is the slow state vector and z represents the fast state vector; n and m denote
the dimensions of the slow state vector and the fast state vector, respectively; t0 is the
initial time, and x0 and z0 are the initial state vectors. The parameter ε (0 < ε � 1) is a
small constant, and it is usually obtained by the insight of the researchers and often has a
physical meaning; for example, in a system with subsystems of different time scales, the
ratio of the slow part to the fast part is often taken as ε, representing the difference in speed
between the different subsystems. It is assumed that f and g are smooth functions. It is
also assumed that the above ordinary differential equations (ODEs) have a unique solution
and the system has a unique stable equilibrium.
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The singular Equation (2) can be rewritten as [32]:

.
z =

g(x, z, ε, t)
ε

, z(t0) = z0, z ∈ Rm (3)

0 = g(x, z, 0, t) (4)

Since the system has a unique equilibrium, the root of Equation (4) can be
written as [32]:

z = h(x, t) (5)

where z is also called the QSSE of the fast dynamics. Although z is the fast state vector, z is
a slow state vector and represents the quasi-steady impact of the slow subsystem to the fast
subsystem. To obtain the reduced-order model, the QSSE is substituted into Equation (1),
while keeping the same initial condition for the state variable x(t) [32]:

.
x = f (x), x(t0) = x0 (6)

This model is called the quasi-steady-state subsystem. It describes the slow dynamics
of the system. Actually, Equation (6) considers the coupling effect of the fast dynamics by
substituting the QSSE into Equation (1).

The essential idea of singular perturbation is to express the fast subsystem in a new
time scale τ, in which the slow state variables can be regarded as constants. The new
time-scale is obtained by stretching the time t through dividing it by the small system
constant ε [32]:

τ =
t
ε

(7)

Under the time scale τ, the fast subsystem can be expressed as [32]:

dz
dτ

= g(x, z(τ)), τ =
t
ε

(8)

Equation (8) is also called a boundary layer subsystem. It describes the fast dynamics
in the stretched time scale τ. In this time scale, x is regarded as a constant state vector and
ε defines the stretched time scale.

As long as the system is divided into the slow quasi-steady-state subsystem and the
fast boundary layer subsystem, the control strategy can be designed separately in each
subsystem. The control problem becomes much simpler in the reduced-order subsys-
tems. Denoting the control inputs in the quasi-steady-state subsystem and the bound-
ary layer subsystem as σq and σb, respectively, the whole system control input σ can be
expressed as [32]:

σ = σq(t) + σb

(
t
ε

)
(9)

However, it should be noted that the reason that the control inputs are able to be
added together is the existence of bandwidth separation in the system. The bandwidth
separation characteristic makes it possible that the control input in a subsystem will not
severely affect the other subsystem. Fortunately, there is often a large enough bandwidth
separation gap between the subsystems of different time scales when ε is small enough.
For more details about the stability issues, see [32].

2.2. Singular Perturbation Used in Ship Motion System

In this subsection, the time-scale decomposition technique for the 4-DoF ship motion
system is introduced.
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For simplicity, a linear model is considered in the time-domain analysis of the RRS
control system, and the forward speed is assumed to be constant. The linear model of
4-DoF ship motions can be expressed in the following singular form:

.
v
.
ψ
.
r

ε
.
φ

ε
.
p


=


f1(v, r, φ, p, δ)

r
f2(v, r, φ, p, δ)

εp
ε f3(v, r, φ, p, δ)

 (10)

where v, ψ, r, φ, p denote the sway speed, heading angle, yaw rate, roll angle and roll rate,
respectively; δ is the rudder angle; f1, f2, f3 are the linearized smooth functions in sway,
yaw, and roll, respectively. The term ε = (Ix + Jx)/(Iz + Jz) is defined as the small singular
constant parameter, where Ix and Iz are the moments of inertia of the ship about the x-axis
and z-axis, and Jx and Jz are the added moments of inertia about the x-axis and z-axis. The
moment of inertia and added moment of inertia about the z-axis are usually much larger
than those about the x-axis. In the present study, e.g., (Iz + Jz) is taken as 41.7 times of
(Ix + Jx) for the ship [31]. If the roll motion equation is normalized by dividing both sides
with (Iz + Jz), the small parameter ε will appear in the roll motion equation as given in
Equation (10).

Following the standard time-scale decomposition procedures described above, the
4-DoF ship motion system can be decoupled into the following two subsystems:

Slow path-following subsystem:

.
v = a11v + a12r + Yδδ (11)

.
ψ = r (12)

.
r = a21v + a22r + Nδδ (13)

where the bar denotes the variables that belong to the quasi-steady-state subsystem with
ε = 0; Yδ and Nδ are the derivatives with respect to the rudder angle.

Fast roll motion subsystem:

dφ

dτ
= gφ(p) = ã34 p (14)

dp
dτ

= gp(v, r, φ, p, δ) = ã41v + ã42r + ã43φ + ã44 p + Ñδδ (15)

where the tilde denotes the variables that belong to the stretched time-scale subsystem.
The mathematical expressions of the coefficients of Equations (11)–(15) are straightforward
but with very complicated forms, see [15] for more details. It should be noted that the
slow-varying state variables, v and r, actually create constant disturbances to the roll
motion subsystem under the new time scale. They often cause a roll angle in the roll motion
subsystem.

As long as the ship motion system is decoupled into the two subsystems of different
time scales, the control laws can be designed separately for each of the reduced-order
subsystems. Denoting the control laws for the path-following subsystem and the roll
motion subsystem as δp and δr, the total control law can be expressed as:

δ = δp(t) + δr

(
t
ε

)
(16)

A large enough bandwidth separation gap should be guaranteed in the control law
design for the subsystems with different time scales, otherwise the performance of a
subsystem may be interfered with by the control input of the other subsystem. The control
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laws for the two subsystems are discussed in the following section, especially for the slow
path-following subsystem. The L1 adaptive control strategy is introduced in the slow
subsystem to give a smooth and effective path-following performance.

3. Control Law Design

The control law in the path-following subsystem is of great importance, because path-
following performance is the primary control objective in this study and roll reduction
performance can be regarded as the secondary objective. Moreover, if there is a high-
frequency component of rudder command, the path-following control input may severely
affect the roll reduction performance. To ensure a large enough bandwidth separation gap,
the rudder input for the path-following subsystem should only consist of low-frequency
components. In order to obtain a smooth and effective control input under the high
frequency wave disturbances and the large system uncertainty in the path-following
subsystem, the L1 adaptive control is introduced to filter the high-frequency disturbances
and handle the uncertainty of the system.

3.1. Slow Path-Following Subsystem

The guidance-based strategy is used in the path-following subsystem [30]. The overall
structure of this path-following control strategy is shown in Figure 2. The whole path-
following control system is divided into a guidance subsystem and a control subsystem.
The guidance subsystem only considers the kinematic and guidance information about the
system, and provides the reference heading for the ship to track. The control subsystem
pays attention to the dynamics of the ship and provides the rudder command according to
the L1 adaptive control strategy.
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3.1.1. Guidance Subsystem

Figure 3 describes the structure of the guidance-based path-following strategy. Three
coordinate frames are adopted for this problem: the stationary inertial frame O, the path-
fixed frame P, and the body-fixed frame B, with the origins of O, P and B, respectively.
The P frame is similar to the Serret–Frenet frame [34] and is referred to as the revised
Serret–Frenet frame in this paper. The origin of this frame is attached to the path, with its
x′-axis pointing to the tangential direction of the path.
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The bases of these three frames are expressed as eO = [eO1, eO2], eP = [eP1, eP2]
and eB = [eB1, eB2], respectively. The relationship between these three bases can be
expressed as [16]:

eα = eβRβα (17)

Rβα =

(
cos θβα − sin θβα

sin θβα cos θβα

)
(18)

where α, β ∈ (O, P, B), θβα ∈ ( −π, π); θβα is the rotation angle from frame α to frame β,
positive if they are anti-clockwise. The Rβα is a unit orthogonal rotation matrix between
frame α and frame β, thus RT

βα = R−1
βα = Rαβ.

Different from the traditional approach where the dynamic equations are described
in the B frame and the kinematic equations are described in the O frame, in the guidance-
based path-following strategy the equations of ship motion are all described in the revised
Serret–Frenet frame P, whose origin moves along the path according to an updating law.
The original tracking problem turns to a regulation problem.

In the revised Serret–Frenet frame P, the whole kinematic equations can be
written as [28]:

.
s = −

.
θPOe + U cos θWP + VP (19)

.
e =

.
θPOs + U sin θWP (20)

.
θWP = rc (21)

where s and e are the x-coordinate and y-coordinate of the vessel’s position expressed in
the revised Serret–Frenet frame P; U is the vessel’s total speed, and θWP is the angle of the
vessel’s speed in the revised Serret–Frenet frame P. The term θPO represents the angle from
the frame O to the frame P, and rc

.
θWP is regarded as the input to this pure kinematic level

motion. The term VP is the tangential updating speed of the frame P along the given path,
also regarded as a virtual input of the system. Equations (19)–(21) are usually named error
dynamics.

In the revised Serret–Frenet frame, the control objective can be set as:

lim
t→∞

 s
e

θWP − δθ

 = 0 (22)

where:

δθ = sin−1

 −e√
|e|2 + d2

0

 (23)

As shown in Figure 3, δθ is the desired heading angle for control output; it can be
regarded as the reference angle for θWP to track. It is determined by the constant d0,
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which is referred to as the looking-ahead distance. The term d0 actually takes the forehead
geometrical information into the control loop.

The task of control design for this guidance subsystem is to design proper control
laws for VP and rC, such that Equation (22) holds. The following theorem holds for the
guidance subsystem [28].

Theorem 1. The error dynamics is defined as Equations (19)–(21). If the kinematic subsystem’s
inputs are set as:

VP = −U cos θWP − λs (24)

rC =
.
δθ − k1(θWP − δθ) +

c1eU(− sin θWP + sin δθ)

c2(θWP − δθ)
(25)

where λ,c1, k1 and c2 are positive constants, then the error dynamics converges to zero in domain Ω:

lim
t→∞

[s(t), e(t), θWP(t)− δθ(t)]
T = 0 (26)

The domain Ω is selected as:

Ω(s, e, θWP) =


|s(t)| ≤ l0
|e(t)| ≤ l0

|θWP| ≤
√

c1
c2

l2
0 + sup(δθ(t)) ≤ π

2

(27)

where l0 is a positive constant which describes the range of the error dynamics.

This theorem shows that the guidance subsystem can be stabilized by the control
input VP and rC according to Equations (24) and (25). The term rC is also regarded as a
reference output for the ship to track in the control subsystem.

3.1.2. Control Subsystem

Although the traditional Nomoto model is widely used in the course-keeping problem,
it is difficult to use this model to handle the path-following problem in the revised Serret–
Frenet frame, because in the revised Serret–Frenet frame the parameters of the model are
time-varying with the changes of position tracking states and wave disturbances. In this
paper, an adaptive Nomoto model is used to describe the ship motion control subsystem.
Traditionally, the heading angle ψ is described in the body-fixed frame B. On the contrast,
in the adaptive Nomoto model all the state variables of the ship motion control subsystem
are described in the revised Serret–Frenet frame.

The form of the adaptive Nomoto model is similar to the ordinary first-order Nomoto
model [34]:

θWP(s) = H(s)δ(s) (28)

H(s) =
Kn

(1 + Tns)s
(29)

where θWP(s) and δ(s) are the Laplace transforms of θWP(t) and the rudder angle δ(t),
respectively. The term H(s) is the first-order transfer function from δ to θWP, and Kn and
Tn are the corresponding parameters. However, the exact values of Kn and Tn are not
known in advance. In fact, due to different navigation situations and the time-varying
environmental disturbances, the exact values of Kn and Tn change with time. In order
to obtain an adaptive control strategy to deal with this system uncertainty, an adaptive
parameter is introduced in the following control law.

To obtain an adaptive parameter to capture all the system uncertainties, Equation (28)
can be rewritten in the following form:

θWP(s) = M(s) · (δ(s) + σ(s)) (30)
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where M(s) is a first-order reference model and σ(s) is an adaptive parameter that captures
the system uncertainty. M(s) and σ(s) can be expressed as:

M(s) =
m

s + m
, m > 0 (31)

σ(s) =
(H(s)−M(s))δ(s)

M(s)
(32)

where m is a positive constant.
In the adaptive Nomoto control model Equation (30), the rudder angle δ(s) is regarded

as the input and θWP(s) is the output. As long as Equation (30) is obtained, the standard
procedure of the L1 adaptive control strategy can be divided into four steps as in [35].

• State Predictor

A time-domain state predictor equation based on Equation (30) can be obtained:

.
θ̂WP(t) = −mθ̂WP(t) + m(δ(t) + σ̂(t)) (33)

θ̂WP(0) = 0 (34)

where the hat denotes the prediction value of the corresponding state variable. The term σ̂
is the prediction of the uniformly bounded adaptive parameter σ defined in Equation (32),
and σ̂ is governed by the following adaptive law.

• Adaptive Law

This part describes the updating strategy of the adaptive parameter σ̂(t), which is
very important in the L1 adaptive control strategy. The adaptive law is mainly based on
the projective operator introduced by Pomet and Praly [36], and is widely used in the
control field: .

σ̂(t) = ΓC Proj
(

σ̂(t),−θ̃WP(t)
)

, σ̂(0) = 0 (35)

where θ̃WP(t) = θ̂WP(t)− θWP(t) is the error signal between the system output and the
state predictor. ΓC ∈ R+ is the adaptation rate subject to a computable lower bound. The
projective operator is defined as follows [36]:

Proj(p, y) =


y, if F (p) ≤ 0
y, if F (p) ≥ 0 and ∂F (p)

∂p y ≤ 0

y−
F (p) ∂F (p)

∂p y

‖ ∂F (p)
∂p ‖

2
∂F (p)

∂p
T

, others
(36)

where:

F (p) =
2
E

[
l

∑
i=1

∣∣∣∣ pi − ρi
σi

∣∣∣∣q − 1 + ε

]
(37)

where ρi and σi are some given real numbers ; ε and q are real numbers, with 0 < ε < 1
and q ≥ 2.

• Control Law

The adaptive control law for the path-following subsystem is selected as the difference
between rC(s) and σ̂(s) filtered by a low-pass filter:

δp(s) = C(s)(rC(s)− σ̂(s)) (38)

where C(s) is a first-order low-pass filter, expressed as:

C(s) =
ω

s + ω
(39)
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and ω is the cut-off frequency of the low-pass filter.
The control law is added with a low-pass filter, which is important in the RRS control

system design, because the path-following subsystem should give a smooth rudder input
to guarantee the bandwidth separation. In practice, the guidance subsystem may be
disturbed by noises and provide a high-frequency reference signal rC, or σ̂(s) may have
a high-frequency component at the initial time. The high-frequency components can be
filtered out by the low-pass filter C(s) and thus will give the slow subsystem a more
appropriate control input.

• Stability Requirement

In order to have a stable control performance, there are some limitations for C(s) and
M(s). It needs to be ensured that [35]:

F(s) =
H(s)M(s)

C(s)H(s) + (1− C(s))M(s)
(40)

and F(s) needs to be stable to ensure the stability of the whole system. Moreover, the
following relation should hold [35]:

‖G(s)‖L1
Lz < 1 (41)

where:
G(s) = F(s)(1− C(s)) (42)

z(s) = H−1(s)d(s) (43)

where d is the environmental disturbance; Lz is the Lipschitz constant of z(t) with respect
to θWP(t). The L1-norm of a single-input, single-output (SISO) system is defined as follows:

Definition 1. The L1 gain of a stable and proper SISO system is defined as
‖N(s)‖L1

=
∫ ∞

0 |n(t)|dt, where n(t) is the impulse response of N(s).

If the environmental disturbances are not considered, it is easy to see that Equation (41)
always holds. Otherwise, the environmental disturbance d should be kept in a reasonable
range to guarantee the stability of the system. The details about the stability issues can
refer to [37].

3.2. Fast Roll Reduction Subsystem

The roll reduction subsystem is much simpler compared to the path-following subsys-
tem. The roll motion subsystem Equations (14) and (15) can be rewritten as a mass-spring-
damping system in the stretched time scale τ:

d2φ

dτ2 + 2ξωn
dφ

dτ
+ ω2

nφ = G̃(v, ψ, r) + Ñφδφ (44)

where ωn is the natural frequency of roll motion and ξ is the damping coefficient of the
system. The term G̃(v, ψ, r) can be regarded as a constant disturbance in the time scale τ,
which causes a quasi-steady roll response. They and Ñφ are defined as:

ω2
n = −ã34 ã43 (45)

ξ = −ã34 ã44/(2ã43
√
−ã34 ã43) (46)

G̃ = ã34G(v, ψ, r) (47)

Ñφ = ã34Ñδ (48)

The mathematical expressions of the coefficients in Equations (45)–(48) can be
found in [15].
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From Equations (14) and (15), it is easy to obtain the equilibrium point of the fast
subsystem:

φ0 =
G(v, ψ, r)
−ã43

(49)

p0 = 0 (50)

A PD controller is used to control the roll motion subsystem Equation (44):

δr = kp(φ− φ0)−
2ξδωn

Ñφ

dφ

dτ
(51)

where kp and ξδ are positive constants. Substituting the control law Equation (51) into
Equation (44), the total damping coefficient of the roll motion subsystem becomes
ξT = (ξ + ξδ) > ξ, thus the derived Differentiation-controller actually adds the damping
to the roll motion subsystem and the Proportion-controller takes the roll angle feedback of
the equilibrium point into the control system. Under such a control law, a faster decay in
roll motion can be achieved.

4. Simulation Results

A nonlinear 4-DoF (surge, sway, roll, and yaw) maneuvering motion model of a
single-screw, high-speed container ship [16,31] is used to evaluate the performances of
the derived path-following and RRS control laws. This nonlinear model is widely used
as a benchmark model in the field of ship motion control to evaluate the performances of
different control strategies. The principal particulars of the ship are given in Table 1. More
details of the nonlinear model can be found in [16].

Table 1. Principal particulars of the container ship.

Item Symbol Value

Overall length L 175.0 m
Breadth B 25.4 m

Mean draft T 8.5 m
Displacement volume ∇ 21,222 m3

Keel to transverse metacenter KM 10.39 m
Keel to buoyancy center KB 4.62 m

Block coefficient CB 0.559
Rudder area AR 33.04 m2

The wave disturbances are modeled by shape functions, which are actually second-
order linear approximations of the Pierson–Moskowitz spectral density functions. This kind
of wave model is widely used in RRS control systems for its simplicity and validity [12,38].

Considering the wave direction, the disturbances in the path-following subsystem
and the roll reduction subsystem, wp and wr, can be described as:

wp = h1(s)·w(s) · sin(θBO − θ0) (52)

wr = h2(s)·w(s) · sin(θBO − θ0) (53)

where w(s) is the Gaussian white noise with a variance σn = 0.5 and a zero mean; θ0 is the
wave direction. Without loss of generality, θ0 is assumed to be zero. The shaping filters,
h1(s) and h2(s), are expressed as:

h1(s) =
k1s

s2 + 2ξ0ω0s + ω2
0

(54)

h2(s) =
k2s

s2 + 2ξ0ω0s + ω2
0

(55)
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where k1 and k2 denote the dominated wave strength coefficients of yaw and roll motions.
The terms ξ0 and ω0 are the damping coefficient and the encountered wave frequency.
Their values are selected as k1 = 1× 10−5, k2 = 5× 10−5, ξ0 = 0.075, ω0 = 0.23, according
to O’Brien [38]. These values are chosen to create a relatively large roll motion to evaluate
the RRS performance; for example, ω0 is selected as 0.23 because it is near the ship’s natural
frequency (ωn ≈ 0.22 rad/s).

A fourth-order Runge–Kutta method is used in the simulation of ship motion. The
rudder saturation and rate limits (|δ| ≤ 35◦,

∣∣∣ .
δ
∣∣∣ ≤ 5◦/s) are considered in the simulation.

The total speed of the ship is around 7.2 m/s. The initial values of the state variables and
ship position are selected as: v0 = 0, ψ0 = 0, r0 = 0, φ0 = 0, p0 = 0 and X0 = −8000 m,
and Y0 = 6000 m.

The control law parameters for the path-following subsystem are selected as:
d0 = 400 m, c1 = 0.007, c2 = 400, k1 = 0.3, Γc = 0.3, λ = 10, m = 0.2, and ω = 0.4.
The control law parameters for the roll reduction subsystem are selected as kp = 0.1 and
ξδ = 0.08. The values of the control law parameters are determined by the method of trial
and error, but also with some physical insight. For example, the controller gain parameter
kp is tuned to have a fast response according to the roll motion subsystem Equation (44);
the damping coefficient ξδ is tuned to have a proper damping speed to the roll motion
considering the rudder constraint.

Figure 4 describes the slow path-following performances with and without L1 adaptive
control, both with simultaneous RRS control. The blue solid line describes the predefined
path for the ship to track. There are three special points, points A, B, and C, which represent
three very different turning points in the path. Point A has a relatively small curvature,
point B has a medium one, and point C has a maximum curvature in the path. This path
is designed as general enough to evaluate the path-following performance of the control
system.
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Figure 4. Path-following performances with and without the L1 adaptive control.

In Figure 4, the red dashed line describes the performance without the L1 adaptive
control. It can be seen that the control system has a relatively fast response speed, but
with much larger overshoots. The control input cannot give a stable output under wave
disturbances, thus there must be a lot of unnecessary rudder commands in this situation.
The black solid line describes the performance with the L1 adaptive control; it is shown
that the trajectory is much smoother. The system turns to be stable in a short time and the
control output is quite robust even with system uncertainties. There are some relatively
large deviations near the point B; this is mainly caused by the geometrical complexity of
the path and the large looking-ahead distance d0 in this situation. The control output may
have some unavoidable tracking errors due to this feedforward geometric information.
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However, it is necessary to have a large enough d0 to guarantee the stable performance.
Thus, it is necessary to make a tradeoff between the accuracy and the stability of the control
system. For the RRS control in path-following problem, the stability is considered as more
important than the tracking accuracy, because it is impossible to have an effective RRS
performance without a stable path-following output.

Figure 5 demonstrates the performance of the error dynamics. It actually contains
the same information as shown in Figure 4, but with a clearer sight of the tangential and
cross-tracking errors described in the revised Serret–Frenet frame. As shown in the upper
subfigure of Figure 5, the tangential error converges to zero in a very short time. It should
be noted that the tangential updating law of frame P is governed by VP in Equation (24).
Since the tangential error remains zero for most of the time, the revised Serret–Frenet frame
is actually the same as the traditional Serret–Frenet frame. The lower subfigure of Figure 5
describes the cross errors in the cases with and without the L1 adaptive control. Without
the L1 adaptive control, the cross error has a much larger transient overshoot and the
system is not stable in a limited time. On the other hand, the performance is much better in
the case with the L1 adaptive control. The cross error has very small overshoots and tends
to give a relatively stable cross-tracking performance, despite some small deviations.
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Figure 6 shows the rudder angles with and without L1 adaptive control, both with
RRS control at the same time. The black solid line describes the rudder angle with L1
adaptive control, whose amplitude is smaller than that of the red dashed line for the rudder
angle without L1 adaptive control.

Figure 7 presents the prediction value of the adaptive parameter σ̂(t). The value of
σ̂(t) demonstrates the uncertainty of the system and varies with the states of the system.
As shown in Figure 7, the geometrical change of the path can be reflected in σ̂(t), which
has different slow-varying values at different tracking stages according to the path. The
system uncertainty caused by the curve path is captured by σ̂(t) in this way. It also shows
that σ̂(t) tends to exhibit a chattering phenomenon at the initial time and each turning
point. The sudden change of the states adds large uncertainty to the system and may cause
the chattering of σ̂(t). In some sense, the chattering is inevitable in most adaptive control
methods. However, the L1 adaptive control has a fast adaption speed, and the value of σ̂(t)
can become stable after a very short time, which guarantees the good performance of the
path-following subsystem in the long term.
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Figure 7. Adaptive parameter σ̂(t).

Figure 8 shows the comparison between the desired heading angle in the guidance
subsystem and the actual heading angle with the L1 adaptive control. As it can be seen,
both of the desired and actual heading angles can reflect the geometrical change of the path.
The actual heading angle cannot track the desired heading angle for all time, since the
curvature of the designed curve is large and the ship’s maneuverability is poor. However,
the trends of the actual and desired heading angles are consistent; in some relatively flat
parts of the path, the actual heading angle can track the desired angle with considerably
high accuracy, demonstrating the good control performance. There is also a chattering
phenomenon in the actual heading angle at the initial time and the sudden turning points,
which is caused by the chattering of σ̂(t) entering the feedback loop. Fortunately, the
performance becomes stable after a short time.
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Figure 9 shows the performances of the roll reduction subsystem with and without the
RRS control strategy. In these two cases, the L1 adaptive control is ON in the simulation. It
is easy to find out that there is a large rate of roll reduction when the subsystem has the RRS
control. Without the RRS control, the roll angle is around 10◦ for most of the time. The peak
value can reach to over 20◦ under the wave disturbances. However, with the RRS control
the roll angle is reduced to less than 5◦ for most of the time. To evaluate the roll reduction
performance, a so-called Roll Reduction Rate (RRR) is introduced. It is defined as [24]:

RRR(%) = 100× AP− RRCS
AP

(%) (56)

where RRCS and AP are the standard deviations with and without RRS, respectively. Under
this definition, the RRR is 69.2(%) in this simulation case.
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Figure 10. Power spectrum of roll angle with and without RRS.

Figure 11 shows the rudder commands in the slow path-following subsystem and
the fast roll reduction subsystem. The rudder commands are of great importance in the
time-scale analysis, because enough large input bandwidth separation gaps should be kept
to guarantee the control performances of different subsystems. The upper subfigure of
Figure 11 presents the rudder command in the roll reduction subsystem. It can be seen
that a rudder input of a much higher frequency is needed in the roll reduction control. The
lower subfigure of Figure 11 shows the rudder command in the path-following subsystem.
Except for the chattering at the initial time, the rudder input is of low frequency and shows
a smooth and mild change. At the turning point C, which has the maximum curvature
on the path, there is a relatively large rudder command to give a sudden turning motion
of the ship. It shows that there is a large enough bandwidth separation gap to guarantee
that the control performance of a subsystem is not interfered with by the control input
in the other subsystem. It should be noted that some rudder commands are beyond the
rudder saturation and rate limits, and these commands are filtered out by the control law.
Fortunately, most of the rudder commands are within the limits, which guarantees the
effectiveness of the control input.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 17 of 21 
 

 

 
Figure 10. Power spectrum of roll angle with and without RRS. 

Figure 11 shows the rudder commands in the slow path-following subsystem and 
the fast roll reduction subsystem. The rudder commands are of great importance in the 
time-scale analysis, because enough large input bandwidth separation gaps should be 
kept to guarantee the control performances of different subsystems. The upper subfigure 
of Figure 11 presents the rudder command in the roll reduction subsystem. It can be seen 
that a rudder input of a much higher frequency is needed in the roll reduction control. 
The lower subfigure of Figure 11 shows the rudder command in the path-following sub-
system. Except for the chattering at the initial time, the rudder input is of low frequency 
and shows a smooth and mild change. At the turning point C, which has the maximum 
curvature on the path, there is a relatively large rudder command to give a sudden turning 
motion of the ship. It shows that there is a large enough bandwidth separation gap to 
guarantee that the control performance of a subsystem is not interfered with by the control 
input in the other subsystem. It should be noted that some rudder commands are beyond 
the rudder saturation and rate limits, and these commands are filtered out by the control 
law. Fortunately, most of the rudder commands are within the limits, which guarantees 
the effectiveness of the control input. 

 
Figure 11. Rudder commands in the slow subsystem and the fast subsystem. 

Figure 12 shows the rudder rates with and without RRS. It can be seen that the am-
plitude of the rudder rate with RRS is much larger than that without RRS, indicating that 
the good performance in roll reduction is at the expense of rapid steering. 

0 1000 2000 3000 4000 5000 6000

-20

0

20 Rudder angle for fast subsystem

0 1000 2000 3000 4000 5000 6000
Time(s)

-100

-50

0

50
Rudder angle for slow subsystem

Figure 11. Rudder commands in the slow subsystem and the fast subsystem.

Figure 12 shows the rudder rates with and without RRS. It can be seen that the
amplitude of the rudder rate with RRS is much larger than that without RRS, indicating
that the good performance in roll reduction is at the expense of rapid steering.
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Figure 12. Rudder rate with and without RRS.

To demonstrate whether the RRS control in the fast subsystem affects the path-
following performance, a comparison of the path-following performances with and without
the RRS control is conducted. The results are presented in Figure 13, where the black solid
line is the performance with RRS control and the red dashed line is the performance with-
out RRS control. It can be seen that they almost overlap with each other, indicating that the
RRS control has very little influence on the path-following performance.
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Figure 14 demonstrates the influence of the L1 adaptive control strategy on the roll
reduction performance. It shows that the roll reduction performance is apparently affected
by the L1 adaptive control. The roll angles are a little smaller when the adaptive control is
ON, and the performance curve without adaptive control is more periodic than that with
adaptive control. This is mainly due to the fact that the control performances of the slow
path-following subsystem in these two cases are very different. Without the L1 adaptive
control, there exists a periodic overshooting as shown in Figure 4, which results in the quasi-
periodic properties of the roll motion as shown in the upper subfigure of Figure 14. While
in the case with the L1 adaptive control, the path-following performance is more stable and
milder, and thus has a very limited interference to the roll reduction subsystem. It shows
that the path-following performance may greatly affect the roll reduction performance.
Thus, it is desirable to pay more attention to the control design of the slow path-following
subsystem. Fortunately, the L1 adaptive control can help to reduce the roll motion to
some extent.
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5. Conclusions

In this paper, the time-scale decomposition techniques based on the singular pertur-
bation method are used to separate the 4-DoF ship motion system into two subsystems
of different time scales: the slow path-following subsystem and the fast roll reduction
subsystem. The path-following performance and the rudder roll stabilization (RRS) per-
formance are the two control objectives, with the former as the primary control objective
and the latter as the secondary one. The control laws for the two subsystems are designed
separately, with the coupling effects between the subsystems being taken into account.
To guarantee a large enough input bandwidth separation gap, the L1 adaptive control is
adopted in the path-following subsystem to give a robust, stable and adaptive control
performance. A PD controller is used in the roll reduction subsystem.

A widely used nonlinear 4-DoF maneuvering motion model of a container ship is
adopted for the simulation study. The results show that in the slow subsystem, the path-
following performance is much better when the L1 adaptive control is in use. The adaptive
parameter can successfully capture the system uncertainty and provide a fast adaption
speed. Most importantly, the L1 adaptive control strategy gives a low-frequency control
input in the path-following subsystem under the wave disturbances, thus guarantees the
input bandwidth separation. In the fast subsystem, the Roll Reduction Rate (RRR) can
reach about 70%. The mutual interference effects of the two subsystems are also evaluated.
It shows that the RRS control has very little interference in the path-following control. On
the other hand, the L1 adaptive control has some positive influence on the roll reduction
performance.

However, it should be noted that in the present study, the effects of the heave and pitch
motions in the vertical plane are neglected in the analysis and control law design. In reality,
a ship sailing in waves will definitely have 6-DoF oscillating motions including heave
and pitch motions. Although the present study focuses on the control problem of path-
following in the horizontal plane with roll reduction at the same time, for a more practical
application, it is desirable to clarify in a further study the extent to which the control
performances are affected by the heave and pitch motions by using a 6-DoF maneuvering
motion model for simulation study.

Moreover, the RRS control may face the issue of the overuse of steering gear if the
proposed control strategy is implemented on a real ship, and the rudder rate is relatively
much larger than that in the traditional course-keeping problem, which will cause the
rudder to be more vulnerable to damage. Therefore, it should be used only in some
emergency situations, such as when the ship encounters severe wave disturbances which
may cause dangerous roll motions. In the future, a study on the factor of steering gear
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and the stability analysis should be conducted to create a better tradeoff between the roll
reduction and operation of the steering gear when using the RRS control strategy.
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