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Abstract: Efforts by various researchers in recent years to design simple causal control laws that can
be applied to WEC devices suggest that these controllers can yield similar levels of energy output
as those of more complex non-causal controllers. However, most studies were established without
adequately considering device and power conversion system constraints which are relevant design
drivers from a cost and economic point of view. It is therefore imperative to understand the benefits of
MPC compared to causal control from a performance and constraint handling perspective. In this paper,
we compare linear MPC to a casual controller that incorporates constraint handling to benchmark
its performance on a one DoF heaving point absorber in a range of wave conditions. Our analysis
demonstrates that MPC provides significant performance advantages compared to an optimized causal
controller, particularly if significant constraints on device motion and/or forces are imposed. We
further demonstrate that distinct control performance regions can be established that correlate well
with classical point absorber and volumetric limits of the wave energy conversion device.

Keywords: causal control; Model Predictive Control; point absorber; wave-energy converter;
absorbed power

1. Introduction

As the field of wave energy conversion transitions from traditional passive control
techniques to advanced optimal control strategies for power maximization, it becomes in-
creasingly important to understand the requirements, capabilities, limitations, and benefits
of each method to choose the best optimization strategy for a given application.

The control system affects power capture, structural loads, and power-takeoff (PTO)
design. To achieve true economic optimality in a wave energy conversion system design,
the control system needs to be able to optimize performance given the constraints imposed
by the wave energy converter (WEC) system. This is due to the fact that economic out-
comes are optimized if a given component or sub-system is continually utilized at its rated
operational condition during a majority of its operational life. These rated operational
conditions provide constraints within which the device needs to operate, and the WEC
control system is responsible for enforcing these constraints because exceeding them will
result in mechanical breakdown. As such, the constraint handling of a controller is incredi-
bly important to maximize the economic competitiveness of a WEC device. Constrained
optimal control as offered by a Model Predictive Control (MPC) algorithm framework,
which is also referred to as non-causal control, is a key tool in this optimization process.

Control systems for wave energy conversion are broadly classified as either causal
or non-causal controllers. A causal controller uses information from sensors that monitor
the outputs of a dynamical system, in our case the WEC. The sensor information is used
as feedback by the controller to follow a desired command signal. Non-causal controllers
such as MPC leverage wave prediction to generate control commands in a feed-forward
manner rather than using feedback from sensors that measure system output variables.
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Combination of non-causal (feed-forward) and causal (feedback) control is also possible in
a hybrid manner and can be used to correct for modeling and/or wave prediction errors in
non-causal controllers.

Within the literature there are two well-published methods for implementing causal
control that incorporate constraint handling. The first approach tries to approximate
complex conjugate control (CCC) ([1–4]) with a causal feedback law [5]. This approach
does well in the unconstrained case where no motion limits are imposed. To allow for
constraints, these methods were subsequently augmented to incorporate an MPC con-
troller that works for the sole purpose of enforcing constraints [5]. Performance of the
CCC approximating causal control methods is sub-optimal when constraints are imposed,
because the impedance matching value obtained from the CCC approximation provides
in-sufficient damping for the constrained case.

The second approach for designing a causal controller comes from recognizing that
the causal WEC control problems fall into the Linear Quadratic Gaussian (LQG) paradigm
([6–8]). A non-standard LQG optimization problem is established with the objective of
maximizing power. The problem treats the input wave excitation force as a stationary
stochastic disturbance with a known spectrum. A wave-shaping filter is designed to model
the spectrum and this filter model is incorporated in the optimization along with the system
dynamics model of the WEC. The LQG optimal controller derived in this manner does
not rely on approximations to CCC and will therefore achieve optimality in a broader set
of sea states. Stroke protection techniques can be explicitly designed to protect against
end-stop violations [7,9]. The control parameters are optimized offline and implemented
using a gain schedule to adapt to changing wave conditions. A block-diagram of a casual
controller with non-linear stroke protection is shown in Figure 1.

Figure 1. Architecture of causal controller.

Non-causal performance optimization of WECs is typically implemented using a
receding horizon MPC framework. To guarantee optimality, MPC needs a forecast of
oncoming waves 20 to 30 s into the future to plan optimal control commands. Wave
forecasting can be conducted by placing probes up-wave, measuring the free-surface
elevation in the wave field [10], or using a wave-sensing radar [11,12] to characterize the
wave-field propagation. These up-wave measurements are marched forward in space
and time to predict the wave elevation at the target WEC location. The predicted wave
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excitation force input, in addition to the states of a system dynamics model, are used to
solve a quadratic optimization problem to find the optimal control trajectory. The states of
the device are marched forward in time and the optimization process is repeated at each
step with new prediction information. Figure 2 shows the basic MPC control architecture.

Figure 2. Architecture of Model Predictive Control.

Considerable research has been undertaken on expanding the capabilities of MPC
to meet the requirements of an entire range of device topologies and PTO configurations
([13–19]). Some of the common constraints that can be handled effectively within the MPC
optimization include: (1) PTO force constraints; (2) WEC position, velocity, and acceleration
constraints; (3) discrete (ON/OFF) control of PTO forces; and (4) power-flow constraints.
MPC can accommodate non-linear device dynamics, such as viscous drag and non-linear
models of powertrain losses, which need to be considered in the optimization problem to
guarantee optimality [14].

2. Glossary

Variable Description Units

g Acceleration due to gravity m/s2

ρ Density of sea water kg/m3

m Mass of the buoy kg

m∞ Infinite Added Mass kg

z Displacement of the buoy in heave m
.
z Velocity of the buoy in heave m/s
..
z Acceleration of the buoy in heave m/s2

FR Radiation damping force N

Fm PTO Force N

Fs Hydrostatic spring stiffness N

Fd Drag force related to viscous effects N

Fe Wave excitation force N

k Buoyancy stiffness coefficient N/m
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Variable Description Units

S Water plane area of the buoy m2

Bvis Viscous damping coefficient Ns/m

Cd Drag coefficient -

Ar A matrix of state space model of the radiation damping sub-system

Br B matrix of state space model of the radiation damping sub-system

Cr C matrix of state space model of the radiation damping sub-system

Dr D matrix of state space model of the radiation damping sub-system

Xr
State vector comprising of all states used to model the radiation
damping sub-system in state space form

.
Xr

Vector comprising of the derivatives of all states used to model the
radiation damping sub-system in state space form

nr
Number of states used to model the radiation damping sub-system.
This is equal to the length of the state vector Xr

0r Row vector of zeros with length nr

A A matrix of WEC state space model

B B matrix of WEC state space model

C C matrix of WEC state space model

D D matrix of WEC state space model

Th Prediction horizon s

H Wave height of a monochromatic wave m

T Wave period of a monochromatic wave s

Hs Significant wave height of a polychromatic wave m

Tp Peak period of a polychromatic wave s

λ Wavelength m

kw Wavenumber

Pa Average absorbed power W

v Buoy heave velocity m/s

hr Radiation impulse-response function Ns/m

he Excitation impulse-response function N/m

t Time instant s

u(t) Control input at time instant t N

fe(t) Wave excitation force at time instant t N

x(t)
State vector at time instant t comprising of all states used to model the
device dynamics

.
x(t)

Derivative of the state vector at time instant t that is used to model the
device dynamics

3. The Device Model

We consider a one degree-of-freedom heaving point absorber as an example for our
comparison study. A general schematic of the heaving buoy WEC is shown in Figure 3
and key dimensions are provided in Table 1. This device has well-established theoretical
limits on power absorption which can be used to identify the design trade-off space for
controls optimization.
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Figure 3. Schematic of the heaving wave-energy converter.

Table 1. Dimensions and physical parameters of the heaving wave energy converter.

Quantity Value Units

Buoy diameter 11 m

Buoy cylinder height 4 m

Reaction diameter 11 m

Buoy conical height 1.2 m

Motion limits ±2 m

Buoy mass 228,080 kg

Water Plane Area (S) 95 m2

Coefficient of Drag (Cd) 0.5

The device geometry was modeled using a commercially available Boundary Element
code called WAMIT [20]. The added mass, radiation damping, and excitation force kernels
were obtained as a function of frequency by post-processing the WAMIT outputs. Figure 4
shows the frequency dependent parameters plotted against the wave period.

Figure 4. Frequency-dependent parameters of the heaving buoy WEC obtained from WAMIT.
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Because this floating body is constrained to move in heave, the equation of motion in
the vertical direction is given by:

m
..
z(t) = FR(t) + Fe (t) + Fm(t) + Fs (t) + Fd(t) (1)

where z is the displacement,
.
z is the velocity, and

..
z is the acceleration of the buoy in heave.

m is the displaced mass of the buoy, FR is the radiation force, Fe is the wave-excitation force,
Fm is the PTO force, Fs is the hydrostatic restoring force given by Fs = −k z, where k is the
buoyancy stiffness, defined as k = ρgS, where ρ is the water density, g the gravitational
constant, and S the water-plane area. Fd is the drag force related to viscous effects in
real fluid. The viscous damping coefficient was assumed to be linear according to the
relationship Fd = −Bvis v, where Bvis = 0.5 CdρS. Cd is the drag coefficient and ρ is the
water density. The radiation force fR(t), can be expressed as:

FR(t) = −m∞
..
z(t)−

∫ t

−∞
hr(t− τ)

.
z(τ)dτ (2)

where m∞ is the infinite frequency added mass and hr(t) is the impulse response function
of the radiation force. The excitation force Fe(t) is expressed as:

Fe(t) =
∫ +∞

−∞
he(t− τ)η(τ)dτ (3)

where he(t) is the excitation force impulse response function and η(t) is the wave elevation
at the device location. The impulse response function relating the wave elevation to the
excitation force affecting the device is non-causal. The main reason is that the chosen input,
i.e., the wave elevation at the device location, is not the direct cause of the output, i.e., the
interaction force between the wavefield and the device.

To recast the system dynamics into state-space form, the radiation term can be mod-
elled as an embedded sub-system through the following state-space realization:

.
Xr(t) = ArXr(t) + Br

.
z(t) (4)

fr(t) = CrXr(t) + Dr
.
z(t) (5)

This leads to the following state-space model:

.
x(t) = Ax(t) + Bu(t) + B fe(t)

y(t) = Cx(t) + Du(t)
(6)

with

A =


Ar 0 Br

0 0 1

− Cr
m+m∞

− k
m+m∞

− Bvis+Dr
m+m∞

, B =


0

0
1

m+m∞

C =

[
0r 1 0

0r 0 1

]
, D =

[
0

0

]
(7)

4. Control Methods
4.1. Model Predictive Control (MPC)

A wave energy converter with a linearized device dynamics model can be optimized
using a linear MPC framework. In this type of problem, the non-linearities such as viscous
drag are approximated using linear relationships. Under the assumption of no loss in the
power generation process, optimizing the device average power absorbed Pa at a given
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instant t0 over a defined control horizon Th can be achieved by determining the optimal
control trajectory u∗(t) that maximizes the following cost function:

Pa = −
1
Th

∫ t0+Th

t0

v(t)u(t)dt (8)

where v(t) is the instantaneous device velocity. The minus sign is due to the convention
of considering absorbed energy with a negative sign. Assuming a fixed time step, we
discretize the integral and set up the optimization problem as a minimization by changing
the sign in Equation (9). The new optimization objective, therefore, is given by:

J =
1
N

N−1

∑
k=0

xT
k+1ST

v uk (9)

where N is the number of time intervals over the control horizon Th and Sv is a linear
operator extracting the WEC velocity from the state-space vector. The control force and
state vector, however, are not independent variables, and are constrained by the system
dynamics equation of the WEC, which in discrete time is defined as:

xk+1 = Adxk + Bduk + Bd fek , k = 0, . . . , N − 1 (10)

with initial condition x0 = x0.
To preserve mechanical and structural integrity, motion constraints and force limits

are imposed. These constraints limit the maximum actuation force and the WEC device
velocity and vertical displacement, i.e.,

umin ≤ uk ≤ umax, k = 0, . . . , N − 1 (11)

pmin ≤ Spxk ≤ pmax, k = 0, . . . , N (12)

vmin ≤ Svxk ≤ vmax, k = 0, . . . , N (13)

where Sp is a linear operator extracting the WEC displacement from the state vector.
The cost function, together with the constraints, represents a linear MPC problem in its
standard formulation.

Let us define the following consolidated vectors based on the sequence of states and
control commands. This will help in simplifying the notation and problem setup:

X =
[

xT
1 xT

2 . . . xT
N
]T (14)

U =
[

uT
1 uT

2 . . . uT
N
]T (15)

Let us define Λv, Λp as block diagonal matrices having the velocity extraction matrix
Sv and the position extraction matrix Λp, repeated N times respectively on the main block
diagonal. Furthermore, let I be the N × N identity matrix and let ξ be a N × 1 vector of
ones. In this manner, the cost function can then be expressed as follows:

J =
1
N

XTΛT
v U (16)

The inequality constraints can be reformulated using this vector notation as follows:

DuU ≤ du (17)

DxX ≤ dx (18)

where

Du =

[
I
−I

]
du =

[
umax ∗ ξ
−umin ∗ ξ

]
(19)
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Dx =


Λp
−Λp
Λv
−Λv

dx =


pmax ∗ ξ
−pmin ∗ ξ
vmax ∗ ξ
−vmin ∗ ξ

 (20)

By recursively applying the discrete-time dynamics equations, it is possible to express
X as a function of the control vector U, the excitation force vector Fe, and the initial
condition x0:

X = Ydx0 + ΓdU + ΓdFe (21)

where

Yd =


Ad
A2

d
...

AN
d

 (22)

Γd =


Bd 0 0 0

AdBd Bd 0 0
...

...
. . . 0

AN−1
d Bd AN−2

d Bd . . . Bd

 (23)

Fe =
[

f T
e0

f T
e1

. . . f T
eN−1

]T
(24)

This allows us to rewrite the MPC problem as the following cost function and con-
straint equations:

min
U

UTΓT
d ΛT

v U + (ΛvYdx0 + ΛvΓdFe)
TU (25)[

Du
DxΓd

]
U ≤

[
du

dx − DxYdx0 − DxΓdFe

]
(26)

The maximization of absorbed power requires the solution of a constrained convex
optimization problem, for which well-consolidated routines, such as interior-point-convex
or active-set methods, are available in literature [21,22]. Positive definiteness of the Hessian
is, in general, guaranteed for the optimization of a point absorber device, unless the time
step chosen for the conversion of the continuous time model into discrete time is too large
to represent the actual behavior of the WEC device. At each timestep, an MPC problem
needs to be solved, and the first value of the optimal solution vector U∗ is applied to the
system. The system is marched forward in time by integrating the system dynamics using
a standard Runge–Kutta (RK) scheme. The above MPC formulation also assumes that a
perfect excitation force prediction is available 20 to 30 s into the future using up-wave
measurement probes.

4.2. Causal Feedback Control

The first step in optimal causal feedback control design is to determine an analytically
tractable stochastic disturbance model to represent the incident wave force fe(t). This step is
nontrivial for two reasons. Firstly, the power spectral density typically used to characterize
the free surface elevation η(t), denoted Sη(ω), does not constitute a rational spectrum (i.e.,
it is not a ratio of rational polynomials of frequency ω). Secondly, the transfer function
from the free surface elevation to the incident wave force, equal to

He(s) =
∫ ∞

−∞
e−sthe(t)dt
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involves the solution to a partial differential equation (due to fluid–structure interaction),
and consequently it also does not evaluate to a rational transfer function. Consequently,
the resultant power spectral density of the incident wave force, denoted as

Se(ω) = Sη(ω)|He(jω)|2

is an irrational function of frequency. To make the causal control design problem tractable,
this spectrum must be approximated, as

Se(ω) ≈ |G(jω)|2

where the transfer function G(s) is a stable, minimum-phase, strictly-proper, rational
transfer function. Equivalently, we seek to find matrices Ae, Be, and Ce such that in the
above equation,

G(s) = Ce[sI − Ae]
−1Be

With such a formulation for G(s), we may equivalently represent the incident wave
force as filtered white noise; i.e.,

.
xe(t) = Aexe(t) + Bew(t)

fe(t) = Cexe(t)

where w(t) is a white noise process with unit spectral intensity.
There are a number of ways to find appropriate matrices Ae, Be, and Ce for the

noise filter model described above. Here, we make use of the subspace-based spectral
factorization approach. Because this approach is applied exactly as described in [23], we
will forgo the details here in the interest of brevity.

With the accomplishment of the finite-dimensional approximation of the incident
wave force, we then append the internal states xe(t) to the state x(t) of the physical system;
i.e., we define xa(t) =

[
xT(t) xT

e (t)
]T to arrive at an augmented state space model:

.
xa(t) = Aaxa(t) + Bau(t) + Eaw(t)

y(t) = Caxa(t) + Dau(t)

where matrices Aa, Ba, Ea, Ca, and Da are appropriately defined. Our objective is to design
a causal feedback law that maps y into u, to maximize the objective

Pa = −E
{

vu + Ru2
}

where E{.} denotes the expectation in stationarity, and R is a nonnegative parameter. For
the case in which R = 0, the above expression is simply the mean power absorption. In
design, R is typically chosen to be greater than zero, for two reasons. Firstly, it can be used
to (approximately) quantify the power dissipation in the power train of the WEC, thus
changing the performance objective from absorbed power to generated power. Secondly, it
can be used as a tuning parameter to balance the power generation objective against the
need to keep the mean-square control force magnitude below a desired threshold.

If there were no constraints on the response of the WEC, the above problem could be
solved in closed form. More specifically, it distills to a sign-indefinite Linear Quadratic
Gaussian (LQG) control problem, which is guaranteed to have a unique, stabilizing solution
assuming that the open-loop mapping from u to

.
z is passive [6]. However, for the WEC

under consideration here, there are constraints on both the displacement z and the control
force u. In the presence of these constraints, the closed-form LQG control solution cannot
be used without modification. To address these constraints, in this paper we implement
the methodology outlined in detail in [9]. Because the methodology used here is identical
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to that one, we only provide an overview here of the basic steps in the nonlinear control
design procedure.

The first step is to design a linear feedback controller of the form

.
ξ = Acξ + Bcy

u = Ccξ

in which Ac, Bc, and Cc are optimized to maximize Pa, subject to two constraints. The first
of these constraints is a relaxed version of the WEC displacement constraint, in which we
require only that the mean-square displacement be below a bound related to pmax, i.e.,

E
{

z2
}
≤ σp2

max

where σ < 1 is a design parameter, chosen here to be 0.25. The second constraint is the
restriction that the open-loop controller must be stable; i.e., that Ac be a Hurwitz matrix.
Convex techniques for accomplishing this constrained optimization are covered extensively
in [9]. The resultant linear controller is guaranteed to result in positive power generation,
be robust to saturations in the input u, and maintain mean-square displacements below
p2

max. However, it does not guarantee that the displacement limit is satisfied at all times.
The second step is to augment the above linear control design with a nonlinear stroke-

protection feedback loop that ensures that the displacement limit is satisfied at all times
(rather than just in the mean-square sense). This stroke protection loop, and its relationship
to the linear control design, is illustrated in Figure 1. It accepts as inputs the position and
velocity, and outputs a supplemental nonlinear force q. This quantity q is sent back to the
linear controller through an augmented input matrix, i.e., via the equations:

.
ξ = Acξ + Bcy + Ecq

u = Ccξ + q

where Ec is a matrix of design parameters. The design of the feedback function that maps{
z,

.
z
}

into q, and the design of Ec, are described in fully in [9]. Here it suffices to say that
q can be viewed as being similar to the restoring force of a “virtual hardening spring,”
providing no force when the displacement is far from its limit, but increasing to infinity
when the displacement approaches its limit. The participation of velocity

.
z in the function

can be thought of as providing damping. Meanwhile, the matrix Ec is designed such that
the open-loop transfer function from q to

.
z is passive, which guarantees unconditional

stability of the closed-loop system.
The controller resulting from the above design framework is guaranteed to protect the

displacement from reaching its limit for the case in which the force u is unbounded. When
saturation limits are imposed on u, of the form

u =


umin : Ccξ + q < umin

Ccξ + q : umin ≤ Ccξ + q ≤ umax

umax : Ccξ + q > umax

then the displacement protection is not strictly guaranteed. Indeed, when both the force
and displacement are constrained, there may not exist a controller that can honor both.
However, proper tuning of the various design parameters in the control design can be
undertaken to assure that displacement constraints are satisfied in all but extremely rare
cases in stationary response.
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5. Theoretical Limits on the Average Absorbed Power
5.1. Point Absorber Limit

Consider a heaving axisymmetric body oscillating without constraints in resonance
with an incoming regular wave of period T (s) and height H (m). Let JE (W/m) denote the
wave power level, kw(1/m) denote the wavenumber, and λ (m) the wavelength. In this
case, the point absorber effect in wave-energy extraction [24] imposes a fundamental limit on
the average absorbed power Pa. As described in [24,25], this limit can be derived from the
relationship between absorption width da = Pa/JE(m) and wavelength λ, as shown below:

da ≤
1

kw
=

λ

2π
(27)

Or equivalently:

Pa ≤
1
k

JE =
ρ

128

( g
π

)3
T3H2 (28)

The last equality in Equation (28) is valid for deep water conditions. This is referred to
as the Point Absorber Limit. The theoretical limit may be reached if the average absorbed
power equals half the average excitation power, which happens when the radiated power
is equal to the absorbed power. Furthermore, it is known that the Point Absorber Limit
can only be reached up to a certain wave period and height. This depends on the motion
amplitude constraints on the absorber. Beyond, only a lower relative power absorption can
be realized, as defined by a device’s volumetric limit.

5.2. Volumetric Limit

The heaving body sweeps a finite volume during its oscillation cycle based on physical
limits. This volumetric constraint imposes a limit on the average power absorbed from
each oscillation cycle. As shown in [25], the average power Pa in the motion-constrained
case is limited by the expression:

Pa < (πρgHV/4T) (29)

This is referred to as the volumetric limit. With advanced control, we expect to achieve
the active theoretical limit based on the device’s operational region.

5.3. Controller Design Trade-Off Space

The controller design trade-off space for a WEC is defined by the Point Absorber and
Volumetric Limit. For any given wave period, we will call the lesser of the two the “active
theoretical limit” or the “theoretical limit” for simplicity. The controller performance cannot
exceed the theoretical limit, and this defines the design trade-off space for controller optimiza-
tion. As shown in Figure 5, the Point Absorber Limit is “active” for shorter wave periods. We
will call this set of wave periods Region I. The Volumetric Limit is “active” for longer wave
periods and we will call this set of wave periods Region II. The cross-over period, where the
Point Absorber and Volumetric Limits are equal, demarcates the two regions.

Equations (28) and (29) show that both upper limits are wave height dependent and
describe the WEC device performance in sinusoidal waves. To understand theoretical
upper limits for an irregular wave train, we compute the wave height for a sinusoidal
wave with the equivalent average power density of the irregular wave train as follows.
The power in a monochromatic wave of height H and period T is given by:

Pmono = H2T (30)

The equivalent wave height (H) of a monochromatic wave with the same power as
the polychromatic wave can be found by equating the two. Assuming the period of the
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monochromatic wave to be the same as the peak period of the polychromatic sea state, we
obtain the wave height of the equivalent sinusoidal wave as:

H = 0.64 Hs (31)

This approach allows us to classify regions in the scatter diagram based on point
absorber theory, and to draw meaningful conclusions regarding the importance of MPC-
based control. For this purpose, we divided the entire set of input wave conditions into
three distinct regions based on theoretical limits. Figure 6 illustrates the partitioning of sea
states, where Region I corresponds to wave conditions where performance is dominated by
the Point Absorber Limit. Region II corresponds to wave conditions where performance is
dominated by the Volumetric Limit. Finally, Region III is associated with large waves where
controllers are expected to maintain rated power production and minimize structural loads
on the system. Region III is not important from a performance optimization perspective,
but it is important that a control law active in this region will continue to produce power at
the rated capacity, while minimizing structural loads. Although slightly counter-intuitive,
structural loads in Region III can be smaller than those in Regions I and II because we are
effectively de-tuning the system to the incident wave conditions.

Figure 5. Controller design trade-off space based on theoretical limits for sinusoidal wave inputs of
height H = 1 m.

Applying the above region-based approach to a small and a large heaving point
absorber provides the following regions. To understand their significance in context, we
simply superimposed the regions onto the frequency distribution of the DoE’s reference
resource in Humboldt Bay, California. As shown in Figure 7, the reference geometry used
for this paper has only a few sea states, where causal control has the potential to provide
similar performance as that of the MPC-based controller. This is in stark contrast to the
SANDIA Wavebot, which has a much larger volumetric displacement and as a result
performs well in most sea-states using causal control (see Figure 8).
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Figure 6. Partitioning of sea states based on fundamental limits.

Figure 7. % of Total Occurrences at DOE reference site overlaid on Operating Region for the
Heaving Buoy.

Figure 8. Percentage of total occurrences overlaid on operating region-SANDIA WaveBot.

The comparison in Table 2 shows a buoy with a much larger volumetric displacement,
similar to that tested by SANDIA [26]. It shows that fewer regions are present where
volumetric limits dominate and, therefore, MPC becomes less important.
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Table 2. Percentage of total sea state occurrence in Regions I and II for the heaving buoy and SANDIA
WaveBot.

% of Total Occurrence Heaving Buoy
(Swept Volume = 380 m3)

SANDIA WaveBot
(Swept Volume = 4303 m3)

Region I 32% 94%

Region II 68% 6%

6. Results
6.1. Benchmarking Performance of Causal Control Design Methods

To provide a fundamental understanding of the unconstrained controls’ performance,
we compared Optimal Causal Control, which is based on the LQG paradigm [7], with SAN-
DIA’s causal controller designed based on the CCC approximation principle–Proportional
Integral (PI) and Feedback Resonator (MPC-FBR). A set of MATLAB and Simulink files
containing methods for implementing PI and FBR controllers is available online through
the Marine Hydro-Kinetic Data Repository [26]. Both controllers were simulated to com-
pare performance in different wave conditions using no wave prediction information. MPC
was also simulated with the same inputs to serve as an upper limit for benchmarking
performance of the two causal controller design methods.

The results of this initial trade-off study demonstrated that the algorithm provided by
SANDIA provided significantly lower power capture across all sea states, but especially in
longer-period waves, where the impedance-matching condition of the underlying controls law
is physically impossible due to the device’s volumetric constraints. Because we found the LQG
method outperformed the CCC controller, the remainder of comparisons in this paper were
carried out between the LQG causal control method and a linear MPC controller. Time-domain
simulations were carried out using Optimal Causal Control using the LQG method outlined
in [9] and linear Model Predictive Control for a complete set of wave conditions. A discrete
time-step of 0.01 s and a simulation length of 3600 s was utilized. A Pierson–Moskowitz (PM)
wave spectrum with the following formulation was chosen to generate the wave train using
the WAFO Toolbox [27]. A plot of the input PM spectrum is shown in Figure 9

S(ω) =
5H2

m0

ωpω5
n

e−
5
4 ω−4

n (32)

where ωp = 2π
Tp

and ωn = ω
ωp

.

Figure 9. Spectral density computed using a PM spectrum for Hm0 = 1 m, Tp = 12 s.
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6.2. Controller Performance with Unconstrained PTO Force

First, let us look at the unconstrained case where no PTO force limits are imposed
on the controller. Motion constraints are still enforced because the displacement of the
device relative to the equilibrium is limited to ±2 m. Figure 10 shows a plot of the ratio of
average absorbed power using causal control normalized to the average absorbed power
using MPC. For short period waves, the ratio of causal controller response closely follows
that of MPC and the performance ratio is within 90%. This corresponds to Region I, where
power absorption is dominated by the Point Absorber Limit. In long-period waves, the
performance ratio starts to deteriorate for wave periods >10 s. This corresponds to Region
II, where power absorption is dominated by the volumetric constraint. The results show
that, unlike in the case of MPC, the stroke-limited power absorption capability of causal
controllers is sub-optimal.

Figure 10. Avg. power (causal control)/avg. power (MPC) for a set of power-producing sea states.

Figures 11–14 show the time domain comparison of the device response with MPC
and causal control for a significant wave height of 1.0 m and Tp = 15 s. The comparison is
shown for a wave input in Region II where the volumetric constraint is active. Note that
the MPC motion profile often covers the full stroke as opposed to causal control (Figure 13).
MPC’s “latching” behavior can also be seen in the velocity response profile.

Figure 11. Comparison of average power using causal control vs. MPC for an input wave with
Hs = 1.0 m, Tp = 15 s.
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Figure 12. Comparison of PTO force using causal control vs. MPC for an input wave with
Hs = 1.0 m, Tp = 15 s.

Figure 13. Comparison of position response using causal control vs. MPC for an input wave with
Hs = 1.0 m, Tp = 15 s.
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Figure 14. Comparison of velocity response using causal control vs. MPC for an input wave with
Hs = 1.0 m, Tp = 15 s.

6.3. Comparison of Annual Average Energy Capture for Reference Site

A simulation study was carried out to benchmark performance of the two control
approaches by calculating the overall annual average energy capture for a deep-water
reference site. The heaving buoy WEC was simulated for all of the wave conditions in
the scatter diagram shown in Figure 7 for the reference site at Humboldt Bay, CA. Both
controllers were simulated with a stroke limit of ±2 m, and no limits on the peak PTO force
were imposed.

Assuming a plant capacity factor of 30%, we obtained rated power of 473 kW using
MPC and 375 kW with causal control (see Table 3). At this site, the causal controller
captures only 79% of the MPC-based controller.

Table 3. Performance comparison of MPC and causal control for the DoE reference site at Humboldt
Bay, CA, USA.

MPC Causal Control

Rated Power (kW) 473 375

Average Power (kW) 142 113

Capacity Factor 30% 30%

% Annual Energy
Captured

Region I 19% 18%

Region II 81% 82%

Figure 10 shows the ratio of average absorbed power between causal control and MPC
at each sea state. Note that in the regions which are point absorber limited (Region I), the
two controllers perform equally well. For long-period waves where performance is upper
bound by the Volumetric Limit (Region II), as expected, MPC outperforms causal control.
Overall, we note that the percentage of sea state occurrences in Region II is 67.8% and is
responsible for close to 81% of the respective annual energy captured from all sea states.
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6.4. Controller Performance with Constrained PTO Force

Controllers must often operate with limits imposed on the maximum PTO force due
to hardware limitations. Therefore, it is important to determine how well the two control
approaches handle force constraints. In this situation, the controller must attempt to
maximize power absorption while simultaneously limiting the maximum forces used on
the PTO. Not all controllers can achieve this dual objective effectively, which typically
results in sub-optimal performance for causal controllers. Figure 15 shows a plot of average
power capture vs. force constraint for both control approaches. Note that for the same
choice of PTO force limit, the average power capture with MPC significantly exceeds causal
control. Another way of interpreting these results is that MPC requires less PTO force to
achieve the same power capture performance as that of causal control. Figures 16–19 show
time domain comparison of the device response with causal control and MPC when the
PTO force is limited to 0.5 MN.

Figure 15. Average absorbed power vs. PTO force limit for wave input with Hs = 1 m, Tp = 16 s.

Figure 16. Time domain response comparison for absorbed power with PTO force limit = 0.5 MN.
Significant wave height Hs = 1.0 m, peak period Tp = 16 s.
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Figure 17. Time domain response comparison of PTO force with force limit = 0.5 MN. Significant
wave height Hs = 1.0 m, peak period Tp = 16 s.

Figure 18. Time domain response comparison of WEC position with PTO force limit = 0.5 MN.
Significant wave height Hs = 1.0 m, peak period Tp = 16 s.
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Figure 19. Time domain response comparison of WEC velocity with PTO force limit = 0.5 MN.
Significant wave height Hs = 1.0 m, peak period Tp = 16 s.

In addition to the control commands issued by the linear causal controller, the causal
controller also has a non-linear stroke protection block which adds to the requirements of
the PTO machinery force. Causal controllers require careful tuning of the non-linear control
parameters to reduce spikes in PTO machinery force. Tuning the stroke protection parameters
helps to smooth the PTO force response but it comes at the cost of sacrificing the amount
of power that is absorbed. Figure 17 shows a comparison of the PTO force response with
causal control and MPC. Note that MPC is able to limit the PTO force effectively, and does
not violate the force limit. In contrast, causal control occasionally violates the force limit.

7. Conclusions

In this paper, we presented results of a performance comparison study between
causal and non-causal methods in a design trade-off space formed by theoretical upper
limits on power absorption. While exploring this design trade-off space, we show that
identification of operating regions based on device displaced volume and site-specific
annual spectrum data are key drivers in identifying suitable control methods for a given
WEC application. MPC and causal control performance is similar for Region I, where
performance is constrained by Point Absorber Limits and assuming that the PTO is capable
of full four-quadrant control. For operating Region II, where performance is limited by
Volumetric Limits, MPC shows a significant performance advantage compared to the causal
control method.

It should be noted that the cost of most in-ocean systems is directly proportional to
their displaced volume. This means that the ratio of average power to volume (P/V) is a key
indicator of structural efficiency of a WEC device. Small point absorbers tend to have better
P/V ratios, which drives economically viable solutions towards smaller devices. As shown
in this study, these smaller point absorbers will produce power predominantly in Region
II, where volumetric constraints dominate and MPC provides significant performance
advantages. Furthermore, constrained optimal control offered by MPC provides benefits
beyond pure performance gains. The ability to directly handle a wide range of constraints as
part of the optimization problem ensures constraints can be gently applied, thus reducing
transient loads that are harmful to the PTO and device structural components, while
maximizing power production.
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