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Abstract: Maritime transport plays a vital role in economic development. To establish a vessel
scheduling model, accurate ship maneuvering models should be used to optimize the strategy and
maximize the economic benefits. The use of nonparametric modeling techniques to identify ship
maneuvering systems has attracted considerable attention. The Gaussian process has high precision
and strong generalization ability in fitting nonlinear functions and requires less training data, which is
suitable for ship dynamic model identification. Compared with other machine learning methods, the
most obvious advantage of the Gaussian process is that it can provide the uncertainty of prediction.
However, most studies on ship modeling and prediction do not consider the uncertainty propagation
in Gaussian processes. In this paper, a moment-matching-based approach is applied to address the
problem. The proposed identification scheme for ship maneuvering systems is verified by container
ship simulation data and experimental data from the Workshop on Verification and Validation of
Ship Maneuvering Simulation Methods (SIMMAN) database. The results indicate that the identified
model is accurate and shows good generalization performance. The uncertainty of ship motion
prediction is well considered based on the uncertainty propagation technology.

Keywords: system identification; ship maneuvering model; gaussian process; prediction uncertainty

1. Introduction

Maritime transport plays a positive role in promoting the sustainable development
of the country’s economy [1], and it is also directly related to environmental pollution [2].
Accurate maritime traffic simulators (MTS) can provide an effective basis for the port
and route planning and management [3], and can help liner shipping companies arrange
vessel schedule efficiently [4,5]. Moreover, an accurate ship maneuvering model is of great
practical value for ship trajectory prediction and controller design [6]. With the rapid
development of maritime autonomous surface ships (MASSs) [7], autonomous navigation
and collision avoidance systems require a more intelligent digital maneuvering model,
which can predict the future dynamics of ships and estimate the uncertainty caused by the
actions to be performed.

Modeling techniques for ship dynamic models involve parametric modeling and non-
parametric modeling. Parametric modeling must define a complete mathematical structure
in advance from a physical viewpoint and subsequently estimate the hydrodynamic deriva-
tives through parameter identification techniques. Classic system identification methods
are widely used for hydrodynamic parameter identification, such as least square estima-
tion [8], the recursive prediction error (RPE) method [9]. However, the traditional methods
are sensitive to noise, and the multicollinearity will significantly affect the identification
accuracy [10]. Over the decades, a great number of new methods have been proposed to
solve the above problems. Yoon and Rhee used ridge regression to suppress the parameter
drift due to multicollinearity [11]. Revestido Herrero and Velasco Gonzalez proposed a
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two-step method based on extended Kalman filtering (EKF) to identify the parameters
in the nonlinear model [12]. Sutulo and Guedes Soares adopted genetic algorithms (GA)
with Hausdorff metric loss function to reduce the influence of white noise on parame-
ter identification [13]. Least squares support vector machine (LS-SVM), with its good
robustness and generalization ability, has been applied to various ship parametric model
identification, and has been verified by simulation and experiment [14,15]. Recently, Xu
et al. proposed an optimal truncated LS-SVM and validated this method by free-running
tests [16,17] and planar motion mechanism tests [18]. The main advantage is that it can
be successfully used for big data driven modeling or large-scale training set problems.
However, parametric models have some inherent limitations. In the specified parametric
framework, the unmodeled dynamics caused by external perturbations and noise [19]
will greatly impact the parameter estimation. Moreover, the shapes of various unmanned
surface vessels (USVs) are irregular, and the traditional parametric models obtained from
classic ship types are not completely matched.

Unlike the parametric model, the nonparametric model does not require any pre-
determined equation framework constructed by prior knowledge [20]. Nonparametric
modeling provides a wealth of techniques to extract information from measurement data,
which can be translated into knowledge about hydrodynamic systems [21]. The typical
representation of nonparametric modeling methods is neural networks. A recursive neural
network (RNN) is first used to fit a maneuvering simulation model for surface ships [22].
Zhang and Zou presented the feed-forward neural network with Chebyshev orthogonal
basis function for the black-box modeling of ship maneuvering motion [23]. Wang et al.
proposed generalized ellipsoidal basis function fuzzy neural networks to identify the
motion dynamics of a large tanker [24]. However, NNs require a considerable amount of
training data, and the structure of NNs is difficult to determine. Long short-term memory
(LSTM) NNs overcome these shortcomings with the transmission of long-term informa-
tion and have been successfully used to identify USVs [25] and container ships [26]. The
kernel-based method requires less training data and has a lower overfitting risk than the
NN [27]. Locally weighted learning (LWL) with modified genetic optimization is presented
to identify ship maneuvering systems with full-scale trials [28]. ν-SVM is proposed to
establish the maneuvering motion model and validated by KVLCC2 ship experimental
data [29]. In general, nonparametric modeling alleviates the drawbacks of parametric
modeling, i.e., multicollinearity, parameter drifting and unmodeled dynamics.

Recently, the Gaussian process (GP) has drawn attention in nonparametric modeling
in marine engineering. GP further strengthens the generalization ability of the kernel
method with a priori introduction from a Bayesian perspective. GP is used to identify
nonlinear wave forces [30], floating production storage and offloading (FPSO) vessel motion
modeling [31], and ship trajectory prediction [32]. Ramire et al. first proposed using a
multioutput GP to identify the dynamic model of a container ship [33]. Xue et al. presented
a noisy input GP to improve the identification accuracy and verified it by using simulated
ship motion data with artificial noise [34]. The experimental data of the KVLCC2 ship were
used to construct the GP [35], but the accuracy of prediction in the experiment was not
sufficiently high. In the prediction of ship motion based on GP, the prediction output of
each time is used as the input to the next iteration, so uncertainty will accumulate. However,
this ship dynamic modeling using GP does not consider the propagation of variance.

In this paper, to solve the problem of variance propagation in GP, an approximation
method is applied. First, the input is assumed to follow a Gaussian distribution. The pre-
dictive distribution is approximated by a moment matching-based technique. To evaluate
the effectiveness of the proposed scheme, the simulation case of a container ship and the
experimental case of a KVLCC2 ship model from the Hamburg Ship Model Basin (HVSA)
are taken as the study object. The identified models are assessed by the prediction error
with other motion data not included in the training set.

The remainder of the paper is organized as follows. Section 2 describes the nonpara-
metric ship dynamic model. The algorithms of GP with uncertain input are depicted in
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Section 3. In Section 4, the identification scheme of the ship and experimental example are
presented to demonstrate the applicability of the proposed method. Section 5 summarizes
the study with conclusions.

2. Ship Nonparametric Dynamic Model

For a surface ship, the dynamic model is usually described by a 3-DOF model, in-
cluding the motion of surge, sway and yaw. Figure 1 shows the coordinate system of a
surface ship maneuvering motion, including the Earth-fixed coordinates O− X0Y0 and
body-fixed coordinates o − x0y0. Here, u, v, and r are the state variables of surge veloc-
ity, sway velocity, and yaw rate, respectively, while δ is the rudder angle and ψ is the
heading angle.
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Figure 1. Reference frames for ships.

The ship maneuvering system is a nonlinear autoregressive model with an exogenous
input (NARX) system [36], and the outputs at the next moment are based on the previous
state variables. Figure 2 illustrates the modeling and prediction process of the ship dynamic
model. In the first stage, ship motion data are collected by onboard sensors such as IMU and
GPS. After data preprocessing, the machine learning technique is used to fit the surrogate
time series model. Finally, other motions can be predicted through the learned model. The
symbol “~” represents random variables.
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According to the relevant studies of nonparametric ship dynamic modeling [25,34],
the formulation of the ship discrete nonparametric model is as follows:

u(k + 1) = GP1(u(k), v(k), r(k), δ(k))
v(k + 1) = GP2(u(k), v(k), r(k), δ(k))
r(k + 1) = GP3(u(k), v(k), r(k), δ(k))

(1)

The selected regressors of the GP are inspired by parametric models, including the
Abkowitz [37] and Maneuvering Modeling Group (MMG) models [38]. The ship position
variables can be obtained as follows:

.
x = ucos(ψ)− vsin(ψ)
.
y = usin(ψ) + vcos(ψ)

(2)

3. Gaussian Process Regression Framework
3.1. Gaussian Process with Deterministic Input

The following notation with a set of training data is defined:

D = ([xt]
n
t=1, [yt]

N
t=1) (3)

where xt is an input vector, and output yt is given by

y = f (x) + ω
w ∼ N

(
0,σω

2) (4)

A standard GP is a collection of random variables and can be considered a collection
of random variables with a joint Gaussian distribution for any finite subject [39]. GP is
specified by the mean function m(x) and covariance function k(x, x′) as

m(x) = E[ f (x)] (5)

k
(
x, x′

)
= E

[
( f (x)−m(x))

(
f
(
x′
)
−m

(
x′
))]

(6)

where E is the expectation operator. Then, the GP can be written as:

f (x) ∼ GP
(
m(x), k

(
x, x′

))
(7)

The proposed model adopts the commonly used squared exponential covariance function:

k
(
xi, xj

)
= σ f

2 exp(−1
2
(xi − xj)

TΛ
(
xi − xj

)
) (8)

where σ f and Λ are the amplitude and squared length-scale hypermeters, respectively.
Bayesian inference can be defined as the process of fitting a posterior probability

model from a prior model with a set of training data D. The GP prior is given as:

p( f |X) = N (m(X), k(X, X)) (9)

With these modeling assumptions in place, the likelihood function can be obtained,

p(y| f , X) =
n

∏
t=1
N
(

yt; ft,σω
2
)

(10)
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Then, combining the prior Equation (9) and the likelihood function Equation (10) with
the Bayesian rule, the posterior probability distribution and predicted function values f ∗

can be calculated, at a set of deterministic inputs X∗.[
f ∗

y

]
∼ N

( [
m(X∗)
m(X)

]
,
[

K(X∗, X∗) K(X∗, X)
K(X, X∗) K + σω

2 I

] )
(11)

which leads to the RGP regression predictive equations,

pf∗X∗,X,y =N (m,∫ ) (12)

where the predictive mean and variance function are specified by:

m = m(X∗) + K(X∗, X)[K(X, X) + σω
2 I]
−1

(y−m(X)) (13)

s = k(X∗, X∗)− K(X∗, X)[K(X, X) + σω
2 I]
−1

K(X, X∗) (14)

The hyperparameters in Equation (8) are usually obtained by maximizing the log of
the marginal likelihood function. It is defined as [36]:

− log p(y|X, θ) =
1
2
(y−m(X))T

(
K(X, X) + σω

2 I
)−1

(y−m(X)) +
1
2

log
∣∣∣K(X, X) + σω

2 I
∣∣∣+ N

2
log2π (15)

This nonlinear and nonconvex optimization problem is usually solved by the gradient
ascent-based methods, such as BFGS and the conjugate gradient (CG) algorithm [36].

3.2. Prediction with Uncertain Inputs and Uncertainty Propagation

In Equation (11), we assume that the input is deterministic, while the output is
Gaussian distributed. This assumption is true in the one-step prediction. For multiple-step
predictions, the traditional method is to recycle the one-step prediction. However, the
uncertainties induced by each successive prediction cannot be ignored in the time-series
tasks [40].

The uncertainty propagation problem can be addressed assuming that the input
follows a Gaussian distribution [41]:

X̃∗ ∼ N
(

µ̃,∑̃
)

(16)

For convenience of expression and marking, the input variables are divided into speed
variable x and control variable u, as X∗ = [x, u]. The mean and variance are given as:

µ̃ = [ µ, E[u] ]T

∑̃ =

[
∑ Cov[x, u]

Cov[u, x] Var[u]

]
(17)

where E[u] and Var[u] are the mean and variance of the control variable; Cov[x, u] =
E[xu]− µE[u].

The predictive distribution can be obtained by integrating over the input:

p(X∗
∣∣∣µ̃,∑̃ ) =

∫
p( f (X̃∗)

∣∣∣∣X̃∗)p(X̃∗
∣∣∣∣µ̃,∑̃)dX̃∗ (18)

However, this integration cannot be analytically computed, since the Gaussian dis-
tribution is mapped through a nonlinear function. Taylor approximation [40] or moment
matching [42] is commonly used to approximate the integration. The computation of the
Taylor approximation is expensive because it accounts for the gradient of the posterior
mean and variance of the input. In this paper, moment matching is chosen. The moment
matching method assumes that the unknown distribution only has two parameters: the
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mean and the variance. The mean and variance at an uncertain input can be computed by
the laws of iterated expectations and conditional variances [42]:

m
(

X̃∗
)
= EX̃∗ [E[X∗]] (19)

σ2
(

X̃∗
)
= EX̃∗ [Var[X∗]] + VarX̃∗ [E[X∗]] (20)

Then, the predicted mean and variance at time t + 1 are given as:

µt+1 = µt + m
(

X̃∗
)

(21)

∑t+1 = ∑t +Cov[xt, yt] + Cov[yt, xt] (22)

4. Case Study
4.1. Simulation Study on a Container Ship

The first case uses the simulation maneuvers of a large container ship. The selected
parametric numerical model is a nonlinear 4-degree-of-freedom (DOF) dynamic model [43].
The main particulars of the container ship are listed in Table 1. The model has been verified
by experiments, which can well reflect the complex dynamic characteristics of the container
ship. It is widely used in the testing of system identification algorithms [33,44].

Table 1. Particulars of the container ship.

Elements Values

Length (L) 175 m
Breadth 25.4 m

Displacement (∇) 21,222 m3

Aspect ratio 1.8219
Mean draft 8.5 m

Transverse metacenter 10.39 m
Height from keel to center of buoyancy 4.6145 m

Rudder area 33.0376 m2

Rudder speed (
.
δ) 2.5 deg/s

The parametric maneuvering model is given as follows [43]:(
m− X .

u

) .
u−

(
m−Y .

v

)
vr = FX(

m−Y .
v

) .
v +

(
m− X .

u

)
ur−Y.

r
.
r = FY(

Ix − K .
p

) .
p = FK −WGMϕ(

Iz − N.
r

) .
r + N .

v
.
v = FN

(23)

where m denotes the ship mass, W is the weight of the displaced water, GM is the metacen-
ter height. Ix and Iz denote the moments of inertia of the ship about the x0, z0 axes. X .

u, Y .
v,

Y.
r , N .

v, and N.
r are acceleration derivatives which can be determined using potential theory.

FX FY FK, and FN are the forces and moment disturbing quantity at x0-axis, y0-axis, and
z0-axis, respectively. The nonlinear forces and moments are composed of Taylor expansion
of hydrodynamic coefficient and speed.

With the 4-DOF model, 2 groups of maneuvers, including 10◦/10◦ and 20◦/20◦ zigzag
tests, are undertaken under the following initial conditions: u0 = 7 m/s, v0 = 0 m/s,
r0 = 7 m/s, δ0 = 0 rad and the propeller velocity is fixed at 70 rpm. Each maneuver lasted
for 850 s, and the simulation interval was 0.1 s. The timeseries of the yaw velocity and
rudder angle are shown in Figure 3.
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With 2 s as the time interval of the training data, 850 points of the above training data
are used to train the GP hyperparameters with maximum likelihood. All calculations are
performed in MATLAB R2020a with 4.0 GHz CPU and 16 GB RAM. PILCO toolbox [45]
with BFGS and CG algorithms is used to train the Gaussian process. The training process
took 9 s in total and trained 3 GPs in Equation (1). The optimization parameter settings of
each GP are listed in Table 2.

Table 2. Selection of the GP parameters for the container ship.

GP1 GP2 GP3

Λ [12.65, 19.68, 0.27, 8.50]diag [15.96, 3.53, 0.15, 14.15]diag [41.18, 3.44, 0.02, 1.90]diag
σ f 5.2593 1.4911 0.0117
σω 0.0158 0.0231 2.96 × 10−4

Generalization verification is necessary for system identification. The ability of the
identified model to predict other motions not included in the training data is called gener-
alization. The generalization performance of the trained model is verified by predicting
the motions, including the 15◦/15◦ zigzag maneuver and port 30◦ turning circle test. The
prediction results of the 15◦/15◦ zigzag test are shown in Figure 4, where the predictions
are compared with the raw data. The prediction results are consistent with the raw data.
The prediction variance is also plotted in the figure and shows that the uncertainty is
small. The prediction results of the 30◦ turning circle test are shown in Figure 5. The
prediction results can well track the tendency of the raw data. The uncertainty in Figure 5
is much higher than that in Figure 4 because the training data, including 10◦/10◦ and
20◦/20◦ zigzag tests, completely reflect the dynamic characteristics of the ship when the
rudder angle is less than 20◦. However, the dynamic characteristics of a rudder angle of
30◦ are not included in the information range provided by the training data. Under this
condition, the identified model can predict the motion of a large rudder angle with good
generalization ability and maintains good accuracy while providing high uncertainty of
prediction through the proposed method.

The root mean square error (RMSE) is applied to evaluate the model performance and
is defined as:

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (24)

where ŷi is the prediction result, and yi is the raw value. The RMSEs of the 15◦/15◦ zigzag
maneuver are listed in Table 3 with each DOF.
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Table 3. Prediction accuracy assessed by the RMSE of the 15◦/15◦ zigzag text.

RMSE

Surge speed 0.1130
Sway speed 0.0816

Yaw rate 0.0806

4.2. Experimental Study of a Ship Scale Model

The experimental dataset of KCLCC2 from SIMMAN is used to further validate the
proposed method. KVLCC2 is a scale model of large tankers. The main particulars of the
scale ship model are detailed in Table 4. The model free-running tests are performed by the
Hamburg Ship Model Basin (HVSA).

Table 4. Particulars of KVLCC2.

Elements Values

Lpp (m) 7.0
B (m) 1.1688
D (m) 0.6563
Displacement (m3) 3.2724
Draught (m) 0.4550
Beam coefficient 0.8098
Nominal speed (m/s) 1.18
Rudder speed (

.
δ) 15.8 deg/s

There is some interference and noise in the experimental dataset. Directly taking
the speed as the input and output will reduce the identification accuracy. Using the
acceleration obtained by the speed difference as the prediction output can effectively
alleviate the influence of noise [29], and the new flowchart is shown in Figure 6.
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Figure 6. Flowchart of the ship maneuvering identification and prediction using GP (acceleration output).

To include more dynamic characteristic information of the ship, the experimental
data of 10◦/5◦, 20◦/5◦ and 30◦/5◦ zigzag maneuvers are used to train the GP. Moreover,
the empirical Bayes method [46] is applied here to reduce the noise of acceleration with
‘wdenoise’ MATLAB function. More details of the empirical Bayes denoising method for
ship motion data can be found in our previous study [47]. Figure 7 shows the effect of
noise reduction. There are 800 training points with a time interval of 0.6 s. It took 10.1 s to
train 3 GPs for the ship maneuvering system, and the obtained hyperparameter settings
are shown in Table 5.
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Table 5. Selection of the GP parameters for the container ship.

GP1 GP2 GP3

Λ [10.75, 0.04, 0.75, 1.04]diag [0.52, 1.68, 0.07, 1.35]diag [0.24, 0.15, 0.03, 0.56]diag
σ f 0.0277 0.0430 0.0059
σω 0.0050 0.0017 2.16 × 10−4

Then, the identified model is validated by comparing the experimental data with
predictions of 15◦/5◦, 35◦/5◦ and 10◦/10◦ zigzag maneuvers, as shown in Figures 8–10.
The accuracy of the prediction speed assessed by RMSE is listed in Table 6. In the sim-
ilar study [29], the same three sets of training data were used for training the nu-SVM.
The prediction error of the proposed method can be compared with the nu-SVM in [29].
Figures 8 and 9 show that the experimental data and prediction follow similar trends, and
the cumulative deviation is small. The comparison results between Table 6 and the error
results in [29] indicate that the proposed method has stronger prediction ability than nu-
SVM. However, in Figure 10, the deviation between prediction speed and experiment is
obvious, especially in surge motion. The predicted acceleration is also plotted in Figure 11
to analyze the reason. There is a strong oscillation in the measurements of the surge speed.
This oscillation in accretion causes a cumulative deviation in speed. As for the uncertainty,
it can be observed that the variance of the predictions of the experiment is bigger than the
simulation in the previous case. This is because there are more disturbances and noises in
the experiment than the simulation.

Table 6. Prediction accuracy assessed by the RMSE of KVLCC2 with the proposed method.

- 15◦/5◦ 35◦/5◦ 10◦/10◦

Surge speed 0.0070 0.0240 0.0539
Sway speed 0.0248 0.0541 0.0511

Yaw rate 0.0028 0.0099 0.0044
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5. Discussion and Conclusions

In this work, a novel identification modeling and prediction scheme based on GP
is proposed to identify the ship nonparametric maneuvering model. By introducing the
moment matching approximation method, the multi-step prediction uncertainty of ship
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motion can be propagated. The performance of the proposed method has been tested with
a large container ship and a scale ship model and shows good accuracy and generalization
ability. Moreover, the uncertainty of propagation can help drivers or controllers make safe
decisions. Through the simulation of the container ship, it is proven that the prediction
uncertainty obtained by the proposed method is reliable enough. Where there is less
dynamic information in the training data, the prediction uncertainty of turning circle
motion is larger than that of zigzag maneuver. In addition, it has been demonstrated
that the performance of the presented approach is superior to the nu-SVM method in
the experimental case. There are also some limitations of this study: (1) The proposed
method needs to spend more calculation time due to consider the uncertainty propagation
compared with other methods. The sparse method can be used to improve computational
efficiency. (2) Both the two verified cases in this paper are container ships. The applicability
of the model to other ship types, especially new unmanned ships, needs further study.

Future work includes two main tasks: (1) Although the presented method has been
verified by simulation and experimental data, full-scale trials with disturbances should
be performed, including waves, currents, and wind. In this environment, the uncertainty
prediction provided by this method will have great application value. (2) This method
can be used in modern controllers such as model predictive control. The uncertainty of
predictions can be introduced in the cost function to construct a cautious controller.
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