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Abstract: The numerical procedures for dynamic analysis of mooring lines in the time domain and
frequency domain were developed in this work. The lumped mass method was used to model the
mooring lines. In the time domain dynamic analysis, the modified Euler method was used to solve
the motion equation of mooring lines. The dynamic analyses of mooring lines under horizontal,
vertical, and combined harmonic excitations were carried out. The cases of single-component and
multicomponent mooring lines under these excitations were studied, respectively. The case consider-
ing the seabed contact was also included. The program was validated by comparing with the results
from commercial software, Orcaflex. For the frequency domain dynamic analysis, an improved frame
invariant stochastic linearization method was applied to the nonlinear hydrodynamic drag term. The
cases of single-component and multicomponent mooring lines were studied. The comparison of
results shows that frequency domain results agree well with nonlinear time domain results.

Keywords: offshore mooring; dynamic analysis; time domain; frequency domain

1. Introduction

As offshore oilfield developments have been moving toward deeper water, floating
structures are frequently used for drilling, well intervention, production, and storage at sea.
Under environmental loads such as wind, waves, and current, the floating structure exhibits
offsets different from the desired point for normal operations. Therefore, mooring systems
are used to maintain a floating structure on the station within a specified tolerance, typically
based on an offset limit determined from the configuration of the risers. If the mooring
lines fail, it will cause operation interruption, oil spills, even casualty, and environmental
issues. Therefore, mooring analysis should be carried out to ensure it has adequate strength
against overloading.

In deep water application, the quasi-static analysis method for mooring line is not
accurate and dynamic analysis, which accounts for the time-varying effects due to mass,
damping, and fluid acceleration should be carried out. The lumped mass method is a
straightforward and efficient method for mooring line analysis and has greater versatility
than other methods [1,2]. Nakajima et al. [3] employed the lumped mass method for the
time domain dynamic analysis of 2D multicomponent mooring lines. They found time
histories of dynamic tension predicted by the lumped mass method have good agreement
with the experimental ones. Huang [1] carried out the dynamic analysis of cables using
the lumped mass method with the finite difference method and discussed the stability and
convergence of the numerical scheme.

The differential motion equations of mooring lines in the time domain can be solved
by explicit or implicit numerical integration schemes. For the implicit method such as
Newmark beta and Wilson theta method, it involves iteration process at each time step.
The modified Euler method, whose simplicity is one of the distinguishing features, is a
numerical procedure that can be effectively used for dynamic analyses [4,5]. Hahn [4]
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applied this method in the dynamic analysis of a structure and discussed its stability and
accuracy. The application showed that this method is efficient and easy to use. On the
other hand, the dynamic analysis of the mooring line in the time domain can consider the
nonlinearity such as the geometric nonlinearity and hydrodynamic drag force.

The frequency domain method requires linearization for the nonlinear terms since it
employs the linear principle of superposition. It is very efficient and useful for dynamic
response problems with less severe nonlinearity. The geometric nonlinearity can be consid-
ered by assuming that dynamic deflections around the static equilibrium position are small.
There are several linearization methods for the drag force. The linear form of drag force in
a regular wave can be obtained by the equivalent energy method [6]. In a random wave,
statistical linearization is often used [7–9]. It is based on the minimization of the expected
square error between the nonlinear drag force and linearized drag force. Wu [10] derived
the equivalent linear form for a one-dimensional drag force in a random sea with a current.
Additionally, the one-dimensional linearization is extended to a three-dimensional case
by linearizing each component with this equivalent linear form. Hamilton [11] pointed
out that this approach is not strictly frame invariant, i.e., it depends upon the choice of
reference axes. Langley [12] found that this linearization method can lead to a significant
underestimate of the drag force since coupling between perpendicular flow directions
is neglected.

2. Governing Equations and Formulations

The time- or frequency domain dynamic analysis can be carried out to estimate the
dynamic mooring line response. The mooring line is modeled as a set of concentrated
masses connected by massless springs on the basis of the lumped mass method. The
dynamical equations of mooring lines in the time domain and frequency domain are
derivated, respectively.

A mooring line element in the global coordinate is shown in Figure 1. The i-th node’s
position is ri = [xi, yi, zi]T. ei+1/2 is the unit vector parallel to the centerline of the segment
between the i-th node and (i+1)-th node.

ei+1/2 =
1

l̃i+1/2
[xi+1 − xi yi+1 − yi zi+1 − zi]

T (1)

where l̃i+1/2 is the length of the segment between the i-th node and (i+1)-th node.

l̃i+1/2 =

√
(xi+1 − xi)

2 + (yi+1 − yi)
2 + (zi+1 − zi)

2 (2)

Figure 1. Mooring model in global coordinate.
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All forces along the mooring lines are assumed to be concentrated at the node.
Tension forces at the i-th node include the tension forces in the line segments on either

side of the node i which are, respectively, indicated as Ti+1/2 and Ti−1/2.

Ti±1/2 = EA

(
l̃i±1/2

li±1/2
− 1

)
(3)

where E is the elastic module; A is the cross-sectional area; li+1/2 is the original length of
the segment between the i-th node and (i+1)-th node; li−1/2 is the original length of the
segment between the i-th node and (i−1)-th node.

The tension force at node i is expressed as follows:

Ti = Ti+1/2ei+1/2 − Ti−1/2ei−1/2 (4)

Wave forces on the mooring line are computed using the Morison equation, which
assumes the force to be linearly summation of inertia and drag forces. The wave–particle
velocity at node i is ui = [ux,i, uy,i, uz,i]T. The normal wave–particle velocity un

i,i+1/2 across
the half of the upper segment that connects the i-th node is

un
i,i+1/2 = Ni+1/2ui (5)

Ni+1/2 = 1− ei+1/2eT
i+1/2

(6)

Similarly, the normal wave–particle acceleration across the half of the upper segment
that connects the i-th node is

.
un

i, i+1/2 = Ni+1/2
.
ui (7)

The tangential wave particle velocity uτ
i, i+1/2 across the half of the upper segment

that connects the i-th node is
uτ

i,i+1/2 = τi+1/2ui (8)

τi+1/2 = ei+1/2eT
i+1/2

(9)

and the corresponding acceleration across the half of the upper segment that connects the
i-th node is

.
uτ

i, i+1/2 = τi+1/2
.
ui (10)

The inertia or drag forces are usually computed separately for directions normal and
tangent to the lines. As the tangential component is usually small and can be neglected, it
is assumed that the tangential inertia coefficient is zero. The inertia force on the upper and
lower half segment on the side of node i is as follows:

FI i,i±1/2 =
1
8

πρD2Cn
mli±1/2

.
un

i, i±1/2 (11)

where Cn
m is the normal and tangential inertia coefficient.

Then, the inertia forces on node i including two lines segments on either side of the
node are

FIi = (DIi+1/2Ni+1/2 + DIi−1/2Ni−1/2)
.
ui (12)

where DIi±1/2 = 1
8 πρD2Cn

mli±1/2, and the normal inertia coefficient Cn
m = 2.

The structural acceleration is not included in inertia forces, and it is usually accounted
for by the inclusion of an added mass term in the mass matrix in the equation of motion.

FAi = (DAi+1/2Ni+1/2 + DAi−1/2Ni−1/2)
..
ri (13)

where DAi±1/2 = 1
8 πρD2Cn

a li±1/2, and the normally added mass coefficient Cn
a = Cn

m − 1.
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The added mass on node i is

ma, i = DAi+1/2Ni+1/2 + DAi−1/2Ni−1/2 (14)

Therefore, the mass, including added mass matrix, is

Mi = mi + ma, i (15)

where mi represents the mass of two mooring line segments on each side of the i-th node.
Additionally, the force including weight and buoyancy is

Wi = [0 0 −mig + fBi]
T (16)

where the buoyancy is denoted by fBi =
1
2 ρA(li+1/2 + li−1/2), and ρ is the density of seawater.

The drag force on the upper and lower half segment on the side of node i is calculated using
Morrison’s equation. The tangential drag is assumed to be neglected as it is usually small.

FDi,i±1/2 =
1
4

ρCn
DDli±1/2

∣∣∣Vn
r i, i±1/2

∣∣∣Vn
r i, i±1/2 (17)

where Cn
D is the normal drag coefficient. Vn

ri,i+1/2 is the normal relative velocity to the
upper segment connected with node i, respectively.

Vn
r i,i+1/2 = Ni+1/2Vr i (18)

Vr i = ui −
.
ri + Vc i (19)

where Vri is the relative velocity between the water–particle velocity from wave ui and
current Vci at node i and the velocity of node

.
ri.

The drag forces on the i-th node including two line segments on either side of the
node are

FD i = DTi+1/2

∣∣∣Vn
r i, i+1/2

∣∣∣Vn
r i, i+1/2 + DTi−1/2

∣∣∣Vn
r i, i−1/2

∣∣∣Vn
r i, i−1/2 (20)

where DTi±1/2 = 1
4 ρCn

DDli±1/2.

2.1. Dynamic Analysis in the Time Domain

The equation of motion is

M
..
r = T + FI + FD + W (21)

where M is the mass matrix of mooring lines including added mass, and
..
r is the acceler-

ation. The force consists of tension forces T, inertia force FI, drag force FD, weight, and
buoyancy W.

The upper end connects with the vessel, and the bottom end is considered as a fixed
point. The motion equation of mooring lines can be solved using numerical integration
schemes. Here, the modified Euler method is applied. rj and

.
rj are the known displacement

and velocity of the mooring line, respectively, at time tj = j∆t. The displacement and

velocity of the line, rj+1 and
.
rj+1, at the time tj+1 = (j + 1)∆t are evaluated as follows:

..
rj
= Mj−1

[
Tj + Fj

I
+ Fj

D
+ W

]
(22)

.
rj+1

=
.
rj
+

..
rj∆t (23)

rj+1 = rj +
.
rj+1∆t (24)
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where ∆t is the time step. The new displacements, velocities, and accelerations of all the
nodes can be evaluated easily according to this scheme.

It can be seen that the modified Euler method is very simple, and it can lead to
accurate response evaluations. It is explicit and straightforward, which is different from the
Newmark beta method, which needs iteration for each step. This method is conditionally
stable, and the time step should satisfy the condition of stability as follows:

∆t <
T
π

(25)

where T is the natural period of vibration of the line system.

2.2. Dynamic Analysis in the Frequency Domain

The dynamic analysis in the frequency domain is based on the linear system. There
are nonlinear effects that can have an important influence on mooring line behavior. One is
geometric nonlinearity, which is associated with large changes in the shape of the mooring
line. The other is fluid loading, in which the Morrison equation is most frequently used
to represent its effects on mooring lines. The drag force on the line is proportional to the
square of the relative velocity between the water–particle velocity from the wave or current
and the line’s velocity and hence is nonlinear. In addition, the contact of the line with the
seabed is also nonlinear. These nonlinearities have to be linearized.

It is assumed that dynamic deflections around the static equilibrium position are small.
The tangent stiffness matrix for the upper segment for node i is

ki =
∂(Ti+1/2ei+1/2)

∂ri
(26)

The drag force can be linearized by the statistical linearization method. The nonlinear
term in drag force is replaced by the linear form(

Vn + Vn
c

)∣∣Vn + Vn
c

∣∣ = CeVn + Fm (27)

where Ce is the equivalent linear coefficient, and Fm is a constant force vector. The normal
water–particle velocity from wave un is a Gaussian random process, the corresponding
structure’s velocity

.
rn, and the relative velocity Vn = un − .

rn is also a Gaussian random
process. The Ce and Fm can be estimated from the minimization of the expected square
error between the nonlinear and linearized forms. The expected square error is

E
[{(

Vn + Vn
c

)∣∣Vn + Vn
c

∣∣− (CeVn + Fm)
}2
]

(28)

Minimization of the error with respect to Ce and Fm leads to the following:

Ce =
E[Vn ·

(
Vn + Vn

c

)∣∣Vn + Vn
c

∣∣]
E[Vn · Vn]

(29)

Fm = E
[(

Vn + Vn
c

)∣∣Vn + Vn
c

∣∣] (30)

Since the relative velocity Vn is normal to the centerline of the line, it has only two
nonzero components in a coordinate system that has the tangent to the centerline as a basis
vector. If the two components are uncorrelated, the evaluation of the expected values in the
above equations can be simplified. We can choose the coordinate based on the principal
directions of the relative velocity covariance matrix. One base vector of the coordinate
system, denoted as axis 1, is in the direction of the maximum velocity variance and the other,
denoted as axis 2, is in the direction of the minimum velocity variance. In this coordinate
system, the two components of the relative velocity Vn = [v1, v2] are uncorrelated, i.e., the
covariance of vl and v2 is zero. Additionally, current velocity is Vc

n = [Vc1, Vc2] in this
coordinate system.
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Therefore, the above equations can be rewritten as follows:

Ce =

∫ ∞
−∞

∫ ∞
−∞Vn ·

(
Vn + Vn

c

)∣∣Vn + Vn
c

∣∣p(Vn)dv1dv2∫ ∞
−∞

∫ ∞
−∞(Vn · Vn)p(Vn)dv1dv2

(31)

Fm =
∫ ∞

−∞

∫ ∞

−∞

(
Vn + Vn

c

)∣∣Vn + Vn
c

∣∣p(Vn)dv1dv2 (32)

where p(Vn) is the probability density function of Vn. Considering Vn is a Gaussian random
process and vl and v2 are uncorrelated, the probability density function is

p(Vn) =
1

2πσ1σ2
e−

1
2 [(

v1
σ1
)

2
+(

v2
σ2
)

2
] (33)

The linearization needs the integration of double infinite integrals. Only a few spe-
cial cases have the closed form of integration. For the one-dimensional drag force, the
linearization results are

Ce =

√
8
π

{
σe−

1
2 (

Vc
σ )

2

+
√

2πVcer f (
Vc

σ
)

}
(34)

Fm =

√
2
π

σVce−
1
2 (

Vc
σ )

2
+ 2(V2

c + σ2)er f (
Vc

σ
) (35)

where er f (x) = 1√
2π

∫ x
0 e−

1
2 t2

dt.
If there is no current, then the linearization coefficient for one-dimensional drag force is

Ce =

√
8
π

σ (36)

For the case in which the drag force is three dimensional, the integrals require nu-
merical integration. The infinite integrals can be transformed into finite integrals by
trigonometric functions, and the finite integrals are evaluated by trapezoidal rule [13].
Using the above linearization method, the linearized drag force at node i can be obtained
as follows:

FDi,i±1/2 =
1
4

ρCDDli±1/2PT
i±1/2

(
Ce,i±1/2Pi±1/2Ni±1/2

(
ui −

.
ri
)
+ Fm,i±1/2

)
(37)

where PT
i±1/2

is the orthogonal transformation from the local principal coordinate system to
the global coordinate system.

FDi = (Qi+1/2 + Qi−1/2)
(
ui −

.
r
)
+ Fmi (38)

where Qi±1/2 = DTi±1/2PT
i±1/2

CePi±1/2
Ni±1/2

Fmi = DTi+1/2PT
i+1/2

Fm,i+1/2 + DTi−1/2PT
i−1/2

Fm,i−1/2

DTi±1/2 = 1
4 ρCDDli±1/2

After linearization, the equation of motion of mooring lines is transformed into the
frequency domain in the form as follows:

(−ω2M + iωQ + K)r(ω) = MI
.
u(ω) + Qu(ω) (39)

Then, the right side of the equation of motion can be rewritten as G(ω)η(ω), where
G(ω) is the force transfer function. the displacement responses can be obtained as

r(ω) = H(ω)η(ω) (40)

where H(ω) is the transfer function and H(ω) = (−ω2M + iωQ + K)−1G(ω).
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Additionally, the velocity of lines is

.
r(ω) = iωr(ω) (41)

The response spectral of displacement and top tension are

Srr(ω) = |H(ω)|2Sηη(ω) (42)

Mean square response of displacement and velocity are

σ2
r =

∫ ∞

0
Srr(ω)dω (43)

σ2.
r =

∫ ∞

0
ω2Srr(ω)dω (44)

Top tension can be obtained as

T(ω) = kN−1[rN(ω)− rN−1(ω)] (45)

3. Numerical Case in the Time Domain

The codes for the dynamic analyses of mooring lines in the time domain were pro-
grammed using MATLAB. The numerical case analyses of single-component and multicom-
ponent mooring lines were carried out. To verify this program, the results were compared
with the results from commercial software, Orcaflex. The detailed properties of lines are
listed in Table 1. The harmonic excitations were applied on the top end of the lines. The
horizontal and vertical harmonic excitations represent the motions at wave frequency and
low frequency of a floating structure, respectively.

Table 1. Properties of the mooring line.

Type Diameter (mm) Axial Stiffness (kN)
Weight kg/m

Air Water

R4 Chain 157 3.35 × 106 491 426
Spiral Strand wire 144 1.893 × 106 106 84

Three test cases were carried out and compared with the results from Orcaflex. The
first case was a single-component mooring line only under harmonic excitation applied
on its top end. There were no environmental loads and no seabed contact. In the second
case, the environmental loads, wave, and current were applied to the line. The third case
addressed multicomponent mooring lines. The lines were subjected to wave, current, and
harmonic excitation. In addition, contact with seabed was also taken into account.

3.1. Single-Component Mooring Line under Harmonic Excitation

The dynamic response of a single-component mooring line, the R4 chain, was sim-
ulated. The mooring line was subjected to vertical, horizontal, and combined vertical
and horizontal harmonic excitations, respectively. The given harmonic excitations are
as follows:

xN(t) = 10 cos(0.02πt) (46)

zN(t) = 5 cos(0.2πt) (47)

The environmental loads were not taken into account here. The water depth is
400 m. The length of the line is 400 m. The top end is 10 m under the water surface. The
configuration of the mooring line is shown in Figure 2. Additionally, the results of dynamic
analysis were compared with Orcaflex’s. There are 20 segments. Figures 3–5 show the
dynamic response of a single-component mooring line under vertical, horizontal, and



J. Mar. Sci. Eng. 2021, 9, 781 8 of 17

combined vertical and horizontal harmonic excitations. According to the results, the codes
agree well with the outputs of Orcaflex, and the top tension range is 1% greater in Orcaflex.
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3.2. Single-Component Mooring Line under Harmonic Excitation with Wave and Current

In this case, the environmental loads from wave and current were applied to the lines.
The wave is an airy wave that has a wave height of 7.0 m and a period of 8.0 s. The current
is 1 m/s in the x-direction and linear decay, along with the depth until zero at the seabed.
Additionally, the mooring line was still subjected to three harmonic excitations, i.e., vertical,
horizontal, and combined vertical and horizontal harmonic excitations. Both the results of
mooring line dynamic analysis by the in-house code and Orcaflex are shown in Figures 6–8.
It can be seen that the agreement is well, and the difference is within 1%.
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3.3. Multicomponent Mooring Line

This code can also carry out the dynamic analysis for multicomponent mooring lines.
Here, a test case of a multicomponent mooring line (R4 chain-Spiral Strand wire-R4 chain)
was simulated. The line length is 100, 400, and 1480 m, respectively. The configuration
of the multicomponent mooring line is shown in Figure 9. The first part of the 100 m
R4 chain was divided into five segments, and the second part of the spiral strand wire
was divided into six segments. The third part of the R4 chain considered the seabed
contraction, in which parts on the touch-down zone were meshed by 10 m per segment (in
total 58 segments), and other parts, always on the seabed, were coarsely meshed by 100 m
per segment. The given harmonic excitations are as follows:

xN(t) = 40 cos(0.02πt) (48)

zN(t) = 5 cos(0.2πt) (49)

Figure 9. Configuration of the multicomponent mooring line.

Wave and current were the same as used in the single-component mooring line. In
addition, seabed interaction was also considered. For the mooring line resting on the
seabed, a modified bilinear spring is used to model the vertical contact force Fs on a
node [14], which has the form in Equation (50). Friction effects are considered to be less
significant for the system analyzed and are neglected. A gradual transition is proposed to
account for numerical stability. The effects of wave and current are considered, using the
same parameters in the single line case.
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Fs =
1
2

a
{
−z +

1
b

ln[cosh(bz + c)] + d
}

(50)

where a, b, c, and d is suitably chosen constants. In particular, d should be the value such
that Fs is close to 0 when z is a suitable distance away from the seabed.

Dynamic response of multicomponent mooring line under vertical, horizontal, and
combined vertical and horizontal harmonic excitations are shown in Figures 10–12. Ac-
cording to the results of the dynamic analysis in the time domain, it can be seen that this
program can perform as well as the commercial software, and the difference is within 3%.
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4. Numerical Case in the Frequency Domain

The code for the dynamic analysis of mooring lines in the frequency domain was
programmed and compared with the results from Oraclex. Since Orcaflex cannot perform
the dynamic analysis in the frequency domain, the dynamic responses in the time domain
were transformed to responses in the frequency domain using FFT. The nonlinearities in
the mooring lines were linearized using the aforementioned method. Additionally, cases of
single-component and multicomponent lines were performed.

4.1. Mooring Line under Harmonic Excitation and Regular Wave

The dynamic analyses of a single-component mooring line, R4 chain, under different
horizontal surge harmonic excitation were carried out in the frequency domain and time
domain, respectively. The configuration of the mooring line is shown in Figure 2. The surge
motion amplitudes of 1 m, 5 m, and 10 m with a period of 10 s were investigated. Figure 13
shows the ratio of dynamic tension amplitude in the frequency domain and time domain.
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The frequency domain simulations of single-component mooring line under regular
wave were carried out thereafter. The wave height is 10 m, 15 m, and 20 m, respectively.
The ratios of dynamic tension amplitude in the frequency domain and time domain are
shown in Figure 14.
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The dynamic analyses of multicomponent mooring lines under different surge har-
monic excitations were also carried out in the frequency domain and time domain, respec-
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tively. The configuration of the mooring line is shown in Figure 9. Figure 15 shows the
ratio of dynamic tension amplitude in the frequency domain and time domain with the
surge motion amplitudes of 1 m, 5 m, and 10 m. The ratios of dynamic tension amplitude
in the frequency domain and time domain under wave height of 10 m, 15 m, and 20 m are
shown in Figure 16.
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Orcaflex, as shown in Figure 20, and then transformed the response to the frequency do-
main. The standard deviation of top tension is shown in Table 2. The difference is 13.41%. 
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4.2. Single-Component Mooring Line under Random Wave with Current

The dynamic analysis of a single-component mooring line, R4 chain, was simulated
under a random wave. The random wave is defined by the ISSC spectrum as follows. The
significant wave height is 7.8 m, the peak period is 5.6 s, and the spectrum is shown in
Figure 17.

Sη(ω) =
5

16
H2

s ω−5 ωp
4 exp

[
−5

4

(ωp

ω

)4
]

(51)

The current velocity is 1 m/s in the x-direction. The configuration of the mooring
line is shown in Figure 18. The length is 668.8 m, and the water depth is 400 m. Both top
and bottom are pinned, the top is at (366.89, 366.89, 390) and the bottom is at the origin
point. After linearization and the frequency analysis, the spectral density of top tension
is presented in Figure 19. The dynamic analysis in the time domain is simulated for 3 h
using Orcaflex, as shown in Figure 20, and then transformed the response to the frequency
domain. The standard deviation of top tension is shown in Table 2. The difference is 13.41%.
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Table 2. The standard deviation of top tension for single-component case.

In-House Orcaflex

Standard deviation of Top Tension (N) 368.3 318.9

4.3. Multicomponent Mooring Line under Random Wave with Current

The frequency analysis for a multicomponent (R4 chain-Spiral Strand wire-R4 chain)
mooring line was also carried out under the random waves. The line configuration is
shown in Figure 21. The length is 100 m, 300 m, and 268.8 m, respectively. Both ends were
pinned, and positions were the same as the single-component line.
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The dynamic analysis in the time domain was also simulated for 3 h using Orcaflex, as
shown in Figure 22. Additionally, the response of top tension in time series was transformed
to the frequency domain. The frequency analysis for the multicomponent line was carried
out to obtain the spectral density of top tension, which is presented in Figure 23. The
standard deviation of top tension is shown in Table 3. The difference between them
is 6.16%.

Figure 22. Top tension in time series (3 h) of multicomponent line.



J. Mar. Sci. Eng. 2021, 9, 781 16 of 17

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 17 of 18 
 

 

 
Figure 22. Top tension in time series (3 h) of multicomponent line. 

 
Figure 23. Spectral density of top tension multicomponent line. 

Table 3. The standard deviation of top tension for the multicomponent case. 

 In-House Orcaflex 
Standard deviation of Top Tension (N) 298.0 280.7 

5. Conclusions 
This paper developed a numerical scheme for dynamic analysis of mooring lines in 

the time domain and frequency domain based on the lumped mass method. The modified 
Euler method, a direct and simply explicit algorithm, was employed to carry out the dy-
namic analysis of mooring lines in the time domain. The mooring lines under horizontal, 
vertical, and combined harmonic excitations were studied. The studied cases included 
single-component and multicomponent mooring lines, and the seabed contact was also 
taken into account. An improved frame invariant stochastic linearization method was ap-
plied to the nonlinear hydrodynamic drag term for the frequency domain dynamic anal-
ysis. The cases of single-component and multicomponent mooring lines were studied. The 
codes were validated by comparison with commercial software, Orcaflex. The comparison 
of results showed that time and frequency domain results agree well with nonlinear time 
domain results. 

Author Contributions: Conceptualization, S.H. and A.W.; methodology, A.W.; software, A.W.; val-
idation, A.W.; formal analysis, A.W.; investigation, S.H.; resources, A.W.; data curation, A.W.; writ-

Figure 23. Spectral density of top tension multicomponent line.

Table 3. The standard deviation of top tension for the multicomponent case.

In-House Orcaflex

Standard deviation of Top Tension (N) 298.0 280.7

5. Conclusions

This paper developed a numerical scheme for dynamic analysis of mooring lines in the
time domain and frequency domain based on the lumped mass method. The modified Euler
method, a direct and simply explicit algorithm, was employed to carry out the dynamic
analysis of mooring lines in the time domain. The mooring lines under horizontal, vertical,
and combined harmonic excitations were studied. The studied cases included single-
component and multicomponent mooring lines, and the seabed contact was also taken
into account. An improved frame invariant stochastic linearization method was applied to
the nonlinear hydrodynamic drag term for the frequency domain dynamic analysis. The
cases of single-component and multicomponent mooring lines were studied. The codes
were validated by comparison with commercial software, Orcaflex. The comparison of
results showed that time and frequency domain results agree well with nonlinear time
domain results.
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