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Abstract: The enlargement of ships has increased the relative hull deformation owing to draft
changes. Moreover, design changes such as an increased propeller diameter and pitch changes have
occurred to compensate for the reduction in the engine revolution and consequent ship speed. In
terms of propulsion shaft alignment, as the load of the stern tube support bearing increases, an
uneven load distribution occurs between the shaft support bearings, leading to stern accidents.
To prevent such accidents and to ensure shaft system stability, a shaft system design technique is
required in which the shaft deformation resulting from the hull deformation is considered. Based on
the measurement data of a medium-sized oil/chemical tanker, this study presents a novel approach
to predicting the shaft deformation following stern hull deformation through inverse analysis using
deep reinforcement learning, as opposed to traditional prediction techniques. The main bearing
reaction force, which was difficult to reflect in previous studies, was predicted with high accuracy by
comparing it with the measured value, and reasonable shaft deformation could be derived according
to the hull deformation. The deep reinforcement learning technique in this study is expected to be
expandable for predicting the dynamic behavior of the shaft of an operating vessel.

Keywords: shaft alignment; inverse analysis; deep reinforcement learning; medium-sized oil/chemical
tanker; shaft deformation

1. Introduction

Since the 2000s, hull stiffness has been reduced owing to the enlargement of ships,
which has been achieved along with the growth of the global economy. Moreover, signifi-
cant hull deformation occurs as a result of to the relatively large loading changes in the aft
peak tank (APT) and draft. As the stiffness of the shaft increases owing to the increased
engine power, the hull deformation causes the reaction force of the bearings that support
the shaft to be distributed more unevenly. Furthermore, the ultra-long stroke engine has
recently been introduced for energy efficiency. Thus, as the propeller diameter increases
and changes in pitch, the propeller weight increases to compensate for the decrease in the
engine revolution caused by the long stroke and consequent ship speed, which further
increases the stern load [1]. Owing to the above factors, the hull deformation causes shaft
deformation, which results in accidents relating to heat generation of the stern tube bear-
ings, abnormal wear, and damage in terms of the shaft alignment [2]. Such damage occurs
as an excessive local load concentration on specific bearings, whereas the adjacent bearings
form no load, resulting in an uneven distribution of each bearing load. Thus, it is necessary
to ensure shaft system stability by performing shaft alignment with appropriate bearing
load distribution considering the hull deformation [3–6].
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Many studies have been conducted to evaluate the shaft stability considering the
shaft deformation owing to hull deformation. Representative examples of such work
include a study that predicted shaft deformation using the finite element method in the
analysis of a model of the stern structure [7–9] and another study whose prediction of
shaft deformation was demonstrated to sufficiently reflect measurements by applying the
measured data to various inverse-analysis techniques. [3,10,11] Stern structural analysis
has been performed using the finite element (FE) method, and in certain studies, inverse
analysis of the measured data has been performed. Choung and Choe [7] generated FE
models for shaft systems, double bottoms, and main engines to predict the hull deformation
and shaft deformation. Korbetis et al. [8] performed global structural analysis with a finely
modeled stern of a 320 K DWT VLCC and predicted the shaft deformation according
to the loading conditions by applying the lumped weight of the main engine, without
separate modeling of the shaft and engine. Moreover, Seo et al. [9] performed global
structural analysis with a finely modeled stern of a 300 K DWT VLCC and predicted
the shaft deformation according to the draft by modeling the shaft, engine, and engine
foundation separately. However, in studies on stern structural analysis using the FE
method, significant deviation of the main bearing (MB) reaction force occurred in the shaft
deformation prediction according to the draft, and it was difficult to consider the actual
ship conditions and load distribution of the engine room equipment.

Rao et al. [10] generated the reaction force influence number (RIN) matrix from the
bearing reaction force that was calculated by the bending moment measured with a strain
gauge and applied inverse analysis to predict the shaft deformation. Šverko [3] predicted
the shaft deformation using a genetic algorithm from the bearing reaction force that was
measured by the jack-up method and the bending moment that was measured by a strain
gauge. Lee [11] predicted the shaft deformation using a trial-and-error method according
to the bending moment that was measured with a strain gauge. However, the techniques
used in this inverse-analysis study had the limitation of being unable to make predictions
that sufficiently reflected measurements due to its sensitivity to shaft deformation, whereby
a large reaction force is generated even with a minor deformation of the shaft.

Compared to stern structural analysis using the FE method, in the inverse analysis
method using the measured data, the measured bearing reaction force and bending moment
can be used to predict the shaft deformation, thereby reflecting the hull deformation
that is caused by the actual draft conditions of the ship, the load distribution in the
engine room, and the APT loading. However, it is also difficult to predict the shaft
deformation considering the reaction force of the MBs. Therefore, it is necessary to develop
a technique for the inverse analysis of shaft deformation that can sufficiently reflect the MB
reaction force.

Recent advances in computing performance have contributed to active research using
deep neural networks and reinforcement learning (RL) in various fields. The structure of
the deep neural network mimics the human brain and neural network. This technique
can perform complex nonlinear analysis that is difficult to achieve with an equation for
variables without prior definition [12]. RL changes to the “next state” by selecting an
“action” from the “state” based on the content learned through trial and error to obtain a
“reward,” and an action or action pattern is selected that maximizes the sum of the rewards.
Deep RL, which combines RL and deep neural networks, has been successfully applied
to various problems, such as control, recommendation, optimization, and detection [13].
Uyanik et al. [14] predicted the fuel consumption of container ships using various machine
learning techniques. Cheliotis et al. [15] detected abnormal symptoms of ships using
machine learning. Kim et al. [16] predicted the fuel consumption rate of container ships
using a deep neural network and presented the optimal operating conditions accordingly.
Song et al. [17] conducted a study on the detection of ships through synthetic aperture radar
(SAR) images and automatic identification system (AIS) information using a convolutional
neural network. Karvelis et al. [18] studied structural health monitoring by attaching
a sensor to the hull structure and using an autoencoder. Scardua et al. [19] proposed
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optimal ship unloader control by applying an artificial neural network to RL. Fu et al. [20]
investigated the detection of the rotation of a berthing ship using RL. Zhao and Rho [21]
conducted a study on the collision avoidance of ships according to COLREG using deep
RL. As described above, various studies have been carried out on the successful application
of deep neural networks and deep RL to ships. However, no research to date has applied
deep RL to the shaft system of a ship, and it is expected that the use of deep RL in the
inverse analysis of the measured data will be suitable for the shaft deformation problem.

In this study, measured values of the shaft under various draft conditions were applied
as input variables to the deep-RL-based algorithm, with the output being the prediction of
shaft deformation features that sufficiently reflect measured values. First, the supporting
bearing reaction force of the shaft system and the shaft bending moment of the target
ship were measured according to the draft. This was followed by creating an FE model
of the shaft system of the target ship to check the fit of the measured and calculated
values. Thereafter, a deep RL algorithm was modeled for use in inverse analysis, and
the shaft deformation was predicted through an inverse analysis algorithm by applying
deep RL using the measured values. Subsequently, the trends in the predicted shaft
deformation were identified and substituted into the shaft model to evaluate how effectively
the measured values could be reflected. Finally, the results were compared with those of
shaft deformation prediction using existing research techniques. The purpose of this study
was to determine the academic significance of the shaft deformation prediction of inverse
analysis by applying deep RL.

2. Materials and Methods

Figure 1 presents the research procedure of this study.
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Figure 1. Outline of study.

2.1. Target Ship Specifications

The target ship of this study was a 50,000 DWT medium-sized oil/chemical tanker
that was equipped with a highly energy-efficient long-stroke engine. The specifications of
target ship are presented in Table 1 and the specifications of the shaft system of the target
ship are listed in Table 2.
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Table 1. Specifications of target ship.

Description Value

GT [ton] 29,327
SDWT [ton] 49,635

Length OA [m] 183.1
Length BP [m] 174.0

Breadth MLD [m] 32.2
Depth MLD [m] 19.1

Draft design MLD [m] 11.0
Draft scantling MLD [m] 13.2

Year built 2015

Table 2. Specifications of shaft system of target ship.

Category Description Value

Main engine
Type MAN B&W 6G50ME-B
MCR 7700 kW × 93.4 rpm
NCR 5344 kW × 82.7 rpm

Propeller

No. of blades 4-blade fixed pitch
Diameter 6600 mm
Material Ni-Al-bronze

Mass in air 18,200 kg
Cap & nut mass 1538 kg

Flywheel Mass 11,207 kg

2.2. Shaft System Measurement Methods
2.2.1. Bearing Reaction Force Measurement Using Jack-Up Method

As illustrated in Figure 2, the forward stern tube bearings were omitted in the propul-
sion shaft system of the target ship. The aft stern tube bearing (ASTB), intermediate bearing
(IB), and eight MBs were aligned with the main engine crank, which was installed linearly.
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Typical methods for measuring the shaft reaction force include the jack-up method,
which measures the bearing reaction force directly using a hydraulic jack, and the strain
gauge method, which calculates the reaction force by obtaining the bending moment
from the strain that is measured by attaching a strain gauge to the shaft and applying the
moment equilibrium equation. In the jack-up method, the reaction force of the bearing
is measured directly by installing a hydraulic jack near the bearing position, as indicated
in Figure 3. The reaction force of the IB is measured by installing a hydraulic jack on the
foundation, as illustrated in Figure 3a. The reaction force of the MBs excluding the aftmost
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MB is determined by turning the crank arm to a horizontal position in the direction of the
exhaust pipe, as indicated in Figure 3b, following which measurement is performed by
installing a hydraulic jack on the crank arm that is adjacent to the measured bearing. The
reaction force of the aftmost MB is measured by installing a rigid steel beam under the
hydraulic jack and a steel bar between the flywheel and hydraulic jack, as illustrated in
Figure 3c. However, as the stern tube bearing is located in the stern tube, making it difficult
to access, it is impossible to install a hydraulic jack at the bearing position.
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The advantages of the jack-up method are that it is simple, and measurement can be
performed using only a hydraulic jack and a dial indicator. Furthermore, it is the only
method in which the reaction force is measured directly. However, the disadvantages are
that it is not possible to measure the bearing reaction force against the rotating shaft, it is
not possible to measure the bearing reaction force against the shaft during a ship voyage,
the same hydraulic jack must be used for repeated measurements, and the measured value
may exhibit errors depending on the installation degree [22].

2.2.2. Bending Moment Measurement Using Strain Gauge

The strain gauge method provides the moment and reaction force for the shaft system
alignment using the flexural beam theory. The Wheatstone bridge circuit connection used
in the strain gauge method is divided into one gauge (quarter gauge), two gauges (half
gauge), and four gauges (full gauge) according to the number of attached gauges. In this
study, the two-gauge method was used in consideration of the utility versus installation
time. The strain gauge used was the WFLA-3-11-L1 manufactured by TML (Tokyo Sokki
Kenkyujo). As illustrated in Figure 4a,c,d the two gauges, spaced 180 degrees above and
below the shaft surface, were attached with a Wheatstone bridge connection, as indicated
in Figure 4b. The resistance value of the strain gauge changes proportionally to the vertical
strain of the shaft that is caused by the rotation of the shaft, and in this manner, a variable
output voltage compared to the input voltage can be obtained. The strain in the strain
gauge can be determined from the initial resistance and the amount of change in the
resistance using Equation (1).

ε =
∆R
R
· 1

k
(1)

where ε is the strain, R is the initial resistance measured by the strain gauge, ∆R is the
amount of change in the resistance measured by the strain gauge, and k is the strain
gauge coefficient.
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According to the strain obtained in Equations (1) and (2) is used to calculate the
bending stress in the two-gauge method, as illustrated in Figure 4a,b.

σb =
1
2

E(εb − εt), (2)

where σb is the bending stress, εb is the strain amplitude of the strain gauge that is installed
in the lower part, εt is the strain amplitude of the strain gauge that is installed in the lower
part, and E is the Young’s modulus.

According to the bending stress obtained in Equation (2), the bending moment is
obtained from the relational equation for the beam theory, as per Equation (3):

Mb = σb
π
(

D4
o − D4

i
)

32D0
, (3)

where Mb is the bending moment, Do is the outer diameter of the shaft, and Di is the inner
diameter of the shaft.

The advantage of the strain gauge method is that the reaction force is calculated using
the moment equilibrium equation. Thus, the reaction force of the stern tube bearing that is
located at the end of the stern tube can be calculated and the reaction force can be measured
while the shaft is rotating during the ship voyage. However, the disadvantage is that, in the
case of the MB, it is impossible to install the gauge inside the engine. Therefore, the reaction
force cannot be calculated, the installation time is long, and the equipment is sensitive and
expensive [22].

2.2.3. Measurement Results

Table 3 displays the fore and aft drafts under the measured draft conditions for the
reaction force and bending moment of the target ship, whereas Figure 5 depicts the stern
drafts under the measured draft conditions of the target ship. D1 (Figure 5a) denotes a light
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condition with no cargo loaded, D2 (Figure 5b) is an empty APT in the ballast condition,
and D3 (Figure 5c) is a full APT in the ballast condition. D4 (Figure 5d) is an empty APT
in the scantling condition and D5 (Figure 5e) is a full APT in the scantling condition. The
reaction force of the shaft support bearings and bending moment of the strain gauges were
measured under the above five draft conditions.

Table 3. Fore and aft drafts under measurement draft conditions.

Draft Condition Description Fore Draft [m] Aft Draft [m]

D1 Light ballast APT
empty 3.40 6.60

D2 Ballast APT empty 6.30 7.90
D3 Ballast APT full 6.45 8.95
D4 Scantling APT empty 13.50 12.50
D5 Scantling APT full 13.20 12.60
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The reaction force of the target vessel could be measured using the jack-up method
with a hydraulic jack by stopping the engine under the conditions displayed in Table 3 and
performing the measurement. Table 4 lists the reaction force measurement results of the IB
and the MBs measured under each draft condition.

Table 4. Jack-up measurement results.

D1 [kN] D2 [kN] D3 [kN] D4 [kN] D5 [kN]

IB 70.3 71.4 65.5 69.9 67.2
MB8 9.9 18.7 32.9 77.7 93.1
MB7 178.6 132.5 153.8 126.2 103.5
MB6 109.6 96.0 102.6 78.0 97.7
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In this study, strain gauges were installed at seven positions, as illustrated in Figure 6,
the exact positions of which are detailed in Table 5. The strain was measured by rotating
the shaft from one to two turns at a low speed of 2–5 rpm using a turning gear. Table 6
presents the bending moment measurement results of the measured strain gauges.
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Figure 6. Strain gauge attachment locations.

Table 5. Detailed strain gauge attachment locations.

Strain Gauges Distance from Shaft End [mm]

SG7 5862
SG6 6875
SG5 8137
SG4 8972
SG3 10,467
SG2 12,712
SG1 14,422

Table 6. Strain gauge measurement results.

D1 [kNm] D2 [kNm] D3 [kNm] D4 [kNm] D5 [kNm]

SG7 85.1 75.1 64.6 83.8 73.3
SG6 77.4 67.3 61.0 82.8 74.4
SG5 59.3 52.3 44.1 69.2 63.2
SG4 12.5 −7.5 2.9 30.5 24.3
SG3 −58.1 −55.6 −56.0 −23.4 −28.0
SG2 −107.5 −100.4 −93.2 −54.8 −59.0
SG1 −109.6 −99.9 −86.1 −40.6 −42.2

The reaction force of the ASTB could not be measured by installing a hydraulic jack.
Thus, the reaction force of the ASTB (RASTB), effective support point of the ASTB (B), no. 7
strain gauge attachment position (A), and propeller weight (Wp) were simply expressed as
shown in Figure 7. On this basis, the moment equilibrium equation in Equation (4) was
established, and an equation for the ASTB reaction force was established as in Equation (5).

∑ MA = MA − RASTBd1 + Wpd2 + MAB = 0
(

where MAB = WAB
d1

2

)
(4)

RASTB =
1
d1

{
MA + MAB + Wpd2

}
, (5)

where MA is the bending moment measured at the no. 7 strain gauge, RASTB is the reaction
force of the ASTB, d1 is the distance from the effective support point of the ASTB (B) to the
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attachment position of the no. 7 strain gauge (A), Wp is the load of the propeller, d2 is the
distance from the support point of the propeller to the attachment position of the no. 7
strain gauge (A), and MAB and WAB are the bending moment and weight of the shaft from
the effective support point of the stern tube bearing to the attachment position of the no. 7
strain gauge (A), respectively.
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Table 7 displays the results of the reaction force of the ASTB calculated under the draft
conditions in Table 3.

Table 7. Calculation results of ASTB reaction force.

D1 [kN] D2 [kN] D3 [kN] D4 [kN] D5 [kN]

ASTB
(calculated) 253.26 250.53 247.67 252.91 250.04

2.3. Deep RL
2.3.1. Deep Neural Network

As illustrated in Figure 8, the deep neural network consists of an input layer that
receives input variables, a hidden layer that receives variables from the input layer and
performs calculations, and an output layer that receives the results from the hidden layer
and outputs them. Such a network is known as an artificial neural network because weights
and biases are applied as per Equation (6) as it progresses from a node constituting a layer
to a node in the next layer, and it is transmitted to the next layer through an activation
function inside the hidden layer. An artificial neural network in which many layers are
stacked is referred to as a deep neural network [23].

[i1, i2]×
[

wh11 wh12
wh21 wh22

]
+ [bh1, bh2] = [H1, H2], (6)

where i1 and i2 are the nodes of the input layer; w11, w12, w21, and w22 are the weights
that are applied to the nodes when transmitting from the input layer to the hidden layer;
bh1 and bh2 are the biases that are applied to the nodes; and H1 and H2 are the values of
the nodes of the hidden layer.

In a deep neural network, the process of calculating all of the given data from the
input layer to the output layer, as indicated in Figure 9, is known as the “epoch,” and the
function representing the error between the target value and output value after the end of
the epoch is referred to as a “loss function.” In deep neural network learning, this error is
calculated in the opposite direction to that of the neural network to reduce the loss function,
which is known as “back propagation.” As this process is performed repeatedly through
the optimization technique, the weight and bias of the node are updated and a value that is
close to the target value is output.
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2.3.2. RL

RL is a technique that was developed based on the dynamic programming method
proposed by Bellman [24]. It can be categorized as value-based RL and policy-based RL
depending on whether an action or a policy is selected to maximize the value. Value-based
RL was applied in this study because the purpose was to determine the optimal value, and
not the policy to determine the optimal value.

Q-learning, which is a representative algorithm of value-based RL [25], performs
an action (at) in the current state (St) of the tth episode, as indicated in Equation (7) and
Figure 10. The value (Q) is updated through the weighted sum of the maximum value in
the next state (max

at+1
Q(St+1, at+1)) and the previous value (Q(St, at)) that is calculated by

receiving rewards (Rt) according to the next state (St+1).

Q(St, at)← Q(St, at) + α

[
Rt + γmax

at+1
Q(St+1, at+1)−Q(St, at)

]
(7)
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where Q(St, at) is the value when an action (at) is performed in a state (St), α is the learning
rate indicating the update degree, Rt is the reward, and γ is the discount rate for the future
reward. Furthermore, max

at+1
Q(St+1, at+1) is the greatest value obtained when an action

(at+1) is selected in the next state (St+1).
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2.3.3. Deep RL

Deep RL uses a deep neural network to determine a behavior in RL and performs
back propagation to reduce the loss function of the Q-value for the behavior. The deep
Q-learning network is a method that combines Q-learning and deep neural networks [27].
This algorithm selects a random action with a probability of ε as in Equation (8) to prevent
overfitting of the result, and applies a ε-greedy policy to select an action (a∗) that takes the
maximum value (maxaQ(s, a)) with a probability of 1 – ε [13].

π(a|s) =
{

1− ε i f a∗ = maxaQ(s, a)
ε otherwise

(8)

Moreover, the experience replay memory [28] is used to optimize the action so that
the action is not affected by the old episode result, thereby enabling rapid operation by
storing the experience result up to the memory size after the end of the episode.

Figure 11 depicts the procedure of the deep RL algorithm model for predicting the
shaft deformation from the reaction force and bending moment measurements used in
this study.
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Episode (red solid line) selects “Action (2)” from “State (1)” and calculates “Next
state (3).” If the calculated “Next state” meets “Constraint (4),” Episode ends and “State,”
“Action,” “Next state,” and “Value (5)” are stored in “Memory (6).” If the constraint is not
satisfied, “Action (2)” is executed again. Epoch (blue dotted line) saves the result from the
completed Episode, initializes “State (1),” and suggests the optimal result when all epochs
are completed. Update (green dotted line) updates “Action (2)” by sampling the batch
from the memory after the episode ends and performing back propagation to reduce the
loss function.

2.4. Applied Method
2.4.1. Shaft FE Modeling

To calculate the shaft reaction force and bending moment according to the offset,
using the displacement of the aft stern tube bearing as a reference point, the shaft diameter
change point, load action location, strain gauge attachment location, and node according
to the bearing location were divided into nodes. The element details displayed in Table 8
were applied and modeled with the MSC software PATRAN, as illustrated in Figure 12.

Table 8. Shaft FE model details.

Description Value

No. of nodes 54
No. of elements 53
Type of element 1D beam element

Young’s modulus [N/mm2] 2.06× 105

Poisson’s ratio 0.3
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Figure 12. Shaft FE model.

Table 9 presents the applied loads in the drawing (bonnet and propeller) and recom-
mended loads of the manufacturer (flywheel, chain force, and crank) acting on the shaft.
Table 10 displays the boundary conditions of the nodes applied to the shaft model, and
Table 11 presents the density information for calculating the density of the shaft in contact
with seawater, lubricant, and air.
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Table 9. Shaft FE model applied loads.

Position [mm] Load [kN]

Bonnet 290 8.813
Propeller 921 150.122
Flywheel 14,667 109.940

Chain force 15,375 −99.900
Crank 16,242 125.000
Crank 17,136 125.000
Crank 18,030 125.000
Crank 18,924 125.000

Table 10. Shaft FE model boundary conditions.

Translations Rotations

ASTB Y, Z -
IB Y, Z -

MB8 Y, Z -
MB7 Y, Z -
MB6 Y, Z -
MB5 Y, Z -
MB4 Y, Z -
MB3 Y, Z -

Shaft end X, Y X, Z

Table 11. Fluid density in contact with shaft FE model.

Density [kg/mm3] Start [mm] End [mm] Comments

Water density 1.03× 10−9 0 1782 Bonnet, propeller
Oil density 9.70× 10−10 1782 4902 ASTB

Shaft (in air) 7.85× 10−9 4902 19,818 IB, MB, flywheel, crank

2.4.2. Deep RL Procedure

In this study, a deep RL algorithm was modeled in which a deep neural network was
applied to a Q-learning algorithm for inverse analysis of the shaft deformation. Table 12
presents the hyperparameter values applied in this algorithm.

Table 12. Deep RL applied hyperparameters.

Category Description Value

Q-value
Learning rate (α) 0.001

Discount factor (γ) 0.95

ε-greedy policy ε 0.05~0.01

Experience replay memory Memory size 200
Batch size 10

Deep neural network

Hidden layer 3
Hidden layer node 128
Activation function ReLU

Epoch 1000
Loss Mean squared error (MSE)

Optimizer Adam

The detailed procedure of the deep RL algorithm for applying the shaft deformation,
as illustrated in Figure 8, is outlined as follows:

1. State:
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The state is a total of 12 variables, which are the reaction force of each bearing (ASTB,
IB, MB8, MB7, and MB6) and the bending moment of the strain gauge attachment point
(SG1–7). According to the measurement method, the variables constituting the state can be
divided into three types: the directly measured reaction force (IB, MB8, MB7, and MB6),
directly measured bending moment (SG1–7), and indirectly calculated reaction force from
the bending moment using the moment equilibrium equation (ASTB).

2. Action:

Based on the previous state, three vertical displacement variables of IB, MB8, and MB3
are output through the deep neural network, as illustrated in Figure 13. The displacement
ASTB, which is not computed through the deep neural network, is 0 as the reference point
of the shaft, and the main bearings MB7 to MB4 are linearly aligned. Thus, a total of eight
vertical displacements (ASTB, IB, MB8, MB7, MB6, MB5, MB4, and MB3) are applied as
inputs of the next state by linear interpolation between MB8 and MB3.
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3. Next state:

The next state is the bearing reaction force and bending moment at the strain gauge
point that is obtained by applying the vertical displacement of each bearing (action) to the
shaft model and implementing the FE method.

4. Constraint:

The constraint is the allowable condition of each bearing according to the classification
regulations and manufacturer standard [29–31], the expression of which is equivalent to
Equation (9):

constraint =


θASTB ≤ 0.3mrad
Pmin ≤ Pb < Pmax

δMBi−δMB j
li−lj

= constant (i, j in MB number, i 6= j)

δIB > δMBa f t

, (9)

where θASTB is the relative slope angle of the ASTB, Pmin is the minimum allowable
bearing reaction force, Pmax is the maximum allowable bearing reaction force, Pb is the
bearing reaction force, l is the bearing position, δMB is the MB displacement, δIB is the IB
displacement, and δMBa f t is the aftmost MB displacement.

According to the classification rules, as illustrated in Figure 14, the relative slope angle
of the support point of the ASTB should be less than 0.3 mrad, and it is recommended that
the surface pressure of the ASTB and IB does not exceed the allowable value [29–31].
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Table 13 presents the allowable reaction force of the ASTB and the IB of the target
vessel, reflecting the classification rules.

Table 13. Allowable reaction force for bearings according to classification rules (ASTB, IB).

Max.
Permissible

Pressure
[MPa]

Bearing Area
(Diameter
×[m2]

([m×m])

Max.
Ppermissible

Load
[kN]

Min.
Permissible

Load
[kN]

ASTB 0.8 0.46
(0.50× 0.92) 368.0 -

IB 1.2 0.1335
(0.445× 0.30) 160.2 -

Furthermore, it is recommended by the manufacturer of the main engine of the target
ship that the surface pressure of the MBs does not exceed the allowable value. Table 14
presents the allowable reaction force of the MBs, reflecting the recommendations of the
main engine manufacturer.

Table 14. Allowable bearing reaction force according to recommendations of main engine manufac-
turer (MBs).

Max. Permissible Load [kN] Min. Permissible Load [kN]

MB8 336.0 0.0
MB7 336.0 17.0
MB6 336.0 17.0
MB5 336.0 17.0
MB4 336.0 17.0
MB3 336.0 17.0

According to the main engine manufacturer standard, the displacements of the MBs
should be arranged linearly. Moreover, the displacement of the MB at the end of the stern
should be located lower than the displacement of the IB [32].

5. Value

The value refers to learning while repeating epochs and acting in the direction with
the smallest difference from the actual measured value within minimum episodes. If deep
RL is performed using the measured value as it is, the bending moment with a relatively
large number of variables will have the greatest effect. However, as the criterion in the
classification rules is the allowable reaction force of each bearing, deep RL was performed
by applying a weight to the bearing reaction force [29–31]. In this study, the state variables
were divided into three types: the direct measurement reaction force, direct measurement
bending moment, and indirect calculation reaction force. As per Equation (10), weights of
0.55 for the directly measured bearing reaction force, 0.40 for the directly measured strain
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gauge bending moment, and 0.05 for the indirectly calculated bearing reaction force were
applied to increase the priority of the jack-up reaction force during the deep RL.

Value = −1 · [0.55 ·∑
(∣∣RJU − RJUmeasured

∣∣)+ 0.40 ·∑ (|MSG −Mmeasured|)
+0.05 ·∑ (|RATSB − RASTBcalculated|)]

(10)

where RJU and RJUmeasured are the predicted and measured reaction force of IB, MB8, MB7,
and MB6, MSG and Mmeasurement are the predicted and measured bending moments of
strain gages 1–7, and RASTB and RASTBmeasured are the predicted and calculated reaction
forces of the aft stern tube bearing.

The goal of deep RL is to maximize the value, but the smaller the value calculated in
Equation (10), the closer to the actual value, the closer the shaft deformation including the
reaction force and bending moment is predicted. Therefore, the weighted sum is multiplied
by –1 to predict the shaft deformation including the reaction force and bending moment
close to the actual value.

6. Memory

The memory stores the state, action, next state, and value at the end of an episode up
to the maximum memory size and performs back propagation to obtain the action that
maximizes the value using the batch that is extracted by sampling from memory, so that
the update is focused on the most recent value.

3. Results
3.1. Deep RL Results
3.1.1. Light Draft Condition (D1)

To understand the trends of the shaft deformation prediction results after performing
the deep RL inverse analysis under each draft condition, “offset” (a) (shaft deformation
predicted by deep RL execution as the basis of the measured value), “load” (b) and “bend-
ing moment” (c) (reaction force and bending moment calculated by applying the shaft
deformation to the finite element model), and “value” (d) (the difference between the
predicted and measured values, where a smaller value is closer to the measured value) for
all cases (Figure 15), the top 100 cases (Figure 16), and top 10 cases (Figure 17) are presented
according to the “value” in the light draft condition (D1).

According to Figures 15–17, which present the RL results of the light draft condition
D1, the reaction force converged to a certain range with the filtering from all cases to the
top 10 cases. The values in the top 10 cases (Figure 17d) were −1.23 to −1.22 and there was
no significant difference in the values of the 10 cases, but the shaft deformation prediction
(Figure 17a) did not converge beyond a certain level. Based on these results, various
margins of error may occur in the shaft assembly stage depending on the sag tolerance
of the engine bed plate, the deviation of the center of the MBs, and the tendency of the
operator when the shaft installation is inclined compared to the design [12]. Owing to
the above characteristics of the shaft, the fact that the reaction force and bending moment
values in the shaft deformation prediction converged to similar values while filtering from
all cases to the top 10 cases means that all shaft deformation predictions of the top 10
cases were valid. It is believed that the suggestion of the corresponding shaft deformation
prediction range can aid the operator in decision-making during the process.

The shaft deformation, reaction force, bending moment predictions, and values of
the top 10 cases according to the values in draft conditions D2–D5 are presented in
the following.
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3.1.2. Ballast Draft Conditions (D2 and D3)

The RL results of the ballast conditions D2 and D3 are depicted in Figures 18 and 19,
respectively. As in D1, the predicted values of the reaction force (Figures 18b and 19b) and
bending moment (Figures 18c and 19c) in the top 10 cases converged to a certain range.
The values of the 10 cases (Figures 18d and 19d) were −2.45 to −2.35 in D2 and −2.50 to
−2.30 in D3, and there was no significant difference among the values. It can be observed
that the shaft deformation of D3 with the APT full (Figure 19a; IB: −0.2 to −0.8 mm; MB8:
−1.6 to −3.2 mm; MB3: 0.2 to −1.9mm) was increased compared to the shaft deformation
of D2 with the APT empty (Figure 18a; IB: −0.6 to −1.7 mm; MB8: −3.0 to −5.3 mm; MB3:
−1.8 to −4.5 mm). As illustrated in Figure 5, it was estimated that the APT located at the
stern of the target ship was full and the load on the rear part of the shaft increased, so that
the shaft tended to increase relative to the ASTB.

3.1.3. Scantling Draft Conditions (D4 and D5)

The RL results of the scantling conditions D4 and D5 are depicted in Figures 20 and 21,
respectively. As with the other results, the predicted values of the bending moment
(Figures 20c and 21c) in the top 10 cases converged to a certain range. The values of the
10 cases (Figures 20d and 21d) were from −8.75 to −8.60 in D4 and from −5.95 to −5.65
in D5, and there was no significant difference among the values of the 10 cases. However,
it can be observed that the predicted value of the reaction force according to the shaft
deformation did not converge compared to the predicted reaction force values at other
drafts in the MB, and the value was estimated to be larger than the values at other drafts.
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A small difference was observed compared to the difference in the shaft deformation
depending on whether or not the APT was loaded in the ballast condition. However, the
shaft deformation of D5 with the APT full (Figure 21a; IB: 0.5 to 0.4 mm; MB8: −1.1 to
−1.6 mm; MB3: −0.1 to −0.9 mm) was increased compared to the shaft deformation of
D4 with the APT empty (Figure 20a; IB: 0.4 to 0.3 mm; MB8: −1.4 to −2.3 mm; MB3: −0.4
to −1.9 mm). As in the ballast condition illustrated in Figure 5, it was estimated that the
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APT located at the stern of the target ship was full and the load on the rear part of the shaft
increased, so that the shaft tended to rise relative to the ASTB.

However, as indicated in Figure 5c, compared to the ballast condition in which the
APT was located above the water surface and the load was applied to the rear of the
shaft, the scantling condition was as illustrated in Figure 5e, where the APT was mostly
immersed in the lower portion of the water surface, and the load acting on the back of the
shaft was estimated to have a small effect on the shaft deformation.

As a result of deep RL, the predicted reaction force, bending moment, and value
converged to an almost certain range in the top 10 cases. As indicated in Table 15, the
predicted shaft deformation occurred in the top 10 cases, but overall, as the load progressed
from a light load to a full load draft, and when the aft peak tank changed from empty to
full, the predicted shaft deformation tended to increase. Furthermore, the change in the
shaft deformation owing to the loading of the APT was larger in the ballast condition than
in the scantling condition.

Table 15. Shaft deformation prediction range.

IB MB8 MB3
Min. [mm] Max. [mm] Min. [mm] Max. [mm] Min. [mm] Max. [mm]

D1 −1.7 −1.0 −5.5 −4.0 −4.8 −3.0
D2 −1.7 −0.6 −5.3 −2.9 −4.5 −1.8
D3 −0.8 −0.2 −3.2 −1.5 −2.9 0.2
D4 0.3 0.5 −2.3 −1.4 −1.9 −0.5
D5 0.4 0.5 −1.6 −1.1 −0.9 0.0

3.2. Comparison of Predicted Results and Measurements

As a result of the shaft deformation prediction using the deep RL described in
Section 3.1, the reaction force and bending moment within a certain range were con-
verged in the top 10 cases. To compare these results with the actual measured values, the
predicted value at the time of the best value was extracted and analyzed, as illustrated
in Figures 22 and 23.

3.2.1. Comparison of Predicted Bearing Reaction Force with Measurements

The measured bearing reaction force, the reaction force in the shaft deformation
predicted by deep RL, and the maximum allowable load on the bearings are depicted
in Figure 22. As in Equation (11), where Error is the ratio of the difference between the
measured and the predicted reaction force to the allowable bearing load.

Error = (Measured− RL)/(Max. load) (11)

The calculated bearing reaction force in the predicted shaft deformation is similar to
the measured value. Therefore, the inverse analysis technique applying deep RL predicted
the shaft deformation in which the bearing reaction force was sufficiently reflected.

3.2.2. Comparison of Predicted Strain Gauge Bending Moment with Measurements

As illustrated in Figure 23, the calculated value of the strain gauge bending moment
at the predicted shaft deformation was predicted similarly to the measured strain gauge
bending moment.

In the scantling draft conditions D4 and D5, the predicted bending moment was
overall lower than the measured value from the strain gauge by more than 10 kNm overall.
However, the changes in the bending moment between strain gage positions predicted
by deep RL under the draft conditions are similar to the changes in the measured values.
Thus, the inverse analysis technique applied with deep RL predicted shaft deformation
that sufficiently reflects the bending moment of the strain gage position, but predicted an
overall low bending moment under some draft conditions.
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Figure 22. Comparison of predicted bearing reaction force with measurements of (a) D1, (b) D2, (c) D3, (d) D4, and (e) D5.
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Figure 23. Comparison of predicted strain gauge bending moment with measurements of (a) D1, (b) D2, (c) D3, (d) D4, and
(e) D5.

3.3. Comparison with Previous Research Methods

The measured values and ship information used for the deep RL in this study were
the same data as those in Lee [11]. The prediction results of the inverse analysis technique
using the experimental method of Lee [11] and the inverse analysis technique using deep
RL in this study were compared for each draft condition (D1 to D5). Figures 24 and 25
present the comparison results of the measured values under each draft condition, the
predicted values of the inverse analysis technique using deep RL, and the predicted values
of the inverse analysis technique using the experimental method (EM).

The comparison results of the reaction force prediction in Figure 24 demonstrate that
the reaction force predicted by the inverse analysis method using deep RL under all draft
conditions was close to the measured MB reaction force value. The MB reaction force
predicted by the inverse analysis method using the experimental method was significantly
different from the measured MB reaction force value.

Previous inverse analysis studies by Rao et al. [10] and Šverko [3] also exhibited
difficulties in predicting the MB reaction force. In particular, in the work of Šverko [3],
inverse analysis was conducted with a genetic algorithm using the MB reaction force and
strain gauge bending moment, as in this study, but it was difficult to predict the MB reaction
force. Lee [11] discussed the difficulty of predicting the reaction force of the MB when
predicting the shaft deformation because a difference in the reaction force occurs even with
a small offset difference owing to the characteristics of the MB with a large reaction force
influence coefficient. Nevertheless, the MB reaction force in the shaft deformation predicted
by the inverse analysis technique using deep RL was closer to the actual measured value
compared to the techniques used in the previous studies.
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Figure 24. Comparison of reaction force prediction of (a) D1, (b) D2, (c) D3, (d) D4, and (e) D5.
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Figure 25. Comparison of bending moment prediction of (a) D1, (b) D2, (c) D3, (d) D4, and (e) D5.

The comparison results of the bending moment prediction in Figure 25 demonstrate
that in the light and ballast conditions (D1–D3), the inverse analysis technique using
deep RL predicted values that were closer to the measured strain gauge bending moment
value than the values of the inverse analysis technique using the experimental method. In
the scantling conditions D4 and D5, the inverse analysis method using the experimental
method predicted the bending moment closer to the measured strain gauge bending
moment value than the inverse analysis method using deep RL.

The changes in the bending moment between strain gage positions predicted by
deep RL under the draft conditions are similar to the changes in the measured values.
The inverse analysis technique applied with deep RL predicted shaft deformation that
sufficiently reflects the bending moment of the strain gage position but predicted an overall
low bending moment under some draft conditions. Future research intends to advance the
inverse analysis algorithm by applying deep RL as a supplement.

4. Discussion

In this study, deep RL, which has been used in various fields in recent years, was
applied to the shaft inverse analysis technique to predict the shaft deformation according to
the hull deformation. Moreover, the prediction results and those of previously conducted
inverse analysis were compared and analyzed. The novelty of this study is the reasonable
prediction of the shaft deformation of the MB, which was difficult in previous studies owing
to the large reaction force influence coefficient and the resulting change in the reaction
force compared to other bearings. As a result, it is expected that accurate shaft deformation
prediction will be possible, while saving time and costs compared to existing methods.

In this study, the shaft deformation according to the draft was predicted by applying
the reaction force measured by the jack-up method, which is the simplest and most accurate
direct measurement method that can be used only when the shaft is stopped, and the
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bending moment measured by the strain gauge method, which is time consuming, and
can be used even when rotating the shaft, to the inverse analysis technique using deep
RL. Moreover, the effect of the hull deformation according to the draft change on the shaft
deformation was examined without shaft rotation; that is, in the static state. However,
unlike in the static shaft state, in the dynamic shaft state, it is difficult to measure the bearing
reaction force using a hydraulic jack, and the effects of the thrust that is generated from the
propeller during ship operation on the propulsion shaft system should be investigated.

Therefore, future research will include the performance of cross-validation of the
strain gauge method and the jack-up method to guarantee the accuracy of the strain gauge
method. Subsequently, the strain gauge method will be applied to the inverse analysis
technique using deep RL to predict the shaft deformation in the dynamic state of a vessel
in operation.

5. Conclusions

In this study, the bearing reaction force and bending moment were measured according
to the draft conditions in the static shaft of a 50,000 DWT medium-sized oil/chemical tanker
equipped with a high-efficiency engine. The inverse analysis technique was modeled using
deep RL, and the following results were obtained by predicting the shaft deformation from
the measured values under five draft conditions:

• Although the predictions of the shaft deformation of the top 10 cases were not exactly
the same, the predicted values of the reaction force and bending moment converged
within a certain range.

• For each draft condition, the predicted shaft deformation tended to increase as the
target ship progressed from a light load to a full load.

• Under the same draft condition, the shaft deformation tended to increase in the state
where the APT was full compared to the state in which the APT was empty. It was
estimated that the load of the APT located at the stern was applied on the rear part of
the shaft.

• A rise of the shaft owing to the loading of the APT occurred significantly in the ballast
condition compared to the scantling condition. It was estimated that this was because
the APT was located above the water surface and the load that was applied on the
rear part of the shaft was larger than that in the scantling condition.

• In this study, the shaft deformation that sufficiently reflects the measured MB reaction
force was predicted, which was difficult in previous inverse analysis studies owing to
the large reaction force influence coefficient.

• The aim of future research will be to confirm the validity of the strain gauge method
based on the static shaft deformation prediction applied in this study, so as to use the
method for dynamic shaft deformation prediction through the advancement of the
inverse analysis technique with deep RL.
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