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Abstract: Unmanned surface vehicles (USVs) have been extensively used in various dangerous
maritime tasks. Vision-based sea surface object detection algorithms can improve the environment
perception abilities of USVs. In recent years, the object detection algorithms based on neural networks
have greatly enhanced the accuracy and speed of object detection. However, the balance between
speed and accuracy is a difficulty in the application of object detection algorithms for USVs. Most of
the existing object detection algorithms have limited performance when they are applied in the object
detection technology for USVs. Therefore, a sea surface object detection algorithm based on You
Only Look Once v4 (YOLO v4) was proposed. Reverse Depthwise Separable Convolution (RDSC)
was developed and applied to the backbone network and feature fusion network of YOLO v4. The
number of weights of the improved YOLO v4 is reduced by more than 40% compared with the
original number. A large number of ablation experiments were conducted on the improved YOLO v4
in the sea ship dataset SeaShips and a buoy dataset SeaBuoys. The experimental results showed that
the detection speed of the improved YOLO v4 increased by more than 20%, and mAP increased by
1.78% and 0.95%, respectively, in the two datasets. The improved YOLO v4 effectively improved the
speed and accuracy in the sea surface object detection task. The improved YOLO v4 algorithm fused
with RDSC has a smaller network size and better real-time performance. It can be easily applied in
the hardware platforms with weak computing power and has shown great application potential in
the sea surface object detection.

Keywords: YOLO v4; sea surface object detection; reverse depthwise separable convolution; un-
manned surface vehicles

1. Introduction

In recent years, marine economy has played an increasingly important role in the
economic development of countries. With the increasing human maritime activities, un-
manned surface vehicles (USVs) have been widely used in military and civil activities. USV
is a kind of unmanned surface craft that can replace humans to perform many dangerous
tasks, such as reconnaissance, search, and navigation. It is equipped with various sensors
such as photoelectric system, navigation radar, and lidar. It performs environmental per-
ception through the optical vision images collected by the photoelectric camera. The task
of object detection is the key to realizing the perception of the sea surface environment,
and it is also the key technology to enhance the intelligent level of USV [1]. However, the
computing power of the unmanned system hardware platform is generally not high, thus,
it is of great significance to develop an object detection algorithm with both speed and
accuracy that can be applied in the task of USV for detecting sea surface objects.
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For the field of image recognition, traditional algorithms still have a good effect,
using the characteristics of thermal imaging pictures to judge the working status of the
angle grinder [2]. Before deep learning and object detection algorithms were combined,
the object detection requested manually designed features [3]. The failure to achieve
end-to-end detection leads to low detection speed. Besides, since the manually designed
features have no strong robustness for the diverse changes of input, it is difficult to apply
them to the complex sea environment perception task of USV. In recent years, with the
rapid development of computer hardware such as central processing unit (CPU) and
graphics processing unit (GPU), the computing power of computers has been greatly
enhanced. Moreover, deep learning software frameworks such as TensorFlow have made
neural network-based object detection algorithms gradually prevail and are widely used
in various practical engineering projects. Compared with traditional object detection
algorithms, the object detection algorithms based on neural networks are still developing
rapidly owing to their faster detection and more accurate detection results.

The development of neural network-based object detection algorithms is mainly
stimulated by the rapid growth of convolutional neural networks (CNN). Weight sharing
and local receptive field are the two important features of CNN, which not only reduce
the complexity of the network model, but also have scale invariance to input translation,
rotation, and scaling, thus contributing to the extensive application of CNN in the field
of computer vision. CNN is the backbone network of modern object detection algorithms
and is responsible for feature extraction. Its powerful feature extraction ability is the key
to modern object detection algorithms. Since AlexNet [4] won the championship in the
ImageNet image classification task competition, CNN began to develop rapidly in the field
of computer vision. Simonyan et al. [5] proposed the concept of block and constructed
a neural network model by reusing basic blocks. Each basic block contains a CNN layer,
pooling layer and an activation function. The CNN layer does not change the size of the
input, and the pooling layer performs downsampling on the input. Such structure provides
guidance for subsequent related work. Lin et al. [6] developed convolution with a kernel
size of 1, which can enhance the nonlinearity of the CNN model, reduce the number of
weights of the network model, and can be easily integrated with various CNN models.
Therefore, it has been widely used in the mainstream CNN models. The concept of branch
was proposed in the GoogLeNet series [7,8]. Convolutions with kernels of different size
were used to construct sparse connection, which not only reduces the number of weights,
but also improves accuracy. The ResNet proposed by He et al. [9] makes the CNN model
deeper without affecting the accuracy through a special structure, and it is one of the best
CNN structures. Xie et al. [10] proposed a highly modular ResNeXt model, which decreases
the difficulty of manually designing the network structure. DenseNet and CSPNet fuse the
information of the shallow feature maps and the deep feature maps in the CNN model, so
that the information of the shallow feature maps can be fully used [11,12].

With the rapid improvement of CNN’s detection abilities, neural network-based object
detection algorithms have also been rapidly developed. The mainstream neural network-
based object detection algorithms are mainly one-stage or two-stage. The two-stage series
algorithms [13–16] divide the process of object detection into two steps. The first step is to
generate some candidate frames containing the objects to be detected, and then to determine
the position and size of the object. The second step is to classify the candidate frames
and determine the category of the objects. Since the position regression and classification
of the objects are divided into two steps, the speed of two-stage algorithms is smaller
than that of one-stage series algorithms, but the accuracy is higher. Correspondingly, the
one-stage series algorithms [17–21] can directly output the bounding box coordinates and
categories of the object, which are more advantageous in terms of speed. Therefore, the one-
stage series algorithms have been widely applied in actual engineering projects. However,
the process of pursuing accuracy often brings the risk of reducing the detection speed.
In addition to a good backbone network, many components have been applied in the
object detection algorithms based on neural networks. The pyramid-shaped feature fusion
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structure was first proposed in [22]. This structure combines the information of feature
maps of different scales and levels to enhance the performance of the object detection
network model. Subsequently, the feature fusion network structure was further optimized
in [23–26] and becomes more complicated. In addition to the feature fusion structure, the
attention mechanism has also been increasingly applied to the field of object detection.
In [27,28], the attention mechanism was proposed and applied to the channel dimension of
the feature map. The network autonomously learns weights and allocates them to each
channel of the feature map. Such attention mechanism can be easily embedded in different
CNN architectures. Woo et al. [29] applied the attention mechanism to the channel and
spatial dimensions of the feature map. Although these components improve accuracy, they
also increase the amount of calculation.

Neural network-based object detection algorithms have been widely used in sea sur-
face object detection task. Many related research focuses on adding different components
to industry-leading object detection algorithms, or increasing the volume of the network
structure to achieve good detection results, improve accuracy or speed. Since the Squeeze-
and-Excitation (SE) module can be easily added to the CNN structure, it was added to
the backbone network of the object detection algorithms [30–32] to improve the network
model’s ability to detect ships on the sea. However, adding the SE module will cause a
decrease in the real-time performance of the network. Some studies improved the two-stage
series algorithms and applied them to a sea surface object detection task [33–36]. Although
good results have been achieved in accuracy, it is difficult to ensure satisfying real-time
performance, which is limited by the detection method of the two-stage series networks.
Li et al. [37] improved the backbone network of YOLO v3, and used the DenseNet structure
to enhance the stability of object detection. Jie et al. [38] modified the network classifier
based on YOLO v3, and introduced the Soft-NMS algorithm. Wang et al. [39] proposed
Path Argumentation Fusion Network to fuse the information of feature maps multiple
times to increase the ability of YOLO v3 for the detection of small objects. Liu et al. [40]
developed different methods of anchor setting to improve the ability of YOLO v3 to detect
sea surface objects without increasing the computational burden.

However, USVs have high requirements for the accuracy and speed of the object de-
tection algorithm. How to improve the speed and accuracy of the object detection algorithm
simultaneously is a major difficulty. In this paper, YOLO v4 was improved and applied
to the sea surface object detection task of USV. YOLO v4 is currently one of the optimal
object detection algorithms regarding the balance between speed and accuracy, thus it is
applicable to the sea surface object detection task. In the backbone network and feature
fusion network of YOLO v4, there are a large number of convolutional blocks stacked up by
convolutions with a kernel size of 1 and 3. Inspired by Depthwise Separable Convolution
(DSC) [41], we made some improvements to DSC and proposed RDSC. RDSC improved
the backbone network and feature fusion network of the original YOLO v4. Not too many
components are added to YOLO v4 or expand the network volume but the complexity
of the network model is reduced while ensuring accuracy, which is of great significance
for the sea surface object detection of USVs with weak performance of the computing
hardware platform.

The main contributions of this paper are as follows: (1) RDSC was applied to the
backbone network and feature fusion network of YOLO v4, which greatly improves the
detection speed of YOLO v4, and enhances accuracy at the same time. Experimental
verification was performed on the sea surface ship dataset and sea surface buoy dataset.
(2) Comparative experiments were conducted on DSC and RDSC, and the influence of DSC
and RDSC on YOLO v4 was analyzed. Besides, the weight distribution of the improved
network model was studied. Our proposed method reduces the number of weights on the
one hand and improves the utilization of weights on the other hand.
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2. The Backbone Network and Feature Fusion Network of YOLO v4
2.1. Backbone Network

The backbone network of YOLO v4 [20] fuses the Cross-Stage-Partial-connections
(CSP) structure [11] on the basis of Darknet53 [19], which is called CSPDarknet53. In the
structure of CSPDarknet53, each convolution block splits the input feature map into two
parts, A and B. Part A is retained, and part B passes through the residual network unit
(ResUnit), that is, the repeated residual network, and finally the part A and the convolution
results of part B are connected in the channel dimension. Splitting is the key to reducing
the number of weights. Moreover, since the shallow features are reused, the CSP structure
enhances the detection ability of the CNN framework. In CSPDarknet53, there are three
feature maps of different sizes as the input of feature fusion. After the Spatial Pyramid
Pooling (SPP) structure [42] is connected to the smallest feature map, the SPP structure can
increase the receptive field and separate the most important contextual features.

Figure 1 shows the structure of the convolution block in CSPDarknet53. There are
several such basic blocks in CSPDarknet53. First, after the input feature map is down-
sampled by Conv1, the length and width of the feature map are halved, and the number
of channels is twice the original number. Then the downsampling result generates two
branches through Conv2 and Conv3. It is worth noting that the number of channels in the
feature maps of these two branches has become half of the original number. The number
of channels in the feature map after Conv2 is halved, and then the feature map passes
through the residual unit (ResUnit), which greatly reduces the number of weights. Finally,
the feature maps of the two branches are connected in the channel dimension.
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Figure 1. Structure of the convolution block in CSPDarknet5.

Figure 2 shows the SPP structure in CSPDarknet53. The input feature map passes
through three maxpool layers with windows of different size, respectively, to generate
three output feature maps. These three output feature maps and the input feature map are
connected in the channel dimension to obtain the final result. Due to the small amount of
calculation of the pooling layer, the SPP structure will not bring burden to the network’s
computing speed, instead, it can expand the receptive field, separate contextual features,
and improve the model’s detection ability.
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2.2. Feature Fusion Network

Path Aggregation Network (PANet) is a feature fusion network in YOLO v4. PANet
has a similar structure with the Feature Pyramid Networks (FPN), and both use a feature



J. Mar. Sci. Eng. 2021, 9, 753 5 of 15

pyramid structure. However, in PANet, there are two different paths for feature fusion, that
is, the top-down path and the bottom-up path. In the CNN architecture, low-level feature
maps have more location information, and high-level feature maps have more semantic
information. The top-down path propagates high-level semantic information to the lower
level, and the bottom-up path spreads the location information to the higher level, so that
the utilization of the information of bottom layer can be improved. The two paths fully
fuse the information of different feature maps. In YOLO v4, there are three feature maps
for final prediction. The structure of the PANet in YOLO v4 is shown in Figure 3.
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In Figure 3, P5 to P3 are the top-down paths, propagating high-level semantic in-
formation to low-level. N3 to N5 are bottom-up paths, propagating low-level location
information to high-level.

3. Methods
3.1. RDSC in the Backbone Network

Convolution with a kernel size of 1 can enhance the nonlinearity of the network model
and reduce the number of weights of the network model. It has been widely used in the
framework of YOLO v4. In the ResUnit of the backbone network, each feature map must
be subjected to the operation of 1× 1 convolutions and 3× 3 convolutions. In order to
further improve the detection speed of the network model, based on the characteristics of
the backbone network of YOLO v4, RDSC was applied to the backbone network of YOLO
v4. RDSC is composed of 1× 1 convolutional layer, Batch Normalization (BN) layer, 3× 3
Depthwise Convolution layer and Mish activation function. Figure 4 shows the details
of RDSC.

Figure 4 shows the structural differences between RDSC and DSC. RDSC is connected
to 3× 3 convolution after 1× 1 convolution and uses the Mish activation function. The
RDSC structure is similar to the ResUnit in YOLO v4, which is a stack of 1× 1 convolution
and 3× 3 convolution, but the introduction of Depthwise Convolution significantly reduces
the number of weights. This is the main reason why the improved YOLO v4 can achieve
faster detection. Standard convolution kernel K ∈ Rm×m×n1×n2 , Depthwise convolution
kernel DK ∈ Rm×m×n1 , where m is the size of the convolution kernel, n1 is the number
of channels in the input feature map, and n2 is the number of channels in the output
feature map. The number of weights for the standard convolution kernel and Depthwise
convolution kernel are respectively c1 = m×m× n1 × n2, c2 = m×m× n1.The number
of weights of the standard convolution kernel is x times the number of weights of the
Depthwise convolution kernel, x = c1

c2
= n2. Figure 5 shows the comparison between the

original ResUnit and the improved ResUnit.
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It is worth noting that Figure 5a is the structure in the original YOLO v4, in which all
convolutions are ordinary convolutions, and the 3× 3 convolution in the RDSC module in
Figure 5b is Depthwise Convolution. The ResUnit is the major structure of CSPDarknet53.
A set of stacked 1× 1 convolution and 3× 3 convolution in the ResUnit was replaced with
1 RDSC. The use of RDSC greatly reduces the number of weights. If RDSC is decomposed,
it is still a 1× 1 convolution which is connected to a 3× 3 convolution. From a certain
perspective, this is a sparse version of CSPDarknet53.

3.2. RDSC in Feature Fusion Network

In the feature fusion network of YOLO v4, every two feature maps will undergo five
convolution operations after upsampling (or downsampling) and connection in the channel
dimension, and then the operations such as upsampling are repeated, so that the feature
map will continue to fuse with other feature maps. These five convolution operations
are composed of three 1× 1 convolutions and two 3× 3 convolutions, and each 1× 1
convolution is connected to a 3× 3 convolution. Under normal circumstances, the input of
the feature fusion network comes from the end of the backbone network, the number of
channels is relatively large, and the number of weights of convolution will also increase
exponentially. In order to reduce the number of weights of the network, four of the five
convolutions (two 1× 1 convolutions, and two 3× 3 convolution) were replaced with
2 RDSCs. Correspondingly, a more sparse feature fusion network was created. Figure 6
shows the details of the improved feature fusion network.
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It is worth noting that Figure 6a is the feature fusion structure in the original YOLO
v4, in which all convolutions are ordinary convolutions, and the convolution in the RDSC
module in Figure 6b is Depthwise Convolution (dotted line section).
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4. Results and Discussion
4.1. Introduction to USV and Datasets

Figure 7 shows the appearance of the USV developed by Harbin Engineering Univer-
sity. Figure 8 shows the high-precision photoelectric camera mounted on the USV. This
camera has a low-light-level camera and an infrared thermal imager and is equipped with
a servo system to achieve 360-degree pitch and rotation, so that full range of object tracking
can be realized. The low-light-level camera outputs video through the Ethernet network,
and performs control and status output through the serial interface. The images in the
SeaBuoys dataset were collected by the camera of USV in the autonomous course.
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Figure 9 shows the working process of the photoelectric camera. In the first step,
the servo system controls the orientation of the camera to the target. In the second step,
the photoelectric camera starts to collect video. In the third step, the computer runs the
target detection algorithm to output the coordinates of the target. Finally, the servo system
continues to track the target according to the output coordinates.
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Figure 9. Working block diagram of photoelectric camera.

The SeaShips dataset [43] contains a total of 31,455 images of ships in RGB format
(7000 published), involving 6 types of ships (ore carrier, bulk cargo carrier, general cargo
ship, container ship, fishing boat, and passenger ship). All images are of the same size,
1920× 1080, and were collected from the videos of real sea conditions. Figure 10 displays
the appearance of different types of ships in the dataset.
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Real engineering test was conducted on the USV vision hardware platform, and the
SeaBuoys dataset was collected and produced. The dataset contains 6 types of buoys, and
a total of 5751 images with a size of 1024× 576 in RGB format. The appearance and the
labels of the buoys are shown in Figure 11.
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4.2. Experimental Details

The software framework used in this experiment is TensorFlow 2.1.0-gpu version
(Google, Santa Clara, CA, USA), which was run under the Linux system. In terms of
hardware, the CPU is i7-9700 (Intel, Santa Clara, CA, USA), the GPU is a single NVIDIA
GeForce RTX 2080TI (NVIDIA, Santa Clara, CA, USA).

The method for the optimization of network training is the gradient descent method,
the weight decay coefficient is 0.0005, the impulse is 0.9, the size of the input image during
training is 416× 416, the size of the input image during test is 544× 544, and the learning
rate was set by two methods: cosine learning rate and warm-up [44]. The number of the
rounds of warm-up was set to 4. In the first 4 rounds of training, the learning rate was
increased by a small value to the initial learning rate of 0.0001, and then decreased to the
final learning rate of 0.000001 according to the law of cosine learning rate. The total number
of the rounds of training is 40. Figure 12 shows the changing trend of the learning rate
during training.
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4.3. Ablation Experiment in SeaShips

In total, 90% of the SeaShips dataset was classified into the training set, and the
remaining 10% was used as the test set. The original network structure of YOLO v4 and
the solution proposed in this paper were compared in this section. In order to compare the
experimental results of different schemes more comprehensively, on the basis of the scheme
proposed in this paper, the RDSCs of the residual unit were all replaced with DSCs. In
addition, every convolutional layer of YOLO v4 (including all 3× 3 convolutions and 1× 1
convolutions) was replaced with DSC or RDSC. Three indicators, mean Average Precision



J. Mar. Sci. Eng. 2021, 9, 753 10 of 15

(mAP), Frames Per Second (FPS), and the number of weights, were used for comparing the
above-mentioned schemes. The experimental results are as follows.

Table 1 shows the experimental results of YOLO v4 in 4 different schemes and the
original version of YOLO v4. The scheme proposed in this paper achieves the best results
regarding both mAP and FPS, which are 94.58% and 68FPS, respectively. Compared with
the performance of the original YOLO v4, mAP was increased by 1.78%, the detection
speed increased by 13FPS, and the number of weights also reduced by more than 40%.
Although the application of DSC in the ResUnit can also reduce the number of weights and
improve the detection speed, the mAP is smaller than the value in the scheme proposed in
this paper.

Table 1. Experimental results of different schemes under SeaShips.

Baseline Method mAP (%) FPS Number of Weights

YOLO v4

- 92.80 55 63,963,584
Ours 94.58 68 35,524,224

DSC in ResUnit 93.53 68 35,524,224
DSC in all layers 87.41 58 14,814,724

RDSC in all layers 90.00 53 14,814,724

In order to analyze the impact of RDSC on YOLO v4 more comprehensively, on the
basis of the original YOLO v4, all convolutions were replaced with RDSCs, and another
scheme was proposed for comparison, where all convolutions were replaced with DCSs.
It can be seen from the experimental results that the mAP of the former is higher, but
the FPS is smaller. Compared with the original version of YOLO v4, the two schemes all
have reduced mAP. It is worth noting that these two schemes have only about 41% of the
weights of the scheme proposed in this paper, but the detection speed is smaller. The reason
is that the scheme proposed in this paper replaces the stack of 1× 1 convolutions and
3× 3 convolutions with RDSCs, which reduces the number of weights without changing
the number of layers of the network, However, replacing all convolutions with DSCs
or RDSCs will bring additional convolutional layers and BN layers, thus, although the
number of weights is greatly reduced, the actual detection speed is decreased. Replacing all
convolutional layers of YOLO v4 with RDSCs will lead to a decrease in mAP, by contrast,
our method will increase mAP, indicating that for the same RDSC structure, different
application methods also have a great impact on the detection performance of the model.

In order to further analyze the experimental results, the weight files of YOLO v4 and
our scheme were analyzed, and the proportion of weights with values close to 0 to the total
number of weights was calculated. The weights that meet the 3 indicators were selected,
which are weights with values between −0.001 and 0.001, −0.005 and 0.005 and −0.01
and 0.01, and are expressed by |w| < 0.001, |w| < 0.005 and |w| < 0.01 in the following
analysis. Figure 13 shows the statistical results.
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It can be seen from Figure 13 that the proportion of the weights with |w| < 0.01,
|w| < 0.005 and |w| < 0.001 in our method to the total number of weights is reduced by
1.4%, 0.9% and 0.3%, respectively, compared with the results of YOLO v4. The small ratio
of the weights with values close to 0 indicates that our framework has a higher ratio of
weight utilization.

4.4. Ablation Experiment in SeaBuoys

Similar to the experiment conducted in SeaShips, 90% of the images in SeaBuoys were
used as the training set and 10% was used as the test set. The above-mentioned schemes
were compared. mAP, FPS and the number of weights were selected as the evaluation
indicators for ablation experiment. The experimental results in SeaBuoys are shown in the
table below.

It can be seen from Table 2 that in the experiment conducted in SeaBuoys, our method
still achieves the best experimental results. The mAP is 99.07% and the FPS is 68. The
values are increased by 0.95% and 13FPS, respectively, compared with the results achieved
by YOLO v4. The mAP of the schemes where all convolutions were replaced with RDSCs or
DSCs is also smaller than the value of YOLO v4. Our method achieved the best results on
both datasets, demonstrating that our method is applicable to sea surface object detection
task. Similarly, the weight files trained in the SeaBuoys dataset were also analyzed, and the
results are provided in Figure 14.

Table 2. Experimental results of different schemes under SeaBuoys.

Baseline Method mAP (%) FPS Number of Weights

YOLO v4

- 98.12 55 63,963,584
Ours 99.07 68 35,524,224

DSC in ResUnit 97.53 68 35,524,224
DSC in all layers 91.41 58 14,814,724

RDSC in all layers 93.23 53 14,814,724
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In Figure 14, the ratio of the weights with |w| < 0.01, |w| < 0.005 and |w| < 0.001 to
the total number of weights in our method is reduced by 1.1%, 0.8%, and 0.4%, respectively,
compared to the results of YOLO v4.

Table 3 shows the comparison between our proposed framework and several main-
stream object detection algorithms. The experimental results showed that our proposed
framework has good performance.
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Table 3. Experimental results of several mainstream object detection algorithms.

Model FPS mAP in SeaShips (%) mAP in SeaBuoys (%)

Faster RCNN + ResNet50 7 88.25 94.28
EfficientDet-D1 22 84.09 89.89
EfficientDet-D0 29 78.02 84.47

YOLO v4 55 92.80 98.12
Cross YOLO v3 [40] 45 92.85 98.25

Ours 68 94.58 99.07

In Table 3, different network models were experimentally compared under the condi-
tion of the same experimental equipment. Our method achieved the best results in terms
of detection speed and accuracy. Compared with the one-stage series algorithms, the two-
stage series algorithms such as Faster-RCNN have a relatively huge disadvantage in terms
of speed. This is caused by different detection methods, not because of the excessively
large network model and too many components.

In the ablation experiment, the detection speed and accuracy of the improved network
framework were analyzed. Compared with the original network, the proposed network
has greatly improved performance, especially the detection speed. In order to explore the
influence of RDSC on the network model in more detail, DSC was used to replace RDSC
for comparison, and DSC and RDSC were also applied to different positions of YOLO v4.
The experimental results of these schemes showed that the mAP and FPS of our method
reached the highest value. In the ablation experiment, the weight file was also analyzed.
The distribution of the weight value demonstrated that the utilization rate of the weight in
our method is higher.

Figure 15 shows the detection results of our methods under different marine envi-
ronments such as night and heavy fog. The results suggested that our method has strong
robustness for large and small objects under different ocean conditions. Figure 16 shows
the target detection results of the unmanned surface vessel in real sea conditions.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 13 of 16 
 

 

YOLO v4. The experimental results of these schemes showed that the mAP and FPS of our 
method reached the highest value. In the ablation experiment, the weight file was also 
analyzed. The distribution of the weight value demonstrated that the utilization rate of 
the weight in our method is higher. 

Figure 15 shows the detection results of our methods under different marine envi-
ronments such as night and heavy fog. The results suggested that our method has strong 
robustness for large and small objects under different ocean conditions. Figure 16 shows 
the target detection results of the unmanned surface vessel in real sea conditions. 

 
Figure 15. The detection results of our method in the dark or foggy environment. The left side of the 
picture is the detection result in the SeaShips dataset, and the right side is the detection result in 
SeaBuoys, which includes large or small targets. 

 
Figure 16. This is the detection result of the sea surface buoy in the real situation. The target in the 
picture is small and the light condition is poor, in this case, our method still performs well. The label 
of the buoy in the picture is buoy_green. 

  

Figure 15. The detection results of our method in the dark or foggy environment. The left side of
the picture is the detection result in the SeaShips dataset, and the right side is the detection result in
SeaBuoys, which includes large or small targets.



J. Mar. Sci. Eng. 2021, 9, 753 13 of 15

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 13 of 16 
 

 

YOLO v4. The experimental results of these schemes showed that the mAP and FPS of our 
method reached the highest value. In the ablation experiment, the weight file was also 
analyzed. The distribution of the weight value demonstrated that the utilization rate of 
the weight in our method is higher. 

Figure 15 shows the detection results of our methods under different marine envi-
ronments such as night and heavy fog. The results suggested that our method has strong 
robustness for large and small objects under different ocean conditions. Figure 16 shows 
the target detection results of the unmanned surface vessel in real sea conditions. 

 
Figure 15. The detection results of our method in the dark or foggy environment. The left side of the 
picture is the detection result in the SeaShips dataset, and the right side is the detection result in 
SeaBuoys, which includes large or small targets. 

 
Figure 16. This is the detection result of the sea surface buoy in the real situation. The target in the 
picture is small and the light condition is poor, in this case, our method still performs well. The label 
of the buoy in the picture is buoy_green. 

  

Figure 16. This is the detection result of the sea surface buoy in the real situation. The target in the
picture is small and the light condition is poor, in this case, our method still performs well. The label
of the buoy in the picture is buoy_green.

5. Conclusions

Based on the engineering application of real-time sea surface object detection of USVs,
the network structure of YOLO v4 was improved in this paper, and experiments were
conducted in SeaShips and SeaBuoys datasets. The mAP values in the two datasets reached
94.58% and 99.07%, respectively, and the FPS increased by more than 20%. The experimental
results revealed that the improved YOLO v4 has great potential in the sea surface object
detection task. Compared with the original version of YOLO v4, the improved YOLO
v4 increased mAP and FPS in both datasets, achieving a good balance between speed
and accuracy. RDSC was proposed. Compared with ordinary convolutional networks,
RDSC greatly reduced the number of weights, so we greatly increased the detection
speed of YOLO v4, and the structure of YOLO v4 was carefully designed. We tried to
replace all convolutions of YOLO v4 with RDSC, but the result was not ideal. This is
another contribution of our work. Use RDSC in the right place. The overall structure of
YOLO v4 was retained. This allows our scheme to improve the accuracy and speed of
detection without adding additional components to the original network framework. In
the future, we hope that our method can have a wider range of applications, such as some
other engineering backgrounds, not only limited to sea targets, we hope to have good
performance in more datasets.
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