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Abstract: In this technical note, a geostatistical model was applied to explore the spatial distribution
of source rock data in terms of total organic carbon weight concentration. The median polish kriging
method was used to approximate the “row and column effect” in the generated array data, in
order for the ordinary kriging methodology to be applied by means of the residuals. Moreover, the
sequential Gaussian simulation was employed to quantify the uncertainty of the estimates. The
modified Box–Cox technique was applied to normalize the residuals and a cross-validation analysis
was performed to evaluate the efficiency of the method. A map of the spatial distribution of total
organic carbon weight concentration was constructed along with the 5% and 95% confidence intervals.
This work encourages the use of the median polish kriging method for similar applications.

Keywords: Geostatistics; rock samples; residuals; hydrocarbons; uncertainty; reservoir; Tuscaloosa
marine shale

1. Introduction

Onshore and coastal petroleum exploration commonly involves rock samples from
different locations, geological formations and depths, which are analyzed for their mineral
composition and organic properties. Geostatistics can be used to spatially analyze these
properties and provide their spatial distribution in terms of mathematical principles of
interdependence. In petroleum resources evaluation studies, geostatistics in the form
of kriging have traditionally been used successfully [1–5]. Over the last decades, multi-
point techniques, simulations and seismic inversion methods have been developed and
successfully applied in reservoir modeling [6,7].

In this work, we present a combined methodology for spatial analysis of the distri-
bution of total organic carbon weight concentration (TOC wt%) from rock samples. The
weight percentage of organic carbon in source rocks represents the concentration of organic
material. A 0.5% value by weight of TOC is the minimum allowed for an effective source
rock sample. Besides, a value of 2% is considered the minimum for shale gas reservoirs.
Values greater than 10% are also probable. However, such values indicate the likelihood
that kerogen, rather than other types of hydrocarbons, fills the pore space [8].

The median polish method (MEP) combined with the sequentially Gaussian simulation
(SGS) is applied to estimate the spatial distribution of the available dataset in an attempt
to propose an alternative method to previous approaches for mapping TOC wt% [9]. In
addition, it can designate areas that would be potentially under environmental risk during
prospective explorations [10]. MEP approximates large scale variations by iteratively
removing the median from the rows and columns of the gridded data. The determined
residuals can be analyzed with the kriging method by means of the variogram to study the
small-scale spatial structure variation of the study variable and to be combined with the
estimated median polish trend [11,12]. MEP is widely used in geostatistical applications
to overcome bias as well as the influence of extreme values [13,14], while SGS is used in
geostatistical simulation applications in various disciplines [15–17]. However, the two
methods have never been combined for a specific application, especially in the discipline of
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hydrocarbons. A similar work involving spatial polycyclic aromatic hydrocarbons (PAHs)
analysis using indicator kriging and SGS has been successfully conducted [18], suggesting
that such approaches can be useful for the spatial analysis of data related to hydrocarbons.

2. Materials and Methods

The data evaluated were from subsurface Mesozoic rock samples from the eastern
onshore Gulf Coast Basin (mainly Mississippi and Louisiana), USA [19]. Specifically,
561 samples were collected by the USGS from 2011–2017 to investigate potential undis-
covered petroleum resources. Part of the data from the aforementioned dataset was used
in a recent study and showed that most samples were derived from a common mixed
marine terrigenous source rock [20]. In this work, the determined TOC wt% was geostatis-
tically evaluated in terms of its mean value at each sampling location. Thus, 132 unevenly
distributed samples were used to perform the spatial analysis of TOC wt% in the study
area (Figure 1). The sample was decomposed into trend and residuals according to the
principles of MEP method. The residuals were examined to see if they followed a normal
distribution, and a modification of the classic Box–Cox technique [21–23] was implemented
to transform them.

Figure 1. Spatial distribution of sampling points and geological formations (created in ArcGIS v10).

2.1. Median Polish Kriging (MEPK)

Let Z(s) be a random field of sample size N. A mean structure can be obtained by
additive decomposition of the row and column effect to define irregular gridded spatial data
in which grid spacings do not have to be equal in either the horizonal or vertical directions:

u(si) = a + rk + cl , si = (xl , yk) (1)
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where rk and cl are the row and column effects, respectively, and a is a constant. The
nodes of an overlaid rectangular grid are allocated to the data positions if they are
irregularly spaced.

A method called median polish has been proposed to estimate the additive effects
given above using median theory in order to avoid bias and the impact of extreme val-
ues. [11]. Median polish is applied by recurrent mining until convergence of the row and
column medians by means of a convergence criterion. It gives new estimators of a, rk, cl
which we write as ã, r̃k, c̃l . Thus, the initial spatial data are defined as:

Z(si) = ã + r̃k + c̃l + R(si) (2)

where R(si) corresponds to the residual term which is trend free to consent the application
of ordinary kriging (OK),

R̃(s0) =
N

∑
i=1

λi R(si) (3)

For s = (x, y)′ in the area bounded by the lines that connect the four nodes: (xl , yk)
′;

(xl+1, yk)
′; (xl , yk+1)

′; (xl+1, yk+1)
′, subject to xl < xl+1 and yk < yk+1, defines the

planar interpolant,

ũ(s) ≡ ã + r̃k +

(
y− yk

yk+1 − yk

)
(r̃k+1 − r̃k) + c̃l +

(
x− xk

xk+1 − xk

)
(c̃k+1 − c̃l) (4)

Details for the corresponding extrapolation equation can be found in Martínez et al. [13].
Thus, the median polish kriging predictor is provided from Equation (5),

Z̃(s0) ≡ ũ(s0) + R̃(s0). (5)

Furthermore, the median polish kriging variance is defined by the following equation:

σ2
MP(s0) = γ′Γ−1γ−

(
1′Γ−1γ− 1

)2
/
(

1′Γ−11
)

(6)

where 1 is an n × 1 vector of ones, γ the variogram vector of the residuals between sj
(observation point) and s0 (estimation point). Γ is the variogram matrix of the residuals,
(N0 + 1)× (N0 + 1), at the observation locations [11,13]. The decomposed median predic-
tors are not considered in the MEP variance error estimation. Therefore, to calculate the
uncertainty of estimations in a reliable way, SGS is applied.

2.2. Sequential Gaussian Simulation

The sequential Gaussian simulation (SGS) is a stochastic approach for producing
equiprobable realizations (maps) of spatial distribution of a variable on a grid by means
of kriging methodology. SGS fundamentals are based on drawing from a collection of
conditional distributions of univariate realizations. The conditional cumulative distribution
function (CDF) is defined as,

F(s1|N ) = F(s1|N ) . . . F(sN |N − 1 ) (7)

SGS is obtained using kriging estimates, where each simulated map is a realization
of a multivariate normal process. For conditional SGS, the kriging variance at sampling
locations is zero to ensure that the only possible drawings are those of the sampled values.
SGS is applied in terms of kriging estimator by means of a linear combination of random
variables at location si to estimate the value at location s0 [4,18]. OK method applies that
z(s) and z ∈ Z is a random function with a constant but unknown mean. The OK estimate
ẑ(s0) at s0 is calculated based on a weighted sum of the data,

ẑ(s0) = ∑{i: si∈S0}
λi zi(si). (8)
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The weights λi depend on the variogram model γz(r) [24] and are calculated by mini-
mizing the mean square estimation error conditionally on the zero-bias constraint [11]. In
detail, the following (N0 + 1)× (N0 + 1) linear system of equations provides the weights λi,

∑{i: si∈S0}
λi γz (si, sj) + µ = γz (sj, s0), j = 1, . . . , N0 (9)

∑{i: si∈S0}
λi = 1 (10)

where N0 is the set of points included in the search neighborhood of s0,γz( si, sj) and
γz( sj, s0) are the variograms between two observation points si,sj, and between sj and the
estimation point s0, respectively, by means of a theoretical variogram model. The term
µ corresponds to the Lagrange multiplier imposing the no-bias constraint. Equation (10)
implements the zero-bias condition.

Kriging methods provide the estimation of a variable ẑ(s0) accompanied by the
associated uncertainty, i.e., corresponding estimation’s error variance. The error variance
of OK is independent of data values, is zero at monitoring locations and increases away
from them, depends on the data configuration, i.e., complexity of the random field spatial
variability as modeled by the variogram, while two identical spatially distant pairs of
sampled points have the same variance independently of their values [25].

The SGS algorithm steps are outlined below as follows [18]:

(1) Examine if the original data follow normal distribution and apply transformation.
(2) A node at location s is randomly selected that has not been yet simulated.
(3) Apply kriging estimation at ẑ(s0) and calculate the corresponding kriging vari-

ance σ 2
E(s0).

(4) Draw a random value from the normal distribution N
(
ẑ(s0), σ 2

E(s0)
)
, which corre-

sponds to the simulated value.
(5) The newly simulated value is added in the dataset and the process moves to an-

other location.
(6) Repeat the procedure above until there are no locations left.
(7) If needed, back transformation to the original data scale applies to all values.

The main advantage of using geostatistical simulation is that any realization has the
same variogram as the data. This is due to the sampling that applies from the conditional
distribution during the simulation process [24].

2.3. Variogram

The experimental variogram of the transformed data was first calculated using the
method of moments,

γ̂Z(rk) =
1

2N(rk)

N(rk)

∑
i,j=1

{[
Z(si)− Z(sj)

]2} (11)

where N(rk) denotes the number of point pairs within class rk. The theoretical variogram
fit was held using the Spartan variogram function considering the model parameters θ ,

γZ(r; θ) = CZ(0; θ)− CZ(r; θ) (12)

The Spartan function is defined as follows [22,26,27]:

CZ(h; θ) =



η0 e−hβ2

2π
√
|η2

1−4|

[
sin (hβ1)

hβ1

]
, for |η1| < 2, σ2

z = η0

2π
√
|η2

1−4|
η0 e−h

8π , for η1 = 2, σ2
z = η0

8π
η0 (e−hω1 −e−hω2 )

4π(ω2−ω1) h
√
|η2

1−4|
, for η1 > 2, σ2

z = η0

4π
√
|η2

1−4|

(13)



J. Mar. Sci. Eng. 2021, 9, 717 5 of 11

where η0 is the scale factor, η1 is the rigidity coefficient, β1 = |2− η1|1/2/2 is a dimen-
sionless wavenumber, β2 = |2 + η1|1/2/2 and ω1,2 = (|η1 ∓ ∆|/2)1/2, ∆ =

∣∣η2
1 − 4

∣∣1/2,
h = r/ξ is the normalized lag vector, ξ is the correlation length, h =|h| is the distance
norm and σ2

z is the variance. The Spartan family models depending on η1coefficient values
have a characteristic wave behavior near the sill that can capture important increments
or decrements of the experimental variogram values. Therefore, this characteristic can
provide optimum fitting.

The geostatistical analysis using the proposed methods and tools was performed in
Matlab® environment developing original codes.

2.4. Cross-Validation

The proposed method performance is assessed using a leave one out cross-validation
procedure. The estimated values are compared with the corresponding observations using
a series of performance metrics. The bias error, the mean absolute error and the linear
correlation coefficient were examined:

Bias (optimum value close to 0, positive or negative sign denotes overestimation
or underestimation):

εBIAS =
1
N ∑N

i=1 ẑ(si)− z(si) (14)

Mean absolute error (MAE) (optimum value close to 0):

εMA =
1
N ∑N

i=1|ẑ(si)− z(si)| (15)

Linear correlation coefficient (optimum value close to 1):

R =
∑N

i=1

[
z(si)− z(si)

] [
ẑ(si)− ẑ(si)

]
√

N
∑

i=1

[
z(si)− z(si)

]
2

√
N
∑

i=1

[
ẑ(si)− ẑ(si)

]
2

(16)

The term ẑ(si) is the estimation at point si, z(si) the observed value, z(si) the spatial
average of the observation data and ẑ(si) the spatial average of the estimations [28].

2.5. Methodology Flowchart

The proposed methodological steps described previously in detail are summarized
in a flowchart (Figure 2) presenting the basic steps of the combined geostatistical tools
applied to provide a reliable map with the spatial distribution of TOC wt% and the relative
uncertainty of estimations.
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Figure 2. Methodology flowchart of the combined median polish (MEP) kriging and sequential
Gaussian simulation (SGS) geostatistical approach (CDF stands for cumulative distribution function).

3. Results

In this technical note, we apply a robust method for generating maps of TOC wt%
using non-uniformly distributed monitoring stations and consider the joint application
of MEPK with SGS. The sample data (Figure 3) are aligned with the nearest grid nodes
according to the methodology, receiving new coordinates that correspond to the grid
lines. In the case of several data aligned to a grid node, the median substitutes the data
values [14].

The advantage of MEP is the robust fitting of a smooth and flexible trend surface. The
MEP procedure first decomposes the data into trend and residuals, as explained in the
methodology section. It then tests whether the residuals follow a normal distribution. The
characteristics of the sample are shown in Table 1. The residuals’ skewness is equal to
1.68 and kurtosis to 4.86. Thus, TOC wt% residuals do not follow the normal distribution
in order for OK and SGS to be suitable for application. Therefore, the modified Box–Cox
technique [22,23] was applied to transform the residuals. The metrics are now improved to
s = 0.02 and kurtosis, k = 3.26, very close to the desired Gaussian distribution metrics (s = 0
and k = 3.00). The transformed residuals’ histogram is presented in Figure 4.
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Figure 3. Distribution of spatial measurements on a rectangular grid.

Table 1. Statistical measures of TOC wt% data. zmin : minimum value; zmax : maximum value; z0.50 :
median; mz : mean; σ̂z : standard deviation; ŝz : skewness factor; k̂z : kurtosis factor.

zmin mz zmax
^
σz

^
sz

^
kz

z0.50

0.05
wt%

0.82
wt%

5.24
wt%

0.80
wt% 2.80 13.74 0.67

wt%

Figure 4. Transformed residuals values.
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The residuals’ spatial dependence structure was fitted using the Spartan model
(Figure 5). The calculated variogram parameters are σ2

z = 1.38, η1 = −1.96, ξ = 0.17
and nugget c = 0.23 wt%2.

Figure 5. Theoretical variogram fitted on the experimental variogram of the measurements. Stars
denote the experimental variogram and the continued black line the Spartan model fit.

The MEPK method prediction error by means of cross-validation error (after back
transformation of residuals) is presented in Table 2. The cross-validation shows that errors
between estimated and measured values are close to zero and significantly correlated.
Thus, the method provides satisfactory estimation capability.

Table 2. Leave one out cross-validation estimates of the median polish kriging method.

MAE
(TOC wt%)

BIAS
(TOC wt%) R

0.10 0.03 0.94

Furthermore, in this work, the mean of the TOC wt% simulated estimations (Figure 6)
is presented from MEPK using SGS, while error maps (uncertainty) were provided using
the 95% (Figure 7) and 5% (Figure 8) confidence intervals of the CDF of the simulations. The
provided maps were produced after back-transforming estimations to the original scale.

The spatial analysis of the TOC wt% shows the areas of the case study that have
concentrations close to 2%, taking into account the associated uncertainty, which can
be further investigated employing information from petroleum geology properties. The
results of this work, in comparison to previous studies that employ partial information
from the same dataset [20,29], are in direct agreement in terms of the designated locations
that have the highest TOC wt% potential. The data used in those works were located
in the core of the measurements’ location, using geochemical and spatial analysis for
hydrocarbon resources evaluation. Overall, similarly to previous works, the produced
map highlights localized areas of high-quality source rock properties (TOC wt%) but of
poor source rock properties on average. However, according to [29], additional work
to map areas and better zones that may provide an improved potential for recoverable
hydrocarbons should apply. Therefore, this work exploits the entire dataset [19], in terms
of the mean TOC wt% in variable geological formations, to spatially map, by means of
an efficient geostatistical methodology, the average TOC wt% potential in the study area.
New locations forming zones of significant TOC wt% are presented at the south-west of the
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study area. Additionally, this research, compared to previous works [29], contributes, apart
from the more detailed and high accuracy spatial analysis, to the uncertainty estimation of
the spatial analysis by applying a simulation method that presents possible realizations of
the TOC wt% providing the 5% and 95% bounds of the geostatistical method predictions
uncertainty. The estimation of uncertainty can help to an integrated analysis of TOC wt%
spatial distribution.

Figure 6. Spatial distribution of the mean TOC wt% values of the cumulative distribution function at
each estimation point.

Figure 7. Spatial distribution of the 95% percentile TOC wt% values of the cumulative distribution
function at each estimation point.
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Figure 8. Spatial distribution of the 5% percentile TOC wt% values of the cumulative distribution
function at each estimation point.

SGS is a robust stochastic simulation method that provides realizations that represent
spatial patterns without smoothing effect. It exploits the capability to calculate the condi-
tional probability of a univariate random variable given only a number of conditioning
values. SGS realizations can be applied to represent all the possible spatial distribution pat-
terns of the study variable and model the estimations uncertainty in TOC wt% evaluation.

4. Conclusions

In summary, MEPK can be characterized as a hybrid method that applies in a two-
dimensional surface to estimate spatial data distribution. It combines a geostatistical
approach, by means of kriging methodology, and a row and column effect analysis. This
work suggests that MEPK combined with SGS can model the spatial distribution of TOC
wt% and provide satisfactory estimation metrics and uncertainty quantification. The
main advantage of this approach is the application of a robust trend surface based on
the statistical properties of the sample. Moreover, depending on the coefficient values,
the Spartan variogram model can capture important increments, or decrements, of the
experimental variogram shape and provide optimum fitting. Finally, this study presents an
alternative methodology for the geostatistical analysis of hydrocarbon-related spatial data.
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