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Abstract: In saturated fine-grained soil, the development and dissipation of excess pore water
pressure (EPWP) during and after pile jacking change the effective stress of the surrounding soil, and
thereby affect the pile set-up. In this paper, the entire process of steel-pipe pile jacking (the installation
process and the subsequent consolidation phase) is simulated with three-dimensional (3D) finite
element models, considering the pore water effect. After the model verification, a comprehensive
numerical analysis was performed to investigate the development and dissipation of EPWP, changes
in soil stress state, and the side shear resistance of pile with time after installation. On this basis, not
only the influence of ks, cu, E, and OCR on EPWP generation during pile jacking and subsequent
soil consolidation effect after pile installation but also the correlation between pile set-up and EPWP
dissipation is investigated.

Keywords: pile jacking; consolidation effect; saturated fine-grained soil; excess pore water pressure;
pile set-up; side shear resistance; hybrid Lagrangian–ALE method

1. Introduction

The environmental condition of the construction site is an important reference for the
selection of steel-pipe pile construction methods. The pile jacking-in method is suitable for
urban areas and public buildings with high noise and vibration requirements. However,
the installation of pile plays an important impact on not only the safety of adjacent struc-
tures [1] but the penetration resistance and pile set-up [2]. The installation effects include
the following three steps: the development of excess pore water pressure (EPWP), the dissi-
pation of EPWP, and soil aging [3,4]. In cohesive soils, the first two steps are predominant
and play roles on the pile set-up by changing the effective stress of the surrounding soil.
However, soil aging is predominant in granular soils, and pile set-up has no dependence
on the stress state of surrounding soil. Taking advantage of the effect of pile set-up during
pile design can offer substantial benefits by reducing one or a combination of pile lengths,
pile sections, and the size of driving equipment [3]. Thus, in saturated fine-grained soil, it
is essential to study the impact of the development and dissipation of EPWP on pile set-up
during history of jacked pile.

To date, previous studies on the time histories of EPWP during and after pile installa-
tion mainly focus on field research through piezometers placed at special locations [5–9].
It is generally acknowledged that a positive EPWP field will exist along the pile shaft
and ahead of the pile tip during pile installation, which decreases effective stress of the
surrounding soil; after pile installation, the dissipation of EPWP increases effective stress
of soil immediately around the pile, and the pile set-up predominantly occurs. However,
some studies [6,10,11] have indicated that the negative EPWP, which is counterproductive
to the pile set-up, occurs near the ground surface and at a certain depth below the pile tip.
The negative EPWP induced by pile jacking is easily ignored in the field data due to the
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limited precision and quantity of piezometers. Besides, the influence of geotechnical soil
parameters on the time history of EPWP and pile set-up is not well understood through
field trials.

The abovementioned drawbacks in field measurements can be well solved by the finite
element method (FEM). Simulating the pile installation process by FEM usually encounters
mesh distortion, frictional contact, and elastoplasticity [12]. To simulate the entire pile
installation process, a pre-bored pile or cavity expansion theory is adopted to establish the
pile installation process avoiding excessive mesh distortion, and the theory of consolidation
is adopted to model the dissipation of EPWP after pile installation. Some previous studies
resort to the assumption of a pre-bored pile with the surrounding in situ stresses remaining
unchanged, then an additional penetration is applied [13,14]. The drawback is that pre-
bored modeling cannot capture the generated EPWP of the soil immediately around
the pile shaft. Therefore, based on the phenomenon that the soil is radially displaced
predominantly outwards at greater pile jacking depth, some studies simulate the pile
installation process by integrating FEM with cavity expansion theory [15–17]. However,
the application of cylindrical expansion takes no account of the effect of the ground surface
and the pile tip, and the EPWP generated due to pure shear. The above shortcomings
can be partly overcome by imposing an incremental vertical displacement on the pile
after the volumetric cavity expansion phase, which can generate EPWP around the pile
tip [18–20]. The inherent drawback of cavity expansion theory is that it cannot simulate the
pile installation from ground surface. Besides, the strain paths followed by soil elements
and the pile –soil frictional interaction cannot be correctly captured with the application of
cylindrical expansion [21].

The coupled Eulerian–Lagrangian (CEL) method or arbitrary Lagrangian–Eulerian
(ALE) method has been applied to simulate pile installation from ground surface to the
desired depth [22–25]. In these two methods, a Lagrangian phase is firstly performed, in
which the element nodes move temporarily with the material; in the second phase, the
displaced mesh at the Lagrangian phase is remapped into an arbitrary undistorted mesh
for ALE formulation, or back to its initial mesh for Eulerian formulation. However, the
ALE or CEL method is limited to total stress analysis in commercially available software,
and a user subroutine is needed to consider the pore water effect [26–29], which requires
outstanding programming skills [30]. Given this situation, a hybrid Lagrangian–ALE
approach, which combines the advantages of the Lagrangian and ALE or CEL approaches,
comes into view [10,31,32]. This method is applied to simulate the undrained pile jacking in
saturated fine-grained soil, which can not only solve the mesh distortion near the pile–soil
interface, but also obtain the EPWP response of far field soil around pile.

The entire process of steel-pipe pile jacking (the installation process and the soil con-
solidation phase after installation) in saturated fine-grained soil is simulated in this paper
with the hybrid Lagrangian–ALE approach based on a field trial reported by Roy et al. [33].
The pile jacking from the ground surface to the desired depth considering the pore water
effect via the Biot consolidation theory is simulated by establishing three-dimensional (3D)
finite element models. The saturated soil is set to be undrained during pile installation and
drained after installation. Results from the finite element modeling include the develop-
ment and dissipation of EPWP, changes in the stress state of the surrounding soil and pile
shaft resistance with time after installation. On this basis, not only the influence of ks, cu, E,
and OCR on EPWP generation during pile jacking and subsequent soil consolidation effect
after pile installation but also the correlation between pile set-up and EPWP dissipation is
investigated.

2. Numerical Model

Numerical modeling of the pile installation process into saturated soil usually encoun-
ters nonlinear material behavior, pore water effect, and pile–soil frictional interaction, as
well as large mesh deformation. The solutions for the above problems have been described
in detail by Dou et al. [10], and a brief explanation will be provided in this article.
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2.1. Soil Model Description

The cap model, which is based on the idea of Drucker [34], is applied to capture the
non-linear behavior of the soil constituent [10,32,35]. One of the major advantages of the cap
model over other classical pressure-dependent plasticity models such as the Drucker-Prager
and Mohr–Coulomb models is the ability to control the amount of dilatancy produced
under shear loading. Another advantage is the ability to model plastic compaction. As an
inviscid model, the cap model cannot capture time-dependent soil behaviors, such as strain
rate effect, creep, and stress relaxation. Besides, the cap model cannot take into account the
strain softening of structural soft soils [36].

The plastic yield function f (i.e., to the yield surface) is adopted in the form of the
inviscid cap model based on the formulations of Sandler and Rubin [37]. The yield surfaces
are comprised of a tension cut-off surface fT, a movable cap surface fC, and a shear failure
surface fE, as shown in Figure 1, which are defined by:

fE =
√

J2 − α + γ exp(−βI1)− θ I1

fC =
√

J2 − 1
R

√
[X(κ)− L(κ)]2 − [I1 − L(κ)]2

fT = I1 − (−T)
(1)

where

J2 is the second invariant of the deviatoric stress tensor,
I1 is the first stress invariant,
α, γ, β and θ are the material parameters of the failure surface [38], which can be defined
by α = 6c cos ϕ√

3(3−sin ϕ)
and θ = 2 sin ϕ√

3(3−sin ϕ)
,

c, ϕ are the frictional and cohesive strengths of the material,

R is the curvature of the hardening cap, which can be defined by R =
√

6(1+v)
1−2v ,

v is the Poisson’s ratio,
X(κ) is the intersection of the cap surface with the I1 axis,
L(κ) is the value of I1 at the location of the start of the cap,
κ is the I1 coordinate of the intersection of the cap surface and the failure surface,
T is the maximum allowable hydrostatic tension.
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Figure 1. Static yield surface of cap model [10].

An exponential decay shear failure surface fE is proposed to predict the dilatancy, and
given the material parameter γ = β = 0, fE will degenerate into the Drucker–Prager surface.

X(κ) = κ + R[α− γ exp(−βκ) + θk] (2)

L(κ) =
{

κ if κ > 0
0 if κ ≤ 0

(3)

The hardening parameter κ is related to the plastic volume change ε
p
v through the

hardening law. The hardening law permits the cap surface to contract until the cap
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intersects the failure envelope at the stress point, and the cap remains at that point. By
allowing the stress to migrate back onto the cap, further dilation is avoided.

ε
p
v[X(κ)] = W{1− exp[−D(X(κ)− X0)]} (4)

where

W is related to the porosity n and the degree of saturation Sr, W = n(1− Sr) [38], which
represents the void fraction of the uncompressed sample,
D governs the slope of the initial loading curve in hydrostatic compression, and
X0 is thought of as the preconsolidation hydrostatic pressure, which is the product of OCR
and the overburden pressure σz (i.e., X0 = OCR·σz) [38].

Mathematically, the total strain increment dεij is assumed to be the sum of the elastic
strain increment dεe

ij and the plastic strain increment dε
p
ij. According to the incremental

theory of plasticity, the mathematical relationship between the effective stress increment
and the strain increment can be expressed as [38]:

dσij = Dijkldεe
ij = Dijkl(dεij − dε

p
ij) (5)

Dijkl = (K− 2
3

G)δijδkl + G(δikδjl + δilδjk) (6)

where

Dijkl is elastic stiffness matrix,
K is the bulk modulus of soil,
G is the shear modulus of soil, and
δij is the Kronecker operator, δij = 1 when i = j; δij = 0 when i 6= j.

Associated plastic flow is adopted, when the stress path reaches the shear yield surface,
associated flow assumption leads to dilatancy, and reduction in X(κ), thereby leading to a
shrinkage and movement of the cap towards the origin. Dilation can continue until the
cap catches up with the stress point on the shear yield surface [39]. In addition, the plastic
strain increment dε

p
ij is given as the sum of contributions from all of the active yield surfaces

following Koiter’s flow rule:

dε
p
ij =

3

∑
m=1

λm
∂ fm

∂σij
(7)

where λi is the plastic consistency parameter for yield surfaces (fE, fC, and fT) and σ is
the stress.

2.2. Pore Water Pressure Effect Description

In commercial software environment, when the soil model adopts Euler or ALE
algorithm, modeling pile installation is mainly limited to total stress analysis; when the
soil model adopts the Lagrangian algorithm, modeling pile installation can use coupled
pore pressure analysis based on the continuum medium mechanics and Biot consolidation
theory [40–42].

The so-called u-p formulation of Biot consolidation theory, which ignores the accelera-
tion of the fluid component of the soil, is adopted in this paper. When the pile installation
is displacement-controlled, the u-p formulation can degenerate into quasi-static form, as
shown in Equation (8), in which the superimposed dot represents the time derivative of
the variable. [

C 0
Q S

][ .
U
.
P

]
+

[
B −QT

0 H

][
U
P

]
=

[
FU
FP

]
(8)

where
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B, C, H, Q, and S are the stiffness, damping, permeability coefficient, coupling, and flow
compressibility matrices respectively, and the superimposed dot represents the time deriva-
tive of variables, and
FP and FU are the vectors of fluid supply and external nodal forces, respectively.

After pile installation, the saturated soil is set to be drained. The generated EPWP
during pile installation dissipates with time, that is, the soil consolidation is a function of
time. For time dependent consolidation, pressure gradients follow Darcy’s law:

vf = ks∇(pw + zco) (9)

where

ks is the permeability coefficient of soil,
pw is the pressure head,
vf is the fluid velocity vector, and
zco is z-coordinate.

A time factor is used to simulate the consolidation process, the permeability of the
soil is increased by the time factor so that consolidation occurs more quickly in numerical
calculation [43]. The time factor is adjusted according to how quickly the pore pressure
is changing: the time factor usually changes quickly and has a small value at the start of
consolidation, then increases gradually as the rate of pore pressure change reduces. The
time taken in the real-life consolidation process is usually much larger than the analysis
time and is represented by the product of the analysis time and time factor.

2.3. Interface Modeling in Pile Jacking Simulation

One of problems encountered in simulating the pile installation by FEM is the high
mesh distortions in the vicinity of the pile–soil interface. To solve this problem, the hybrid
Lagrangian–ALE approach is applied, as shown in Figure 2, in which the soil model around
the pile–soil interface is set as the non-Lagrange grid and the rest soil model is set as the
Lagrange grid. The mesh of the non-Lagrange domain adopts the ALE algorithm in the
close-ended steel-pipe pile jacking simulation, which is applied in this study. Besides, in
the open-ended steel-pipe pile jacking simulation, the mesh of the non-Lagrange domain
adopts the Euler algorithm to simulate the soil plug, and the potential soil heave can be
accommodated by a void domain with no material atop the soil.
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The non-Lagrange domain is connected directly to the far field Lagrange domain via
one-to-one node matching, and the shared nodes are treated as Lagrange [43]. The soil
parameters under the condition of total stress analysis are adopted in the non-Lagrange
domain, and those related to effective stress analysis are used in the far field. Thus, to
ensure the continuity of soil stress at the interface of the mixed grid in undrained conditions
is necessary. Assuming the decoupling between volumetric and shearing effects under the
two stress analysis conditions, it can be obtained that the shear moduli of isotropic soil at the
elastic deformation stage are equal (see Equation (10)) [38]. Besides, both elastic modulus E
and bulk modulus K can be expressed in terms of shear modulus G and Poisson’s ratio v
(see Equations (11) and (12)). On this basis, the fitting of soil model parameters under the
two stress analysis conditions can be ensured.

Gu = G′ = G (10)

K =
E

3(1− 2v)
(11)

Eu = 2G(1 + vu) =
2E′

2(1 + v′)
(1 + vu) =

3E′

2(1 + v′)
(12)

where

Eu, E′ are the elastic moduli in undrained and drained conditions, respectively,
Gu, G′ are the shear moduli in undrained and drained conditions, respectively,
v′, vu are the Poisson’s ratios in drained and undrained conditions, respectively, and vu is
assumed as 0.49 to avoid numerical troubles.

Another problem encountered in simulating the pile installation by FEM is the pile–
soil frictional interface modeling. The interaction between the Lagrange rigid pile and the
non-Lagrange soil in the vicinity of the pile–soil interface is simulated by a penalty-based
algorithm. As shown in Figure 3, there is a coupling force to ensure that the fluid (soil
material) flows outside of the pile. The coupling force is calculated with a spring-like
system and is computed by contact stiffness and the penetration displacement of the
structure into the non-Lagrange domain ∆d. The pile–soil interaction is based on the
Coulomb friction contact law (see Equation (13)).

FT − FTcrit = FT − µFN ≤ 0 (13)

where

µ is the friction coefficient of the pile–soil interface,
∆d is the penetration displacement of the structure into the non-Lagrange domain,
FT is the tangential force,
FN is the normal coupling nodal force,
FTcrit is the maximum tangential force.
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2.4. Establishment and Parameters of Modeling Pile Jacking

A finite element model is established to model the pile installation process and subse-
quent soil consolidation after installation, referring to a field case of close-ended steel-pipe
pile jacking [33]. In the field trial, the steel-pipe pile is 7.5 m long with an external diameter
of 0.22 m and a wall thickness of 0.01 m. The density of the steel-pipe pile is given as
7850 kg/m3, the Young’s modulus E is given as 210 GPa, and Poisson’s ratio is given as
0.3. A starting hole filled with water is augured to a depth of 1.2 m before pile jacking. The
average pile installation rate vc is approximately 7 cm/min. Besides, pore pressure cells
were installed at a distance of 0.2 m from the pile wall at four different levels (at depths of
3.1, 4.6, 6.1, and 7.6 m) to measure the pore pressures induced by pile jacking.

Geotechnical investigation shows that the typical soil profile consists of four distinct
layers resting on a deep layer of dense sand. The corresponding geotechnical properties
have been described in Roy et al. [33] and Dou et al. [10] and are tabulated in Table 1,
where ρ is the natural density of soil, K0 is the coefficient of earth pressure at rest, cu is the
undrained shear strength of soil, ω is the water content, Ip is the plastic index, and IL is
the liquidity index. The surrounding soil adjacent to the jacked pile is generally remolded,
which leads to the strength loss of soil. The rigidity indexes (Ir = E/cu) of intact and
disturbed soil are in the order of 900 and 450, respectively. The rigidity index of disturbed
soil rather than intact soil is taken herein in order to well agree with the observations. The
deposit was subjected to a slight geological preconsolidation, and the measured values of
OCR are in the order of 2.0–2.3. The average permeability of soil (ks), which is estimated
from the coefficient of consolidation, is about 3.5 × 10−10 m/s. A normalized permeability
Kn = ks/vc has been proposed by Abu-Farsakh et al. [19] to reflect whether the soil is in
the drainage state during pile installation. It indicates that the saturated soil is close to the
undrained condition when Kn is less than 10 × 10−6. The value of Kn is 3 × 10−7, thus the
saturated soil can be set to be undrained during pile jacking.

Table 1. Geotechnical properties of the subsoil.

Soil Name Thickness (m) ρ (kg/m3) ν K0 cu (kPa) ω (%) Ip IL

Clay crust 1.6 1751 0.305 0.438 19.9 42.7 24.3 0.88
Silty clay 4.2 1625 0.288 0.405 12.5 58.6 17.0 2.42

Clayey silt 4.0 1720 0.276 0.382 24.3 40.7 11.7 2.16
Clayey silt with sand 4.0 1920 0.266 0.362 30.0 27.3 7.0 2.48

Sand >13.7

Reproduced or adapted from [10], with permission from publisher Dou et al., 2019.

In the numerical modeling, a full model is discretized to simulate the pile installation
process and subsequent soil consolidation after installation in saturated fine-grained soil,
as shown in Figure 4. The full model size is 13.6 m in height and 8.0 m in diameter. The pile
tip is spherical in order to reduce the oscillation intensity of soil response. The fractures or
cracks of soil in vicinity of the pile–soil interface induced by increased EPWP may cause a
rapid dissipation of EPWP temporarily by increasing the permeability of the soil [44,45].
Thus, the soil within (1/3)Rp from the pile wall is set as a fixed ALE grid, and the total
stress analysis is adopted. The far field soil model is set as the Lagrange grid, and the
effective stress analysis is adopted. The piling rate is about millimeters-level per second,
which can be considered to be a slow process, thus the strain rate effect is not a decisive
factor. The cap model is applied to all soil layers. The model parameters corresponding to
the effective stress analysis are tabulated in Table 2, and a detail explanation is provided
by Dou et al. [10] due to referring to the same field case. Besides, without considering
the influence of soil shell effect, which will increase the contact area of pile soil and the
roughness of pile to a certain extent after pile installation, the friction coefficient of the
pile–soil interface is set to tan (ϕ/3) = 0.2 [29].
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Table 2. Material parameters for pile jacking analysis.

Soil Layer K (kPa) G (kPa) α (kPa) γ β θ W R D (kPa−1) T (kPa)

1 6659 2985 23.8 0 0 0.238 0.5 4.48 0.0003 0
2 3797 1875 14.6 0 0 0.275 0.5 4.13 0.0003 0
3 6921 3645 23.8 0 0 0.238 0.5 4.48 0.0003 0
4 8115 4500 14.6 0 0 0.275 0.5 4.13 0.0003 0

The sideways boundary of soil model is only free in vertical direction and the bottom
is a fixed boundary. The rigid pile can only move freely in the vertical direction. Only
ground surface is drainage boundary, and others are impermeable. The pile jacking is
displacement-controlled in numerical simulation. The soil is in an undrained condition
during pile jacking, and the cap model takes no account for strain rate. Thus, the calculation
efficiency can be improved by appropriately increasing the pile installation rate on the
premise of ensuring the calculation accuracy, and the piling rate is set as 1.0 m/s.

2.5. Comparison with Field Data

A good agreement between calculated and measured time histories of EPWP around
the jacking pile has been obtained in Dou et al. [10]. Besides, the continuity of soil stress at
the interface of the mixed grid has been also verified. The two are no longer discussed in
detail in this article. On the basis of Dou et al. [10], this paper further models the dissipation
of EPWP after pile installation via adopting the theory of consolidation. As shown in
Figure 5, the dissipation of EPWP after installation at a distance of 0.2 m from the pile
wall and a depth of 4.9 m is obtained. Close agreement is observed between the calculated
dissipation of EPWP and field data. Figure 5 also shows that the predicted duration of
EPWP dissipation is about 600 h, which is consistent with that observed by Roy et al. [33].
Thus, the proposed numerical model is sufficient to simulate the process of pile installation
into saturated fine-grained soil and subsequent soil consolidation after installation.
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3. Numerical Simulation Results
3.1. Mechanism Analysis of Consolidation Effect of Soil around Pile

The mechanism analysis of consolidation effect of soil around pile is based on the
model shown in Figure 4, and the model parameters adopted are consistent with those in
Table 2. Taking an initial depth of 1.2 m to a final jacking depth zp of 7.8 m as an example,
contours of EPWP during piling stage and at different times after end of pile jacking are
depicted in Figure 6. Figure 7 shows the distribution curves of EPWP in depth at a distance
of 0.2 m from the pile wall during and after pile installation. Figures 6 and 7 indicate that
the maximum EPWP in depth occurs near the pile tip, and the negative EPWP occurs near
the initial depth of 1.2 m and at a certain depth below the pile tip during pile installation
and at the initial consolidation phase after installation (i.e., at the end of pile jacking);
the negative EPWP induced by pile jacking increases gradually to a positive value at the
early consolidation phase; with the increase of consolidation duration, the EPWP in the
vicinity of pile gradually decreases and the far field EPWP gradually increases, as well as
the location where the maximum EPWP occurs, gradually moves up.

Taking a distance of 0.2 m from the pile wall as an example, Figure 8a shows time
histories of EPWP at different depths during and after pile installation. The depths of
3.0, 4.9, 6.0, and 7.5 m are selected to reflect the trend of EPWP in depth, and the similar
trends are observed at any other depths less than zp. During pile jacking, the EPWP
increases with pile jacking depth and reaches a maximum when the pile tip is near the
selected depth, and once the pile tip passes that, the EPWP decreases rapidly. Similar
trends are observed if the selected depths is less than zp. Figure 8b shows the dissipation of
normalized EPWP (∆u/∆uic) after installation at different depths, where ∆uic is the EPWP
at the initial consolidation phase. The dissipation duration of normalized EPWP increases
with depth, and the normalized EPWP of shallow soil increases initially before starting to
secondly dissipate, which demonstrates that the consolidation occurs as a vertical diffusion
of pore fluid.

Taking a depth of 7.5 m as an example, Figure 9a presents the time histories of EPWP
at different distances from the pile wall during and after pile installation. The distances of
0.2, 0.6, 0.9, 1.2, and 2.0 m from the pile wall are selected to reflect the trend of EPWP in
radial direction. During pile jacking, the EPWP decreases with the distance from the pile
wall. Figure 9b shows the dissipation of the normalized EPWP (∆u/∆uic) after installation
at different distances from the pile wall. The dissipation duration of normalized EPWP is
greater at a larger distance from the pile wall. Before the second dissipation, the normalized
EPWP increases initially, the greater increment occurs at a larger distance from the pile
wall, which demonstrates the consolidation after installation occurs as a radial diffusion
away from the pile.
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Figure 9. (a) Development and dissipation of EPWPs during and after pile installation at different distances from the pile
wall; (b) Dissipation of normalized EPWPs after installation at different distances from the pile wall.

As mentioned above, the time histories of EPWP at different depths and at different
distances from the pile wall are given respectively, from which the similar spatial trends
are observed. The EPWP decreases with distance from the pile wall, and the maximum
EPWP in depth occurs near the pile tip. Thus, there exists a hydraulic gradient in radial
and vertical directions, and the pore fluid occurs radial and vertical diffusions from high
pore water pressure to low. A similar phenomenon has been described in the field trial
reported by Roy et al. [6,33].

3.2. Parametric Studies of Consolidation Effect

Taking a final jacking depth zp = 7.8 as an example, the time histories of EPWP at a
distance of 0.2 m from the pile wall are obtained to investigate the influence of ks, cu, E,
and OCR on EPWP generation during pile jacking and subsequent soil consolidation effect
after pile installation. A small distance from the pile wall is selected to avoid the influence
of radial diffusion of pore fluid. The following investigations refer to the model shown
in Figure 4, except that the model parameters are replaced by those of the third layer soil
from Table 2 because the final jacking depth of the pile is located in this layer. Note that the
effect of each parameter is investigated separately, and all the other parameters are kept
constant when the effect of one parameter is investigated.
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3.2.1. Effect of Soil Permeability Coefficient ks

Investigating the effect of soil permeability coefficient ks, modeling the entire process
of steel-pipe pile jacking is performed with ks ranging from 1 × 10−7 to 1 × 10−11 m/s.

Figure 10 shows time histories of EPWP with different permeability coefficients at
different depths. During pile jacking, ks has no obvious influence on the EPWP; the
dissipation rate increases with ks after the end of pile jacking, but the duration of EPWP
dissipation is the opposite.
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Figure 11 shows the normalized EPWP dissipation (∆u/∆uic) after pile installation
with different permeability coefficients at different depths. The dissipation rate of EPWP is
positively correlated with ks, while the duration of consolidation after installation is just the
opposite. A suggestion is that the static load test should be carried out after a period of time
to avoid low effective stresses after pile jacking in soil with small permeability. Figure 11a
shows that the normalized EPWP of shallow soil increases initially before starting to
secondly dissipate, and the time when EPWP begins to increase after the first dissipation
is negatively correlated to ks. Comparison of Figure 11a,c shows that the dissipation rate
increases and the duration of consolidation increases with depth, which demonstrates
again that the consolidation occurs as a vertical diffusion of pore fluid.
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3.2.2. Effect of Soil Undrained Shear Strength cu

The solution of EPWP based on the cavity expansion theory uses the undrained soil
shear strength cu to normalize the maximum EPWP, and the extent of the plastic zone is
dependent on rigidity ratio Ir (Ir = E/cu) [46,47]. To investigate the effect of cu, modeling the
entire process of steel-pipe pile jacking is performed with cu ranging from 10.0 to 70.0 kPa.

Figure 12 shows time histories of EPWP with various undrained shear strengths at
different depths. The EPWPs both during and after pile jacking show positive correlation
to cu. Further, the EPWP is sensitive to the smaller value of cu.
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Figure 12. Development and dissipation of EPWPs during and after pile installation under various soil undrained shear
strengths. (a) At depth of 4.9 m; (b) at depth of 7.5 m.

The dissipation of normalized EPWP (∆u/∆uic) after pile installation with various
undrained shear strengths at different depths are depicted in Figure 13, in which the
influence of cu on ∆u at the end of pile jacking has been eliminated by ∆u/∆uic. Variations
in dissipation rate of EPWP after installation are independent from cu, the scatter of EPWP
dissipation curves of shallow soil at the early consolidation phase is mainly due to the
vertical diffusion of pore fluid.
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depth of 4.9 m; (b) at depth of 7.5 m.

3.2.3. Effect of Soil Elastic Modulus E

The extent of the plastic zone is dependence on rigidity ratio Ir (Ir = E/cu), to inves-
tigate the effect of soil elastic modulus E, modeling the entire process of steel-pipe pile
jacking is performed with E/cu ranging from 200 to 1000, and cu is set as 24.3 kPa.

Time histories of EPWP with various soil elastic moduli at different depths are depicted
in Figure 14. The EPWP both during and after pile jacking are positively correlated to
E. Figure 15 shows the dissipation of normalized EPWP (∆u/∆uic) after installation with
different soil elastic moduli. The influence of E on ∆u at the end of pile jacking has
been eliminated by ∆u/∆uic. Variations in dissipation rate of EPWP after installation are
independent from E, the scatter of EPWP dissipation curves of shallow soil at the early
consolidation phase is mainly due to the vertical diffusion of pore fluid.
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3.2.4. Effect of Soil Overconsolidation Ratio OCR

The coefficient of earth pressure K0 is interdependent with soil overconsolidation ratio
OCR [15] and can be expressed by K0 = K0nc

√
OCR, where K0nc is the coefficient of earth

pressure of normally consolidated soil [18]. Besides, the cap model parameter X0 can be
defined by X0 = OCR·σz [37]. To investigate the effect of OCR, modeling the entire process
of steel-pipe pile jacking is performed with OCR ranging from 1 to 8.

Time histories of EPWP with various OCRs at different depths are depicted in Figure 16.
The EPWP both during and after pile jacking show negative correlations to OCR. Figure 17
shows the dissipation of normalized EPWP (∆u/∆uic) after installation with various OCRs,
in which the influence of OCR on ∆u at the end of pile jacking has been eliminated by
∆u/∆uic. The increase of OCR contributes to the dissipation of EPWP and decreasing the
duration of consolidation after installation. A suggestion is that the static load test should
be carried out after a period of time to avoid low effective stresses after pile jacking in soil
with low OCR.
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3.3. Time-Dependent Analysis of Pile Set-Up Based on Consolidation Effect

In uncemented soil, Coulomb friction contact law holds for the pile–soil interface, so
the effective stress β-approach is adopted, the local unit shaft resistance is defined by:

τf = σhi
′ tan δ = K0σvi

′ tan δ = β f σvi
′ (14)

where

τf is the local unit shaft resistance,
δ is the friction angle of the pile–soil interface,
σvi
′, σhi

′ are the vertical and horizontal effective stress acting on the pile, respectively,
βf is expressed by β f = K0 tan δ.

Taking zp = 7.8 m as an example, time histories of EPWP and total stress increment at
depth of 7.5 m at a distance of 0.2 m from the pile wall are depicted in Figure 18. During pile
jacking, the total stress and EPWP increase simultaneously, and the total stress increment is
generally less than EPWP, thus temporarily reducing the effective stress and hence shear
strength of the surrounding soil [48]. Water starts to drain away under a relatively high
gradient after pile installation (see Figure 6), the dissipation of positive EPWP increases the
horizontal effective stress, and the dissipation of negative EPWP is opposite, and thereby
affects the side shear resistance of the pile.
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Figure 18. Time histories of the EPWP and total stress increment of soil around the pile.

Figure 19 shows time histories of EPWP and effective vertical stress at depth of 1.4 m
during and after pile jacking. The selected depth is near the ground surface. During pile
jacking, the EPWP near the ground surface increases rapidly and reaches a maximum when
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the pile tip is near the selected depth; and once the pile tip passes the selected depth, the
EPWP decreases rapidly to negative value, thus temporarily increasing the effective stress
and hence the penetration resistance. After pile installation, the negative EPWP generally
increases to positive value and reaches a maximum, then the positive EPWP begins to
decrease gradually. The development of effective vertical stress is just the opposite.
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Figure 20 shows the comparison between the dissipation of EPWP and pile set-up
at depth of 1.4 m after pile jacking. At the early consolidation phase, the negative EPWP
near the ground surface gradually increases to positive value, simultaneously reducing the
side shear resistance of the pile, and even leading to the static load test pile sank suddenly
in engineering practice. When the consolidation time reaches a certain value, the EPWP
reaches a maximum, then the dissipation of positive EPWP will increase the side shear
resistance of the pile to a certain extent.
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Figure 20. Comparison between the dissipation of EPWP and pile set-up at depth of 1.4 m after pile
installation.

Figure 21 shows time histories of EPWP and effective vertical stress at depth of 7.5 m
during and after pile jacking. During pile jacking, the EPWP reaches a maximum when
the pile tip is near the selected depth, and even exceeds the initial overburden effective
stress; and once the pile tip passes the selected depth, the EPWP decreases rapidly. After
pile installation, water starts to drain away under a relatively high gradient, the dissipation
of positive EPWP increases the effective stress, simultaneously increasing the side shear
resistance of the pile.
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Figure 21. Time histories of the EPWP and effective stress of soil at depth of 7.5 m at zp = 7.8 m.

Figure 22 shows comparisons between the dissipation of EPWP and pile set-up at
depth of 7.5 m under various soil permeability coefficients after pile jacking. The side
shear resistance of the pile increases gradually with the dissipation of positive EPWP.
The side shear resistance of the pile is positively correlated to ks. Besides, at the initial
consolidation phase, as the effective stress of the surrounding soil at the selected depth is
close to zero, the side shear resistance of the pile calculated by Equation (14) is also close to
zero. In engineering practice, the adhesion at the pile–soil interface cannot be neglected.
The adhesion reduces due to the surrounding soil in remolded state during pile jacking
and recovers due to the aging effect after pile installation.
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Figure 22. Comparisons between the dissipation of EPWP and pile set-up at depth of 7.5 m under
various soil permeability coefficients after pile installation.

Figure 23 shows time histories of EPWP and effective vertical stress at depth of 9.0 m
during and after pile jacking. The selected depth is located at 1.2 m below the pile tip
when zp = 7.8 m. The soil at the selected depth is subjected to the radial and circular
bidirectional tensile stresses due to the fracturing effect, the EPWP is negative. The existent
of negative EPWP temporarily increases the effective stress and hence the penetration
resistance, and even leads to the failure of the pile penetration. After pile installation, the
negative EPWP generally increases to positive value and reaches a maximum, then the
positive EPWP begins to decrease gradually. The development of effective vertical stress is
just the opposite.
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Figure 23. Time histories of the EPWP and effective stress of soil at depth of 9.0 m at zp = 7.8 m.

Figure 24 shows the comparison between the dissipation of EPWP and pile set-up at
depth of 9.0 m after pile jacking. The negative EPWP generally increases to positive value
and reaches a maximum, which induces the decrease of the side shear resistance of the pile,
and even leads to the static load test pile sank suddenly in engineering practice. Besides,
when the consolidation time reaches a certain value, the EPWP reaches a maximum, then
the dissipation of the positive EPWP will increase the side shear resistance of pile to a
certain extent.
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Figure 24. Comparison between the dissipation of EPWP and pile set-up at depth of 9.0 m after
pile installation.

4. Conclusions

In this paper, the entire process of steel-pipe pile jacking in saturated fine-grained soil
is simulated with the hybrid Lagrangian–ALE approach. The 3D finite element models are
established considering the pore water effect via the Biot consolidation theory. On this basis,
this paper investigates not only the influence of ks, cu, E, and OCR on EPWP generation
during pile jacking and subsequent soil consolidation effect after pile installation but also
the correlation between pile set-up and EPWP dissipation. Based on the numerical results,
the following conclusions can be drawn:

(1) Good agreements between the calculated and measured time histories of EPWP are
obtained. Besides, the continuity of soil stress at the interface of the mixed grid has
been observed. Thus, the feasibility and reliability of the hybrid Lagrangian–ALE
approach to establish finite element model to simulate the installation process of
jacked pile and subsequent consolidation phase after installation in saturated fine-
grained soil are verified.

(2) When the entire process of pile jacking is conducted in saturated fine-grained soil, of
which the normalized permeability Kn is less than 10 × 10−6, ks and OCR affect the
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rate and duration of EPWP dissipation; OCR also affects the value of EPWP at the
end of pile jacking; however, cu and E only affect the value of EPWP at the end of pile
jacking. A suggestion is that the static load test should be carried out after a period of
time to avoid low effective stress after pile installation in soil with low ks and OCR.

(3) During pile installation, the negative EPWP near ground surface around pile and
at a certain depth below the pile tip would increase the effective stress and hence
the penetration resistance; at the early stage of consolidation, the negative EPWP
increases gradually to positive value, which could cause the decrease of bearing
capacity of pile and even lead to the static load test pile sank suddenly; when the
consolidation time reaches a certain value, the EPWP reaches a maximum, then the
dissipation of the positive EPWP would increase the bearing capacity of pile to a
certain extent.

(4) During pile installation, the total stress increment is generally less than EPWP, thus
temporarily reducing the effective stress and hence the penetration resistance; after
pile installation, the side shear resistance of the pile increases gradually with the
dissipation of positive EPWP, and the adhesion due to the aging effect should also be
considered.
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Notations
The following symbols are used in this paper:
I1 the first stress invariant
J2 the second invariant of the deviatoric stress tensor
α, γ, β, θ the material parameters of the failure surface
c, ϕ the frictional and cohesive strengths of the material
R the curvature of the hardening cap
v the Poisson’s ratio
X(κ) the intersection of the cap surface with the I1 axis
L(κ) the value of I1 at the location of the start of the cap
κ the I1 coordinate of the intersection of the cap surface and the failure surface
ε

p
v the plastic volume change

T the maximum allowable hydrostatic tension
W is related to the porosity n and the degree of saturation Sr
D governs the slope of the initial loading curve in hydrostatic compression
X0 is thought of as the preconsolidation hydrostatic pressure
σz the overburden pressure
B, C, H the stiffness, damping and permeability coefficient matrices, respectively
Q, S the coupling and flow compressibility matrices, respectively
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FP, FU the vectors of fluid supply and external nodal forces, respectively
ks the permeability coefficient of soil
pw the pressure head
vf the fluid velocity vector
zco z-coordinate
zp the final jacking depth
Eu, E′ the elastic moduli in undrained and drained conditions, respectively
Gu, G′ the shear moduli in undrained and drained conditions, respectively
v′, vu the Poisson’s ratios in drained and undrained conditions, respectively
∆d the penetration displacement of the structure into the Non-Lagrange domain
KN, KT the normal and tangential contact stiffness, respectively
FT the tangential force
FN the normal coupling nodal force
FTcrit the maximum tangential force
µ the friction coefficient of the pile–soil interface
Rp pile radius
Ir the rigidity index
E the Young’s modulus
cu the undrained shear strength of soil
OCR soil overconsolidation ratio
ω the water content
ρ the natural density of soil
K0 the coefficient of earth pressure at rest
Ip the plastic index
IL the liquidity index
vc the average pile installation rate
Kn the normalized permeability
∆u the value of EPWP
∆uic the EPWP at the initial consolidation phase
ηc the normalized EPWP
τf the local unit shaft resistance
δ the friction angle of the pile–soil interface
σvi
′, σhi

′ the vertical and horizontal effective stress acting on the pile, respectively
βf is expressed by βf = K0tanδ
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