
Journal of

Marine Science 
and Engineering

Article

Continuous Contract Based Verification of Updates in Maritime
Shipboard Equipment

Georg Hake 1,*, Carl Philipp Hohl 2 and Axel Hahn 1

����������
�������

Citation: Hake, G.; Hohl, C.P.; Hahn,

A. Continuous Contract Based

Verification of Updates in Maritime

Shipboard Equipment. J. Mar. Sci.

Eng. 2021, 9, 688. https://doi.org/

10.3390/jmse9070688

Academic Editor: Spyros Hirdaris

Received: 25 May 2021

Accepted: 17 June 2021

Published: 23 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computing Science, University of Oldenburg, 26129 Oldenburg, Germany; axel.hahn@uol.de
2 FZI Research Center for Information Technology, 76131 Karlsruhe, Germany; hohl@fzi.de
* Correspondence: georg.hake@uol.de

Abstract: Modern control systems in the maritime domain are increasingly controlled by software
systems and become subject to updates and configuration changes during operation. Moreover, with
the shift to autonomous vessels and cars, these software-based systems are taking on more and
more safety-critical tasks, so the risks associated with system failures are increasing. Unlike before,
it becomes necessary to verify the continuously adapting modules of a vehicle not only before
deployment, but to establish continuous verification capabilities during all phases of the product
lifecycle, from the design to the system in operation. Hence, in case of an update, deviations from
the expected behavior can be automatically detected and relevant measures can be initiated. In this
work, a contract-based verification framework is presented that includes automatable and formally
analyzable behavioral descriptors in form of assumption-guarantee contracts for all phases of the
software lifecycle to provide static and dynamic verification capabilities alongside a dynamically
changing system composition. By utilizing contractually defined behavior descriptions, classic test
procedures, such as simulations, are supplemented by a formally testable level that is applied to
all phases of the update process. A conceptual-deductive methodology was chosen, building on
the identified requirements to develop an overarching update framework that adds contractual
descriptions to the traditional development case. Based on the presented framework, the verifiable
modification of a safety-critical software system is demonstrated. The approach is evaluated using
a maritime collision-avoidance system and the verification steps are evaluated along the update
process. The framework offers a novel approach to complement existing test procedures by enabling
formal impact analysis and incremental verification of updates.

Keywords: updates; assumption-guarantee contracts; life cycle; adaptive; corrective; perfective;
verification; impact analysis; safety

1. Introduction

The control and monitoring units used to regulate a ship’s distributed electrical
and mechanical machinery, navigation, balance and steering systems are increasingly
being replaced by software-based modules that converge at a central location. This trend
continues with the introduction of Maritime Autonomous Surface Ships (MASSs) where
control is built entirely by software-based systems, replacing the responsibilities of the
human operator so that the potential for misconfiguration can have dire consequences.
Hence, it becomes necessary to verify the integration of these safety-critical systems and
their interaction with each other within a heterogeneous system complex. As, the individual
modules derive from different developers and suppliers, it needs to be verified that the
integration of the individual parts into a complete system of sub-systems results in a valid
configuration [1].

In order to avoid possible errors when assembling the modules into an overall system,
so far the composition for a ship was approved before deployment for a fixed system
configuration with regard to functional, time and safety characteristics, yet seldom changed

J. Mar. Sci. Eng. 2021, 9, 688. https://doi.org/10.3390/jmse9070688 https://www.mdpi.com/journal/jmse

https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://doi.org/10.3390/jmse9070688
https://doi.org/10.3390/jmse9070688
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jmse9070688
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse9070688?type=check_update&version=2


J. Mar. Sci. Eng. 2021, 9, 688 2 of 21

after set into operation [2]. However, the possibility for remote Over-The-Air (OTA) updates
allows for modifications even after deployment and during operations [3]. Moreover,
unforeseen environmental situations or the unpredictable entry into a system alliance with
previously unknown vehicles can lead to unanticipated configurations.

There are plenty of examples of misbehavior due to software updates and unforeseen
interdependencies. For example, BIMCO reports of “incidents, where ships for example,
suffer complete blackouts, and malfunctions in radar and other related systems, as a result
of unforeseen difficulties with a software update” [4]. Other examples can be found in the
Viking Cruise ship incident in March 2019, in which a faulty sensor reading reported an oil
level that was too low, triggering a chain reaction of dependent systems that led to a complete
shutdown of systems and a near grounding of the ship [5]. Finally, the known grounding of the
Royal Majesty is also due to the fact that the Global Positioning System (GPS) module returned
incorrect navigation data of which the crew was not aware of [6].

The examples demonstrate, the necessity for proving that a modified system con-
figuration still meets the previously approved safety criteria after an update and during
operation. Since the approval process has so far been designed to certify a fixed system
composition at a set time before deployment, it is therefore necessary to redesign the verifi-
cation process for dynamically changing systems and keep the re-verification effort after a
change as low as possible. For this reason there have already been numerous efforts, both
on the part of the producers of system modules and on the part of the certification bodies,
to establish processes that enable the controlled import of updates. For example, a working
group of CIRM/BIMCO [4], as well as the IACS [7] and the International Organization for
Standardization (ISO) [8] made suggestions on how an update process must be structured.

For an update to one module of a system this includes checking the temporal, func-
tional and safety related interdependencies between the system’s constituents on the basis
of a scenario space that is as broadly covered as possible, optimally limited to the impacted
parts of the overall system. Traditionally, this took the form of simulative testing pro-
cedures that used targeted scenario selection to demonstrate that an overall system met
its promised goals and that hazards could be sufficiently excluded. A recent approach
has been conducted by the Open Simulation Platform (OSP), which uses digital twins
and co-simulation to provide test management systems for heterogeneous modules from
different vendors [9]. However, such an approach lacks completeness, formal correctness,
and deterministic behavior [10].

This is where this work comes in, by providing a formal complement to existing
virtual verification efforts, such as the OSP. With the application of assumption-guarantee
contracts to the model of the system each of its modules get annotated with a formal
specification about its behavior under the expected environmental conditions. This extends
the model with formal specifications that enable Virtual Integration Testing (VIT) of the
modules to identify inconsistencies early on that would not be fully covered by a simulative
test procedure.

To make this possible two requirements need to be met. Firstly, the system develop-
ment must be undertaken in a modular way instead of the traditional monolithic devel-
opment approach. The overall system then consists of individual modules, which in turn
form a system network and declare clearly defined interface descriptions and services so
that the interaction between the modules is separated and traceable. This facilitates the
identification of dependencies between individual modules during an update and narrows
down the detection of an update’s impact.

Secondly, the provided services on the interfaces must be formally defined. For this,
assumption-guarantee contracts provide this capability by founding on a theoretical basis
that provides methods to describe a module in the form of premises about the module’s
environment and assurances about the output that enable to examine and justify the
combination of heterogeneous modules. The supplier of a module update can provide
(i) solely a contract description of his module, (ii) a model and the assigned contracts
of the module and its setting within the system configuration and eventually (iii) the



J. Mar. Sci. Eng. 2021, 9, 688 3 of 21

implemented binary of the module with the contracts as metadata for monitoring and
test purposes.

For this reason, the update management of a dynamically changing system is subdi-
vided into its different update types (perfective, adaptive, corrective) and the contracts
are applied to the modules to identify deviations from expected behavior in all phases of
the system’s lifecycle. Along the whole process a feedback loop is applied to monitor an
approved system, which is already in operation, based on the assigned contracts and to
initiate appropriate steps as soon as a breach of contract occurs in one of the components
of the composite system.

What sets the presented approach apart from others is the division of the entire
development, delivery, integration and verification process into overlapping phases, which
merge into each other and at the same time contain refinement stages and back-references,
so that a development cycle is created. In addition, classical test and simulation concepts
are extended by a formalization stage extended by contracts, so that a system model can
be developed from a very abstract informally described model to a detailed, verified and
executable system, while at the same time all stages are connected and can be linked
back together.

The methodology used in this work corresponds to a conceptual-deductive approach.
The requirements of the research gap, which were identified in the course of a literature
review, are conceptually transferred into an overall process framework in the course of an
argumentative procedure and demonstrated by means of a case study [11].

For this, the presented work is structured as follows. First, an overview of the
update process of software components for safety-critical software systems on domain-
independent vessels is presented. Building on the higher-level process view, the theoretical
concepts behind contract-based modeling and compositional verification capabilities are
introduced. Complementing this, a new interaction model between the relevant stakehold-
ers is proposed. After delineating the framework, it is shown how each of the phases of
the overall process can be complemented with contracts and how this enables verification
within each process step. Thereupon, the intercommunication steps between the phases are
shown in order to demonstrate the higher-level verification. To demonstrate the approach,
the process steps are extended along a generic minimal example and the different system
changes in the form of three different update types. The domain-agnostic approach is
finally evaluated using a domain-specific, safety-critical collision avoidance system from
the maritime domain.

2. Related Work

Stakeholders in the maritime industry actively pursue activities to improve the main-
tenance process for shipboard equipment. A joint working group from several industry
members [4] as well as the IACS [7] led to recommendations and best practices on how an
update should be performed and what needs to be logged. Another approach to virtual
verification of software modules in a simulation context is offered by the Open Simulation
Platform, which enables co-simulation of models from different vendors based on Func-
tional Mock-up Units (FMUs) [12]. The approach can be extended by contracts in that it
can represent deterministic behavior and compensate for the semantic gap [10].

Further criticism of the current process of update management on maritime systems
and efforts to change it comes from ISO, which wants to improve the logging of changes
on ship equipment by introducing a standardized software log that will record data traffic
between modules in a uniform manner [8]. The problem was taken further by [13] in
assessing the general standardization of ship component interoperability for analysis and
proposing changes.

A similar approach to linking safety evidence, the assertion and the argument that the
evidence supports the assertion is presented by the Dependability Engineering Innovation
for Cyber Physical System (CPS) (DEIS) project [14] in the form of Digital Dependability
Identitiess (DDIs). DDIs are based on the Open Dependability Exchange (ODE) meta-model



J. Mar. Sci. Eng. 2021, 9, 688 4 of 21

and include the complete dependability information of the CPS component its describing.
DDIs are based at their core on the Structured Assurance Case Metamodels (SACMs) 2.0
of the Object Management Group (OMG) [15] which is related to the Goal Structuring
Notation (GSN). For the integration of individual DDIs into a System of System (SoS)
in a semi- to full-automated way, the interfaces of the DDIs for different IP Protection
Levels levels (White-, Grey, Black-Box) have to be formalized for this purpose, where in the
fully automated Black-Box and Runtime-Case Conditional Safety Certificatess (Consertss)
are used. These have a large overlap with the contract-based approach presented here,
as they are based on a service-based system architecture model and assumption-guarantee
approach [16].

Another approach of model-driven engineering and dependency analysis of complex
safety-critical systems is shown by [17] within the CHESS framework. Chess provides
domain-independent modeling and analysis tool support starting from requirements
analysis, through the design phase, to deployment on the target platform. By applying
V&V tools such as OCRA, nuXmv and xSAP, contract-based testing procedures are also
enabled. These include model checking, contract-based composition analysis of state
machines, and contract-based safety analysis [17].

Another branch of research is Continuous Development, in which contract-based
approaches are also used. Warg et al. [18] present a development process for dependent
systems and show how continuous assurance processes can be realized with the help of
contracts for product lines. As with this work, contracts are used and demonstrated along
the development process of dynamically changing systems, but not along all phases of the
product’s lifecycle and not specifically for all forms of update processes.

Further work in the application of contracts led to approaches for multi-viewpoint con-
sistency for concurrent design [19] and a platform-based design methodology that provides
vertical and horizontal integration [20]. Furthermore, [21] show how an update process can
gain self-protective capabilities by introducing contracts in distributed embedded systems.

While all the approaches presented here highlight a subsection of the overall process
from a concrete perspective, in this paper we highlight the interconnection of the individual
modules within the overall process and thus elaborate an overall approach which enables
end-to-end verification in the maritime domain.

3. Overarching Update Verification Process

In the following, an birds-eye view on the overall process is introduced. As depicted
in Figure 1, six different phases for the update process are distinguished. It is assumed that
the system under consideration is already in operation and has gone through a complete
development and acceptance process. The steps presented here thus represent the process
of an update of that existing system. Nevertheless, in order to develop safe updates, each
update cycle must be considered as a new development process.

Figure 1. Overarching development, delivery, integration and verification process with overlap-
ping phases.



J. Mar. Sci. Eng. 2021, 9, 688 5 of 21

The process starts with the trigger for an update. The main reasons for triggering an
update are:

• System Behavior Issues: The system displays unwanted behavior during operation
(e.g., a bug). This may occur if the development and testing of the previous product
was incomplete, faulty or a change to a system peripheral changed the behavior of
inputs or outputs of the system.

• Regulatory or Requirement Change: This type of trigger occurs if a new set of re-
quirements have emerged due to changes in the regulatory environment of the system
or because an incomplete set of requirements was specified for earlier development.

• Feature Request: If new functionality is required from the system, the maintainer can
decide to develop an update that implements the new functionality.

• Security Vulnerability: Should a security vulnerability become apparent during
operation, it must be closed promptly to prevent intrusion by third parties.

An update trigger can occur externally, from the module vendor, or during the in-
tegration and verification of the sub-modules. The integration process in Figure 1 takes
place within the Integration and Verification Platform, where an integrator merges and
tests the individual modules. The entire process is surrounded by a security framework
that ensures the security of the transmission path and protects against cyber attacks.

Depending on the type of trigger, different changes to the system have to be made.
The first step of the process is to analyze the system, be it using engineering knowledge or
a system model or a combination of the two. During the analysis, it needs to be established
if there have been requirement changes to the system and whether partitional changes
to the system are required (i.e., is there functionality that is either combined, split up or
distributed differently) and if it results in a change of safety considerations. The result of
this analysis is then used to determine the steps that need to be taken during development
of the update in order to ensure its safety.

As further depicted in the Figure 1, the system integrator can step in at different
phases within the update process depending on the provided artifacts from the supplier.
Unlike other development pipelines, the update process presented in Figures 1 and 2
has the intermediate stage of a VIT. A VIT can already be carried out before the final
implementation of the update solely on the basis of the module contracts. The system
integrator can determine on the basis the contracts and their relations defined by the model
whether the module components are consistent and compatible to each other. This means
that feedback can be given to the developers and planners of the module to be updated at
an early stage if the planned changes do not harmonize with the existing system.

The following phase is the variant aware software test. This is where the higher-level
test and simulation process takes place with numerous scenarios to rule out hazards and
put the safety properties through their paces. It can be both performed solely virtual or
with the actual sensors and actuators in a full system context.

The last two phases represent the deployment of the completed and released bina-
ries in combination with the interface description based on the contracts. The final stage
represents the system in operation, in which the contracts are used to continuously mon-
itor the promised behavior and to provide direct feedback in the event of misbehavior.
A continuous feedback stream (as depicted in light grey in Figure 1) is available for this
purpose, which makes it possible to jump back to the necessary phase within the update
verification process.



J. Mar. Sci. Eng. 2021, 9, 688 6 of 21

Figure 2. Communication Diagram between the different stakeholders in the process.

4. Subdivision of the Exchange Process between the Involved Stakeholders

After an update trigger has occurred or at the start of development work, the develop-
ment process is mutually carried out between different groups of interest. The approach
can be reduced on the assumption that 3 different stakeholder groups are driving the
development and maintenance of the system under consideration: the system integrator,
the suppliers and the system operator. The relationship between the stakeholders is shown
in Figure 2.

The supplier When an update trigger is released, the supplier (e.g., the product
vendor) can choose in which form to make his update available to the system integrator
(e.g., the shipping company). In addition to the implementation of the actual update in the
form of (i) a binary and the supplementary meta information, the module can be specified
in form of a (ii) model and (iii) a formal behavior description. Utilizing these different
forms of exchange results in time saved along the exchange process and enables a staged
form of verification. The supplier can provide the system integrator with an adapted model
and/or a formal specification in advance, before the actual implementation of the module
has been completed.

As the system integrator requires information from the suppliers on how the module
to be installed will behave, the ideal way would be that both the integrator and the supplier
disclose all their information and offer complete transparency regarding his the functioning
of the system.

However, often both parties do not disclose internal information in order to pro-
tect the product design. Therefore, in the interaction diagram as depicted in Figure 2,
the vendors receive a reduced system model encompassing the modules requested from
them. In addition to the reduced system model also the related contracts are provided to
express what the supplier’s modules have to achieve. Here, the concept of services and
the principle of single concern, which places demands on the individual modules in terms
of the required range of services, isolates the individual functions from one another and
makes the modules independent of an integration platform. With the help of the reduced
system model and the contracts, the supplier receives distinct instructions for his work and
the tests to be performed.

Independent of the integrated system, static code analysis or software in the loop
testing procedures can be used to demonstrate contract satisfaction. At the same time,
the supplier also makes requirements for his individual module and can specify the



J. Mar. Sci. Eng. 2021, 9, 688 7 of 21

assumptions his module needs and guarantee the promised functionality. The supplier
has a vested interest in the fact that his module is built into the final system. It is therefore
in his own interest that his system is compatible with the overall system, so that certain
efforts regarding the adaptation of the submodule to the overall system can be accepted by
the supplier without having to reveal too much of his intellectual property. The supplier
itself can control how much of its intellectual property to make available to the integrator.
If no information about the internal implementation of the module is provided in form of a
black-box model, only the behavior along the interfaces is described.

The system integrator Providing test artifacts in early phases of the update process
allows the system integrator to check the integration conditions, to perform virtual in-
tegration testing (VIT) for compatibility and consistency, run a co-simulation with the
models, and perform an impact analysis to determine which other modules are affected
by the change. This enables incremental verification of the updated module before im-
plementation, as depicted in Figure 2 where the VIT can be performed before the final
verification test.

The role of the system integrator stands between the suppliers and the system operator
and is responsible for the composition of the individual components provided by the
suppliers. The system integrator can be involved in the development of sub-components as
well or may be solely responsible for the integration of the individual parts into a system
composition. For this, it is necessary to define the functional scope of the system in varying
granularity levels and from different perspectives in a model based engineering approach.

Within the system model, the task is to combine the loose ends of the sub-modules to
an integrated system. During this process inconsistencies, interferences, dead locks and
dependencies between individual modules can become present. Hence, the faultlessness of
the system composition to a possible approval authority needs to demonstrated in order
to obtain approval for the operation of the system. For such an approval, the integrator is
presented with minimum requirements and standards regarding safety and security from
external sources, which his system composition must comply with. To represent these
external requirements, the contracts can be utilized to reflect the desired system behavior
in a comprehensible way [22].

The system integrator further provides a reduced system model with only the neces-
sary information required for the supplier to define the scope in which the supplied module
needs to function. To define the required services at its interfaces, the system integrator
in the presented approach utilizes the contract’s assumptions along the interfaces, while
the supplier can verify whether its implemented services fulfill the defined assumptions.
If, for example, the guarantees of the module contract provided by the supplier fulfill
the assumptions of the system contract provided by the system integrator, the supplier’s
module can be integrated into the overall system. Moreover, the system integrator can
verify without a complete module implementation if a working composition of its system
configuration is valid, while the supplier would only be required to show that his module
works sufficiently within the range of the contract.

The system operator Finally, the system operator is always interested in working with
the most up-to-date, feature-rich and customized system, which also has water or road
approval. Therefore, information about the current system state is provided in exchange
for an adapted and updated system that is approved for the respective application. For this
reason, he will generate, evaluate and report back monitoring and diagnostic data, as well
as contract violations. The assumption-guarantee contracts can be used as observables and
monitored, so that early co-development of contracts can also be used here for evaluation.

All in all, one can speak of a triangular relationship in which each stakeholder has an
interest in the overall system retaining its approval whenever the internal composition,
external circumstances or laws change but is only willing to a certain extent to disclose
information for its own interests.



J. Mar. Sci. Eng. 2021, 9, 688 8 of 21

5. Enhancing the Traditional Development Process with
Assumption-Guarantee Contracts

In order to realize the overall process, it is necessary that the stakeholders involved
have a common way to define their requirements across all development phases and
to be able to integrate them into a common verification process with all participants,
without experiencing a disadvantage in the form of high additional effort or the disclosure
of protected intellectual property.

As pointed out in the Section 3, two things are necessary to be able to describe a SoS
formally and to be able to capture the extent of an update: a modular system architecture
and a formal behavior description at the interfaces of the modules. Starting with the
description methodology, the goal of the approach presented here is that the scope of an
update can be clearly delimited. For this it is necessary to select a compositional system
configuration approach, which makes it possible to arrange a total system from individual
parts. In order to cope with the exponentially growing complexity during the composition
process, structuring approaches such as layered design or component based design are often
applied in practice. Component based design is widely used in the automotive domain
(e.g., in the context of AUTOSAR [23]) as well as in the avionics domain (e.g., in the context
of Aeronautical Radio, Incorporated (ARINC) [24]). In addition, model-based approaches
such as the model-based development are applied independent of the domain for example
with tools and languages such as SysML, AADL or Matlab Simulink. Finally, there are
approaches of VIT (applied for example in Ptolemy [25] and Metropolis [26]), as well as
platform-based design [27].

A minimal example of a generic compositional SoS configuration can be seen in
Figure 3, with two sequential modules M1 and M2 connected along their interfaces with
connection a, b and c as well as the associated contracts CM1 , CM2 and CSoS.

Figure 3. A reduced example of a compositional SoS with two modules connected in series and
contracts attached to the parent module and the two sub-modules [22].

All of the approaches presented address the existing complexity of system composi-
tions with abstraction and refinement in their basic concept, both vertically across different
levels of abstraction and horizontally on the same level of abstraction. While layered design
and model based design focus on the vertical process, component-based design on the
horizontal process and platform-based design integrates both dimensions.

The use of contracts complements these existing approaches in that they make implicit
assumptions between system levels and at module interfaces explicit and provide a way to
formalize the behavior. Furthermore, it allows to extend the interface specification with
module behavior by introducing multiple viewpoints for non-functional properties. Thus,
if the products of different suppliers are to be combined in an overall system, the explicit
representation of the module properties allows the clear distribution of responsibilities and
verifiable integration by the system integrator [27].

An assumption-guarantee contract is described by a tuple C = (A, G) in which A
represents the assumption about the environment of the module M under which the
guarantee G contractually assures how M will perform [27].

An exemplary contract can be seen in Figure 4. Here the contract of the GPS of
an Integrated Bridge System (IBS) is enhanced and the assumptions and guarantees are
exemplified. For example, an assumption in this example is the occurrence of a frame
every 30 s. In combination with the other assumptions, the GPS can then guarantee the
calculation of position, speed, direction or altitude within a specified timeframe.



J. Mar. Sci. Eng. 2021, 9, 688 9 of 21

Figure 4. An exemplary modular perspective on an Integrated Bridge System enhanced with contracts
and an exemplary contract for the GPS module.

To be able to represent the compositional properties of the system and the update,
the symbols 4 , ∧ and

⊗
are used to represent the refinement, conjunction and composi-

tional relationships of the modules.
For the contracts CM1 =

(
AM1 , GM1

)
and CM2 =

(
AM2 , GM2

)
, depicted in Figure 3,

the composition of contracts CSoS = CM1

⊗
CM2 is given by [22,27]:

ACM1
⊗

CM2
= weakest

A

∣∣∣∣∣∣
A ∧ GM2 ⇒ AM1

and
A ∧ GM1 ⇒ AM2


GCM1

⊗
CM2

= GM1 ∧ GM2

Thus the assumption ACM1
⊗

CM2
is defined by the weakest Assumption A for which

A ∧ GM2 ⇒ AM1 and A ∧ GM1 ⇒ AM2 holds. Furthermore, the guarantee GCM1
⊗

CM2
is defined by the conjunction of GM1 ∧ GM2 .

By specifying the composition of a modularized system in this form, it becomes possi-
ble to check for properties, such as compatibility, refinement and abstraction. Moreover,
it is possible to run test scenarios without implementing the update or the entire system,
and thus check the system end-to-end solely on the contracts.

Possible Application Scenarios along the update process include thorough test cases
under a broad search space (e.g., all possible situations the contracts specifications allows)
in requirement-based testing, completeness verification, automatic test vector generation,
automatic observer generation and applicability in Hardware in the Loop (HIL), Software



J. Mar. Sci. Eng. 2021, 9, 688 10 of 21

in the Loop (SIL), Model in the Loop (MIL) testing as well as in monitoring on the system
in operation [27].

Furthermore, contracts do allow for an early detection of the impact of an update,
to incrementally verify only the parts affected by the change [28]. Finally, the compositional
characteristics can be linked to hierarchical assurance-cases, such that a (re-)certification
can be facilitated [22].

Further reasons for the use of VIT during the entire lifecycle of a software mod-
ule are possible cost savings in the diagnosis of functional components, the increasing
modularization of functionality via containerization and virtualization and the associated
service-oriented design of systems whose requirements can be converted directly into
contracts. The following chapters will show how the presented properties of contracts are
useful for the verification of updates and how they can be integrated into the development
and integration process.

6. Phases of the Update Process

In Section 3, the general update process was presented in an abstract way from a bird’s
eye view. Building on this, the following section will now take an internal view of the
higher-level phases. In doing so, it will be shown how the contracts are used and passed
on in each of the phases in order to achieve an increasingly enriched verification.

6.1. Design

As depicted in Figure 5, the update process begins with a trigger that initiates the
change and requirements management. Therefore, the existing design must be adapted
to the update. Starting with the update type, the impact of the change on the existing
system is analysed. A distinction is made between 3 different update types [28]: corrective,
perfective and adaptive updates.

Corrective Updates: Corrective updates are understood to be the correction of errors
in existing modules. In this way, it can be determined during the development time through
tests, simulations and VIT, but also during operation by monitoring the observables
obtained from the contracts, that misbehavior occurs which must be corrected. These can
be critical errors that violate a security or a safety property, so that such a bug must be
fixed as quickly as possible. Accelerated procedures such as continuous deployment
or a mandatory push and install on the clients that are in operation can be used here.
For corrective updates, bugs in an existing model of a module are fixed in the design phase.
Furthermore, the module contracts already exist and must also be renewed. However, it
is often the case that the contracts do not have to be adapted further, as the framework
conditions defined by the contracts do not have to be affected by the correction of the error.

Perfective Update: A perfective update optimizes an existing functionality. In the case
of an existing module, the aim of the update is therefore to improve performance, but also to
further expand the reliability of the module. Here, too, permanent monitoring can be used
to determine whether and under what circumstances modules are not delivering their full
performance or are at their limits. Based on the analysis results, countermeasures can then
be taken. For example, it is possible to make the performance of a module more efficient
by replacing an underlying algorithm, thus increasing the computation speed. Equivalent
to corrective updates, in most cases this only changes the internal implementation of
the module, but leaves the assumptions and guarantees of the module contracts largely
untouched, since the limit ranges in which the module functions have not changed.

Adaptive Update: In an adaptive update, a functionality is introduced into the ex-
isting system. The system is thus extended. This means that it must be determined how
the newly introduced module or the new function of a module fits into the overall sys-
tem. Thus, an impact analysis is carried out first to determine which dependencies exist
and whether chain reactions or inconsistencies occur. In addition, it is determined which
requirements the existing system has for the new function (e.g., which existing modules
access the functionality) and which conditions the module has for the system (e.g., which



J. Mar. Sci. Eng. 2021, 9, 688 11 of 21

resources does the new function require). Once the impact analysis has been performed
and the requirements identified, the models and contracts are derived, which in turn are
passed on to the VIT step and the implementation phase.

Figure 5. Design Phase of the Update Development Process.

The identified impact of each of the three update types then results in requirements
for the update and the existing system. These can then be transferred into the model
based design.

There the design is then divided again into the architectural changes to the previous
system, the functional specification of the update and the contracts. All three areas flow
into the model to be updated. The results are the analysis models for abstract verification
without actual realization of the module, as well as implementation models that can then
be transferred to implementation and configuration management.

The developed process does not specify a model-based design to which to adhere
when implementing changes that have been designed into a system. For the development
of a functional system model, a modeling framework such as MATLAB/Simulink or
Ptolemy can be applied. Functionality should be modeled in close conjunction with
the architecture. The systems environment can be modeled according to the specified
requirements of the system. This ensures early model verification and reduces failure rates
in later test stages. These functional models should be used for machine code generation of
the update package.

6.2. Virtual Integration Test

Introducing a new module or changing an existing functionality can lead to chain
reactions within the overall system. Individual modules are used by several functions,
so that dependencies and inconsistencies can occur that have not been considered. Even
in medium-sized models, dependencies between individual modules can no longer be
identified without a great deal of search effort and with certainty of completeness. At this
point the formal behavioral descriptions can be utilized to identify dependencies between
the module units and to check the interaction for correctness (as depicted in Figure 6). This
is where the second phase of the presented framework comes into play. The extended
model with formal contracts makes the temporal and functional processes and guarantees
evaluable in a virtual integration test.



J. Mar. Sci. Eng. 2021, 9, 688 12 of 21

Figure 6. Compositional Verification based on a Virtual Integration Test.

In the generic example in Figure 3, the contractually described composition of the
submodules is described as CM1

⊗
CM2 4 CSoS. This generic case can be used to show

which integration conditions must apply to an update.
The integration CM1

⊗
CM2 4 CSoS for the contracts CSoS = (A, G),

CM1 =
(

AM1 , GM1

)
and CM2 =

(
AM2 , GM2

)
holds if and only if A∧ GM1 ⇒ AM2 and A∧

GM2 ⇒ AM1 and GM1 ∧ GM2 ⇒ G.
An update may result in a broken system composition if the independent imple-

mentability property is violated, which is defined as follows:
For all contracts C1, C2, C

′
1 and C

′
2, if C1 is compatible with C2 and C

′
1 4 C1 and C

′
2 4

C2 hold, then C
′
1 is compatible with C

′
2 and C

′
1
⊗

C
′
2 4 C1

⊗
C2.

A contract in this context is compatible if and only if A 6= ∅. Furthermore, two
contracts are compatible if C1

⊗
C2 is fully described and compatible.

From this it can be deduced that the contractual compatibility of the modules is
violated if (i) C

′
1 is not compatible with C2, (ii) does not refine C1 or (iii) the contract

becomes inconsistent. This is the case when the guarantee of a contract remains unfulfilled
at all times.

In the virtual integration test, the introduction of the update is thus checked to see
whether it can be inserted into the overall network. This also makes it possible to check
the completeness and finiteness of the interactions. From the virtual integration test,
a supplementary release for the plans to update the module can be given in advance.

6.3. Implementation

The development phase builds on the implementation models and contracts. Since the
contracts have already been checked for correctness in a previous phase, they now serve in
the development phase as a benchmark for the contractually assured functional scope of
the implementation and enable the implementation to be checked by means of SIL tests
based on the assumptions and guarantees set.

The development phase otherwise follows standard best practices as depicted in
Figure 7. An iterative approach can be chosen as well as agile methods (e.g., Continuous
Deployment, DevOps).



J. Mar. Sci. Eng. 2021, 9, 688 13 of 21

Figure 7. Implementation Pipeline for the Module Update.

Furthermore, the Development of code should follow strict standards and tools for
code verification such as linting and static code analysis. The implementation models
are then followed by functional code, which is transferred to a source control system.
In addition to the software product consisting of the module units, this also holds the
contracts, which are transferred as metadata.

Finally, a version management system is used in conjunction with an automated build
and test environment. This ensures correct versioning, early builds and can support the link
between requirements, contracts and code. Contracts can directly be used as satisfaction
conditions during automated module tests. As a side effect, this produces traceability
of changes throughout the development process. After successful build and unit tests,
the update with the contract metadata is packaged for the test and deployment phases.

6.4. Variant Aware Software Test

Since CPS can display a high degree of variability, it is key to ensuring safety, that
possible combinations of functionality are tested before deployment. Within the proposed
process, verification is handled on different levels and with different goals:

• Module Testing: Single software modules are tested against their contracts during
the implementation Phase.

• VIT: as described in Section 6.2.
• Variant Aware Software Test: Different variants of the system are tested dynamically

as digital twins before deployment.
• System in the Loop Tests: Test the overall system for an applicable scenario space,

both virtual and with the actual sensors and actuators.

For the test case generation, the test data, the contracts, requirements and variant
configurations derived from the previous phases serve as an input. The tests include system
tests, package tests and module tests. The variant aware software test phase, as depicted in
Figure 8, assumes that the system including all its variants has been modeled in a model
based design environment. This means, that all possible artifacts that can be installed in or
on a system have two digital representations. On the one hand, as an architectural artifact
which has assigned all requirements, contracts and interfaces and on the other hand as a
functional model, either as machine code or as a functional component in a language such



J. Mar. Sci. Eng. 2021, 9, 688 14 of 21

as MATLAB/Simulink. With the use of a variant model, the artifacts of the architectural
model can be selected and reduced to possible systems [29].

Figure 8. Variant Aware Software Test before Release of the Update.

For example, a system might have either an RGB-Camera or a B/W-Camera. Thus, there
are two possible variants of the system, that need to be tested separately. Since the composi-
tion of modules may have hundreds to thousands configuration points, the combinatorics
can increase the search space intensely. Therefore, variants are chosen, that are representa-
tive for a range of possible combinations. These variant representative models then can
be used to generate a digital twin, incorporating the functional models. The digital twin
is then tested in a simulation environment. Multiple representative variants are chosen
for a system, ensuring the coverage of the complete possible configuration space. Specific
variants can then be marked as eligible for a certain update, if the test for the configuration
at hand has been passed and VIT was successful.

The variant-based software test can be performed in isolation from the physical sensors
and actuators by simulating the inputs and outputs of the SoS. Thus, the scenario space
can be covered completely or randomized. Furthermore, a System in the Loop approach is
possible, which integrates the physical system components.

When all test are successful and satisfy the requirements of the contracts the release
can be approved.

6.5. Deployment of the Update

If an update has been verified, it can be marked as released and is bundled into
a deployable (see Figure 9). A deployable contains one or multiple executables, their
respective contracts and an identification for the variants it may be deployed on.

The deployment can be fulfilled in two different ways:
A priori: If an update for a system variant has been developed, tested and released,

it is bundled and published to a server that on request by a client with the specified
configuration sends the appropriate update to the client.

On the fly: If a certain system requests an update, the configuration of the system can
be compared against the possible updates and their corresponding variants and a bundle
is then packaged by the server, taking the released updates and their contracts and sending
them to the system.



J. Mar. Sci. Eng. 2021, 9, 688 15 of 21

Figure 9. Signed and Encrypted Deployment of the Update.

The update package can now be transferred to the system in two different ways.
Either a transfer to the target client is forced via push, so that it is ensured that the update
is actually transferred, or it is requested by the client via pull request. In this case, the client
transmits a device configuration identifier that tells the server which system configuration
is involved, so that a suitable update package can be assigned.

The exchange is then secured by signing the client, server and the package, and the
server and client identify themselves to each other by means of certificates. The signed and
encrypted package is then transferred via a secure transmission to the target system, where
the authenticity of the package can be verified and installed on the target system using an
existing package management system.

The former is advisable in case of small fleets with high variability between each
system, while the latter is a more generalized approach that scales better with big fleets in
which the variability is high over the whole fleet but small between individual systems.

An existing implementation for providing the update packages between different
participants in the maritime domain could is the maritime connectivity platform, as it
provides a Maritime Identity Registry (MIR) for secure identification of the participants
and a Maritime Service Registry (MSR) for service discovery [30].

6.6. Monitoring during Operation

In the last phase, the update is on the vehicle and is put into operation. This does
not necessarily have to take place immediately after transmission and installation, as the
update package can also be activated later. For example, if a function is to be introduced
in time but already transferred to the target system, or if a function is already to be made
available on the client and is activated by an activation mechanism, the activation of the
update can be deferred.

In addition, a further stage is possible in that the module is activated but not yet live.
That is, the calculations and data collection are already active, but the functionality is not
yet made available to the other modules and the overall system. In this way, the module
can be tested for real environmental data and its behavior under real scenarios before final
activation of its functionality. In this way, any unforeseen behavior that was not considered
in the previous phases can be uncovered or tested for real-world scenarios that were not



J. Mar. Sci. Eng. 2021, 9, 688 16 of 21

considered beforehand. This approach is particularly effective with a large active fleet.
For example, the automotive manufacturer Tesla already uses an ‘inert feature’ in its fleet
to test new features based on thousands of real-world routes before activating it [31].

The contracts supplied by means of metadata now serve as the basis for observables in
this phase, defining the boundary conditions of module functionality by means of formal
assumptions and guarantees. This sets a framework that can be monitored by means of
an additional monitoring component (see Figure 10). It is important that the monitoring
component can automatically start the monitoring of the update based on the contracts
without the need to customize it itself or to have the module provide functionality for the
monitor, as this cannot be expected from the suppliers. One way to realize this is to track the
process via a central logging system. This way, the results of the respective functions can be
time-stamped and continuously monitored. An example is provided by the ISO standard
ISO/DIS 24060(en), which is currently under development and requires a Ship Software
Logging System (SSLS) for software on board of a ship. In order to provide compliant
information from the module to the SSLS the standards suggests “a data sentence message
structure defined as the VER specified in IEC 61162-1 and sent by equipment implementing
this standard. (encapsulated in 450 protocols with UDP datagrams)” [8].

Figure 10. Monitoring of Updated Module During Runtime.

The monitoring function can then monitor the communication flow between the
components and by means of the logging system and determine from the contracts if
there is a breach. In the event of a malfunction, this can be fed back directly to the system
integrator and the relevant supplier with the addition of the logbook and contracts, so that
they can promptly initiate a new update process.

7. Evaluation of an Adaptive Update to a Maritime Collision Avoidance System

In the following, the presented process is demonstrated on a maritime collision avoid-
ance system. The functionality of the system is reduced to the core-components depicted
in Figure 11: A sensor (here the radar module) as input, the collision avoidance module pro-
viding the calculation and a traffic display (here an ECDIS) visualizing the output of the
collision avoidance system. In this reduced system design, the ECDIS, in addition to the
nautical chart display, object-related information and sensor data, provides the naviga-
tor with a visual alarm in case of critical approach, as well as a maneuver suggestion.
The collision avoidance module is further subdivided into three sub-modules, with two al-
ready implemented (traffic analysis, collision detection) and one to be integrated via update
(conflict resolution).

The continuously running traffic analysis module is providing the collision detection
module a constant stream of the surrounding traffic. The collision detection module detects
upcoming critical situations and calculates the CPA and DCPA. The conflict resolution
module calculates a maneuver suggestion based on the situation-dependent COLREGs,



J. Mar. Sci. Eng. 2021, 9, 688 17 of 21

the detected traffic situation and assumed maneuvers of the other ships. The information
is provided to the traffic display and the captain sees an alarm as well as a maneuver
suggestion to avoid the upcoming collision.

The traffic analysis and collision detection alone can already provide an alarm for the
captain of the ship, to manually decide for a maneuver. However, integrating a new
functionality for automatic conflict resolution and maneuver suggestion further supports
the seafarer in its decision and reduces the possibility for human errors in a critical situation.

Figure 11. A collision avoidance system updated with a conflict resolution module as new functionality.

For each module of the SoS presented here, a contract was created that describes the
behavior of the respective module at its interfaces. Of these, the contracts for the radar
CR, for the collision avoidance module CCA and the traffic display CTD describe the top-level
behavior of the respective modules. One level lower, the traffic analysis module contract
CTA, the conflict detection module contract CCD, and the conflict resolution module contract
CCR introduced by the update, refine the behavior of the conflict avoidance parent module.
The radar and traffic display modules are not refined further.

For the purpose of demonstrating the procedure, we focus on the time constraints that
the respective modules and sub-modules have to fulfill and on which we will show how
the composition can be verified by an update along the overall process.

Specifically, the focus can be placed on the collision avoidance module. The previous
radar module is not affected by the update. Thus, on the input side of the collision avoidance
module, the assumption is satisfied by the output of the radar and does not change as a result
of the update. On the output side, however, a new interface description for the maneuver
suggestion must be introduced. For this purpose, a new guarantee is added to the existing
contract of the collision avoidance module. Furthermore, the new timing specifications of
the introduced functionality have to be declared in the guarantee of the collision avoidance
module and the assumptions and guarantees of the traffic display. The procedure will be
demonstrated in the following.

Design: The need to introduce a new function into the existing system triggers a new
update process. After the impact analysis has been performed against the architecture
model and the requirements and security analysis have been run, the system is redesigned
against the existing system model. In the process, architectural, functional and contractual
dimensions are redesigned. As shown in Figure 11, the first step in the design phase is to
add the new module to the model. In addition, the contracts that the new module has to
fulfill are generated.

There are two major changes in existing system model. First, the module is sequen-
tially connected after the conflict detection module, since it depends on its results. Second,
additional connections are introduced (shown in light gray dashed lines in Figure 11), so
that in addition to the direct passing of the conflict parameters to the traffic display, a con-
nection through the conflict resolution module to the traffic display can also be established.

The conflict resolution contract has the assumption Receive detected collision parameters.
It is equal to its predecessor module’s guarantee but without time restrictions. The reason



J. Mar. Sci. Eng. 2021, 9, 688 18 of 21

to omit the timing in the assumption lies in the randomness of the occurrence of a collision.
Only when a collision scenario is present a conflict is detected and a manuever needs to
be provided.

The result of the design phase is a revised component model, which has been extended
by the new module and introduces a new contract. This new system composition is now
verified in the following phases.

Virtual Integration Testing and Implementation: As shown in Section 6.2, the follow-
ing composition must already apply to the existing collision avoidance module
CTA

⊗
CCD 4 CCA.

Due to the introduction of the new module CCR, the following must now hold for the
module after the update CTA

⊗
CCD

⊗
CCR 4 CCA.

However, this refinement condition is not satisfied here, since there is no guarantee for
the maneuver proposal so far, as this feature is only introduced by the update and it has to
be provided with a time condition. Since the contract CCR states that a maneuver proposal
can be generated within [0, 500] ms, but for this it relies on the previous calculation results
from the traffic analysis module and conflict detection module, the composition must therefore
include a guarantee for the sequential calculation of the final result. The guarantees of the
CTA and CCD contracts guarantee their results in [0, 50] ms and [0, 200] ms, respectively.
Thus, since the modules run sequentially, it takes 750 ms in the worst case to generate after
a maneuver proposal in the event of a conflict. However, since the contract CCA has no such
guarantee so far, the guarantee: ‘Provide a maneuver proposal in [0,750]’ ms is introduced.

Accordingly, the composition is fulfilled, since the sequence of guarantees along
the interfaces is compatible and the composition refines the enclosing contract. Finally,
the contract CTD of the traffic display must be supplemented by the assumption that a
maneuver proposal arrives and that a visualization can be prepared for the captain within
a set time period based on the available data.

Variant Aware Software Test: The software test phase can now build on the results
of the VIT, the requirements analysis and the model-based design. Here, the different
granularity levels of the system presented in Section 6.4 can be tested. At the smallest level,
the modules are tested both at level 0: radar, collision avoidance and the traffic display, as well
as at level 1: traffic analysis, collision detection, collision resolution individually. In addition
to traditional software tests, SIL and MIL tests at the module level, it can be verified that
the actual realized modules meet the timing requirements of their contracts by staying
within the specified time limits simulative or in real scenarios. This is then repeated in
the composition at level 0 for the collision avoidance module. Since it is already known from
the VIT that the composition formula is correct, all that remains in this phase is to check
that the actual implementation satisfies the promised guarantees under all circumstances.
Once all tests have been passed, the module update can be released.

Deployment and Operation: The modeled, contractually secured, tested and packed
module can now be released via a push or pull update. As already described in Section 6.5,
the package is signed and transferred to the client via an encrypted connection.

On the client the package is checked and unpacked. The update binary of the collision
avoidance module is then installed and activated or kept inactive. In addition to the installed
module, a monitoring system exists on which the existing observables of the updated
contracts CCA and CTD are updated. In addition, the contract CCD is integrated as an
observable. The monitoring system on the client can then continuously measure the
behavior of the module interfaces of the collision avoidance module and detect breaks in
the contractual behavior between input and output. For example, should a conflict be
identified at level 0 via the collision avoidance module within 250ms, a manuever suggestion
must be provided at the output interface of the collision avoidance module not later than
500ms after the upcoming collision has been detected. If a maneuver suggestion is not
given in time, a feedback can be made to the system owner, the operator and/or supplier
and the process can be triggered again.



J. Mar. Sci. Eng. 2021, 9, 688 19 of 21

8. Conclusions and Outlook

The present work has mapped a continuous verification framework based on module
contracts along the update process of maritime systems. For this purpose, a framework
was presented that depicts all phases of the development process including feedbacks.
Furthermore, the interactions between the involved parties were shown and the exchange
between the stakeholders was demonstrated. For each phase, it was then shown how
contracts can be used for verification and how the transitions between individual phases
should be designed. Finally, the entire process was demonstrated on an adaptive update
for a maritime collision avoidance system.

In conclusion, the process presented represents a first approach to enable measurability
analysis along the update chain. The use of contracts enables formal assurance, testing,
and monitoring capabilities that will be necessary as maritime systems evolve toward
autonomous systems. It is also a useful complement to simulative approaches such as the
OSP, which do not provide information about deterministic behavior.

The approach, however, remains dependent on the implementation of the contracts by
the involved stakeholders. In practice, it is often the case that descriptions of the subsystems
are only provided in the form of prose and are not formally transferred. However, since
a worst-case approach can be used here, the additional effort is justifiable. A transfer
of the interface description into contracts can also be assumed to be reasonable for the
stakeholders in the process.

As an outlook for future work, therefore, hybrid approaches of the process are conceiv-
able, in that assumptions must be made about modules that are not contractually described
or are brought together with software modules that are not defined.

Furthermore, an update process enriched by contracts on the basis of modular devel-
opment approaches can also be used to link a modular assurance case, so that an update
also leads to the required security proofs being updated on the corresponding certification
side. In addition, rollbacks and degraded modes can be described and preventively incor-
porated into the system, so that in the event of a downgrading of the system functionality,
the system can be transferred to another state in a controlled manner.

In summary, the approach presented forms a basis to which existing methods can be in-
corporated and which simultaneously supplements existing approaches into an integrative
verification approach for updates based on contracts.

Author Contributions: Conceptualization, methodology, validation, formal analysis, investigation,
resources, data curation and writing: G.H.; C.P.H.; review, editing, supervision: A.H.; All authors
have read and agreed to the published version of the manuscript.

Funding: This work has been funded by the German Federal Ministry of Education and Research
(BMBF) in the project Step-Up!CPS (Funding reference number: 01IS18080D). The responsibility for
the content remains with the authors.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Request to the corresponding author of this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Barbier, M.; Bensana, E.; Pucel, X. A generic and modular architecture for maritime autonomous vehicles. In Proceedings

of the 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), Porto, Portugal, 6–9 November 2018; pp. 1–6,
ISSN: 2377-6536. [CrossRef]

2. Karlsen, A. D-Class Data smart Classification. In Proceedings of the Dynamic Positioning Conference, Houston, TX, USA,
9–10 October 2018.

3. Bauwens, J.; Ruckebusch, P.; Giannoulis, S.; Moerman, I.; Poorter, E.D. Over-the-Air Software Updates in the Internet of Things:
An Overview of Key Principles. IEEE Commun. Mag. 2020, 58, 35–41. [CrossRef]

http://doi.org/10.1109/AUV.2018.8729765
http://dx.doi.org/10.1109/MCOM.001.1900125


J. Mar. Sci. Eng. 2021, 9, 688 20 of 21

4. CIRM/BIMCO Joint Working Group. Industry Standard on Software Maintenance of Shipboard Equipment v1.0. 2017. Available online:
https://www.cirm.org/publications/industry_standards/IndustryStandardonSoftwareMaintenanceofShipboardEquipmentv1
-0.pdf (accessed on 23 June 2021).

5. Ibrion, M.; Paltrinieri, N.; Nejad, A.R. Learning from Failures in Cruise Ship Industry: The Blackout of Viking Sky in Hustadvika,
Norway. Eng. Fail. Anal. 2021, 125, 105355. [CrossRef]

6. Degani, A. The Grounding of the Royal Majesty. In Taming HAL: Designing Interfaces Beyond 2001; Degani, A., Ed.; Palgrave
Macmillan US: New York, NY, USA, 2003; pp. 100–120. [CrossRef]

7. IACS. Rec. No.153—Recommended Procedures for Software Maintenance of Computer Based Systems on Board; Technical Report Rec 53;
IACS: London, UK, 2018.

8. ISO. Ships and Marine Technology—Software Maintenance Requirements of Shipboard Equipment; ISO DIS 24060(En); International
Organization for Standardization: Geneva, Switzerland, 2021.

9. Pedersen, T.A.; Glomsrud, J.A.; Ruud, E.L.; Simonsen, A.; Sandrib, J.; Eriksen, B.O.H. Towards simulation-based verification of
autonomous navigation systems. Saf. Sci. 2020, 129, 104799. [CrossRef]

10. Tripakis, S. Bridging the semantic gap between heterogeneous modeling formalisms and FMI. In Proceedings of the 2015
International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), Samos, Greece,
19–23 July 2015; pp. 60–69. [CrossRef]

11. Wilde, T.; Hess, T. Forschungsmethoden der Wirtschaftsinformatik. Wirtschaftsinformatik 2007, 49, 280–287. [CrossRef]
12. Perabo, F.; Park, D.; Zadeh, M.K.; Smogeli, O.; Jamt, L. Digital Twin Modelling of Ship Power and Propulsion Systems: Application

of the Open Simulation Platform (OSP). In Proceedings of the 2020 IEEE 29th International Symposium on Industrial Electronics
(ISIE), Delft, The Netherlands, 17–29 June 2020; pp. 1265–1270, ISSN: 2163-5145. [CrossRef]

13. Thomas, D.; O’Malley, S. The Necessity of Standards for Maritime Informatics in Ship Operations. In Maritime Informatics;
Lind, M., Michaelides, M., Ward, R., Watson, T.R., Eds.; Progress in IS; Springer International Publishing: Cham, Switzerland,
2021; pp. 33–45.

14. DEIS Project. Digital Dependability Identities and the Open Dependability Exchange Meta-Model. 2019. Available on-
line: https://deis-project.eu/fileadmin/user_upload/DEIS_D3.1_Specification_of_the_ODE_metamodel_and_documentation_
of_the_fundamental_concept_of_DDI_PU.pdf (accessed on 23 June 2021).

15. Structured Assurance Case Metamodel (SACM), v2.1. p. 90. Available online: https://www.omg.org/spec/SACM/2.1/About-
SACM/ (accessed on 23 June 2021).

16. Reich, J.; Schneider, D.; Sorokos, I.; Papadopoulos, Y.; Kelly, T.; Wei, R.; Armengaud, E.; Kaypmaz, C. Engineering of Runtime
Safety Monitors for Cyber-Physical Systems with Digital Dependability Identities. In Computer Safety, Reliability, and Security;
Casimiro, A., Ortmeier, F., Bitsch, F., Ferreira, P., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 12234,
pp. 3–17.

17. Ihirwe, F.; Mazzini, S.; Pierini, P.; Debiasi, A.; Tonetta, S. Model-Based Analysis Support for Dependable Complex Systems in
CHESS. arXiv 2020, arXiv:2009.06089.

18. Warg, F.; Blom, H.; Borg, J.; Johansson, R. Continuous Deployment for Dependable Systems with Continuous Assurance Cases.
In Proceedings of the 2019 IEEE International Symposium on Software Reliability Engineering, WoSoCer Workshop, Berlin,
Germany, 27–30 October 2019; IEEE Computer Society: Washington, DC, USA, 2019.

19. Vanherpen, I.K. A Contract-Based Approach for Multi-Viewpoint Consistency in the Concurrent Design of Cyber-Physical
Systems. Ph.D. Thesis, University of Antwerp, Antwerpen, Belgium, 2018; p. 170.

20. Nuzzo, P.; Sangiovanni-Vincentelli, A.L.; Bresolin, D.; Geretti, L.; Villa, T. A Platform-Based Design Methodology With Contracts
and Related Tools for the Design of Cyber-Physical Systems. Proc. IEEE 2015, 103, 2104–2132. [CrossRef]

21. Neukirchner, M.; Stein, S.; Schrom, H.; Ernst, R. A software update service with self-protection capabilities. In Proceedings
of the 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010), Dresden, Germany, 8–12 March 2010;
pp. 903–908. [CrossRef]

22. Hake, G.; Feuerstack, S.; Hahn, A. Towards Recertification of Modular Updates in Integrated Maritime Systems of Systems. In
Computer Safety, Reliability, and Security; Casimiro, A., Ortmeier, F., Bitsch, F., Ferreira, P., Eds.; Springer International Publishing:
Cham, Switzerland, 2020; Volume 12234, pp. 50–63. [CrossRef]

23. Fürst, S.; Bechter, M. AUTOSAR for Connected and Autonomous Vehicles: The AUTOSAR Adaptive Platform. In Proceedings
of the 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop (DSN-W),
Toulouse, France, 28 June–1 July 2016; pp. 215–217. [CrossRef]

24. Delange, J.; Pautet, L.; Plantec, A.; Kerboeuf, M.; Singhoff, F.; Kordon, F. Validate, simulate, and implement ARINC653 systems
using the AADL. ACM SIGAda Ada Lett. 2009, 29, 31–44. [CrossRef]

25. Cardoso, J.; Siron, P. Ptolemy-HLA: A Cyber-Physical System Distributed Simulation Framework. In Principles of Modeling;
Lohstroh, M., Derler, P., Sirjani, M., Eds.; Series Title: Lecture Notes in Computer Science; Springer International Publishing:
Cham, Switzeland, 2018; Volume 10760, pp. 122–142. [CrossRef]

26. Balarin, F.; Watanabe, Y.; Hsieh, H.; Lavagno, L.; Passerone, C.; Sangiovanni-Vincentelli, A. Metropolis: An integrated electronic
system design environment. Computer 2003, 36, 45–52. [CrossRef]

27. Benveniste, A.; Caillaud, B.; Nickovic, D.; Passerone, R.; Raclet, J.B.; Reinkemeier, P.; Sangiovanni-Vincentelli, A.; Damm, W.;
Henzinger, T.A.; Larsen, K.G. Contracts for System Design. Found. Trends Electron. Des. Autom. 2018, 12, 124–400. [CrossRef]

https://www.cirm.org/publications/industry_standards/Industry Standard on Software Maintenance of Shipboard Equipment v1-0.pdf
https://www.cirm.org/publications/industry_standards/Industry Standard on Software Maintenance of Shipboard Equipment v1-0.pdf
http://dx.doi.org/10.1016/j.engfailanal.2021.105355
http://dx.doi.org/10.1057/9781403982520_9
http://dx.doi.org/10.1016/j.ssci.2020.104799
http://dx.doi.org/10.1109/SAMOS.2015.7363660
http://dx.doi.org/10.1007/s11576-007-0064-z
http://dx.doi.org/10.1109/ISIE45063.2020.9152218
https://deis-project.eu/fileadmin/user_upload/DEIS_D3.1_Specification_of_the_ODE_metamodel_and_documentation_of_the_fundamental_concept_of_DDI_PU.pdf
https://deis-project.eu/fileadmin/user_upload/DEIS_D3.1_Specification_of_the_ODE_metamodel_and_documentation_of_the_fundamental_concept_of_DDI_PU.pdf
https://www.omg.org/spec/SACM/2.1/About-SACM/
https://www.omg.org/spec/SACM/2.1/About-SACM/
http://dx.doi.org/10.1109/JPROC.2015.2453253
http://dx.doi.org/10.1109/DATE.2010.5456925
http://dx.doi.org/10.1007/978-3-030-54549-9_4
http://dx.doi.org/10.1109/DSN-W.2016.24
http://dx.doi.org/10.1145/1653616.1647435
http://dx.doi.org/10.1007/978-3-319-95246-8_8
http://dx.doi.org/10.1109/MC.2003.1193228
http://dx.doi.org/10.1561/1000000053


J. Mar. Sci. Eng. 2021, 9, 688 21 of 21

28. Bebawy, Y.; Guissouma, H.; Vander Maelen, S.; Kröger, J.; Hake, G.; Stierand, I.; Fränzle, M.; Sax, E.; Hahn, A. Incremental Contract-
based Verification of Software Updates for Safety-Critical Cyber-Physical Systems. In Proceedings of the 2020 International
Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 16–18 December 2020.

29. Guissouma, H.; Lauber, A.; Mkadem, A.; Sax, E. Virtual Test Environment for Efficient Verification of Software Updates for
Variant-Rich Automotive Systems. In Proceedings of the 2019 IEEE International Systems Conference (SysCon), Orlando, FL,
USA, 8–11 April 2019; pp. 1–8.

30. Weinert, B.; Park, J.; Christensen, T.; Hahn, A. A Common Maritime Infrastructure for Communication and Information Exchange;
IALA: St Germain en Laye, France, 2018.

31. Ross, P.E. Tesla Reveals Its Crowdsourced Autopilot Data—IEEE Spectrum. 2016. Available online: https://spectrum.ieee.org/
cars-that-think/transportation/self-driving/tesla-reveals-its-crowdsourced-autopilot-data (accessed on 15 June 2021).

https://spectrum.ieee.org/cars-that-think/transportation/self-driving/tesla-reveals-its-crowdsourced-autopilot-data
https://spectrum.ieee.org/cars-that-think/transportation/self-driving/tesla-reveals-its-crowdsourced-autopilot-data

	Introduction
	Related Work
	Overarching Update Verification Process
	Subdivision of the Exchange Process between the Involved Stakeholders
	Enhancing the Traditional Development Process with Assumption-Guarantee Contracts
	Phases of the Update Process
	Design
	Virtual Integration Test
	Implementation
	Variant Aware Software Test
	Deployment of the Update
	Monitoring during Operation

	Evaluation of an Adaptive Update to a Maritime Collision Avoidance System
	Conclusions and Outlook
	References

