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Abstract: Passive acoustic monitoring (PAM) is a noninvasive technique to supervise wildlife. Acous-
tic surveillance is preferable in some situations such as in the case of marine mammals, when the
animals spend most of their time underwater, making it hard to obtain their images. Machine learning
is very useful for PAM, for example to identify species based on audio recordings. However, some
care should be taken to evaluate the capability of a system. We defined PAM filters as the creation of
the experimental protocols according to the dates and locations of the recordings, aiming to avoid the
use of the same individuals, noise patterns, and recording devices in both the training and test sets. It
is important to remark that the filters proposed here were not intended to improve the accuracy rates.
Indeed, these filters tended to make it harder to obtain better rates, but at the same time, they tended
to provide more reliable results. In our experiments, a random division of a database presented
accuracies much higher than accuracies obtained with protocols generated with PAM filters, which
indicates that the classification system learned other components presented in the audio. Although
we used the animal vocalizations, in our method, we converted the audio into spectrogram images,
and after that, we described the images using the texture. These are well-known techniques for audio
classification, and they have already been used for species classification. Furthermore, we performed
statistical tests to demonstrate the significant difference between the accuracies generated with and
without PAM filters with several well-known classifiers. The configuration of our experimental
protocols and the database were made available online.

Keywords: passive acoustic monitoring (PAM); audio classification; texture classification; PAM-
filters; experimental protocols for audio classification; statistical tests

1. Introduction

The techniques of passive acoustic monitoring (PAM) are tools to automatically detect,
localize, and monitor animals [1]. Passive refers to the fact that the system is noninvasive,
as it does not interfere with the environment. It is an acoustic system because the surveil-
lance is performed through audio signals. For example, a recording device connected
to the Internet could acquire data from an environment and send the captured data to a
classification system that identifies which species are nearby.

In the case of marine animals, the use of audio data might be preferred over image
data [2]. The reasoning for that is because visual survey methods for some marine animals,
such as whales, may detect only a fraction of the animals present in the area. This happens
because visual observers can only see them during the very short period when they are on
the surface, and also because visual surveys can be undertaken only during daylight hours
and in relatively good weather.

Research based on audio of marine mammals has been conducted for different pur-
poses. For example, Sayigh et al. [3] found that bottlenose dolphins are likely to use
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signature whistles to identify each other. Furthermore, Sayigh et al. [4] indicated that
identification does not happen with other kinds of vocalizations. Still considering the
same species, King et al. [5] verified the role of vocalizations in complex social abilities
and relationships. For another species of dolphins, the Indo-Pacific humpback dolphin,
Caruso et al. [6] recorded and classified echolocation vocalizations to investigate the distri-
bution and acoustic behavior of the species.

Examples of recent research related to PAM in the aquatic environment is the segmen-
tation of dolphin vocalizations [7], aiming at finding regions of interest in long-time audio
files, a task that is costly and time consuming when performed by humans. The use of
acoustic indicators to monitor coral reefs [8] is another example of research on PAM in
the aquatic environment. In another vein, Rountree et al. [9] highlighted the importance
of acoustic monitoring in freshwater, an area in which there are many research gaps to
be explored.

Global warming, industrial fishing, oil spills, and other factors cause much damage
to and many changes in the environment of marine mammals. By virtue of this, it is
very important to supervise marine mammals. The practical use of species identification
was applied to the North Atlantic right whales, focusing on environmental conservation.
Collisions between ships and these animals are one of the main threats to this species [10].
In order to avoid these collisions, in 2013, there was an international challenge [11] to
automatically identify if a given audio contained or did not the vocalizations of such
species. The data from the challenge were collected by floating buoys. This kind of
recognition can help ships change their route to avoid a possible collision. Beyond this
challenge, there are other research works on North Atlantic right whales’ identification in
the scientific literature [12–14]. In fact, the situation of this species is so critical, that another
challenge was proposed in 2015 [15]. In this challenge, the database was composed of
aerial images from these animals, and the classification task was to identify each individual,
to help researchers track the health and general status of the individuals, focusing on
conservation efforts.

Although PAM techniques and machine learning are useful in marine research, there
are two potential hazards concerning machine learning that we may note in systems
related to species classification. The first one is the risk of using vocalizations of the same
individuals both in the training and test sets simultaneously; this may lead the system
to be able to recognize the individuals instead of the species. Not only the vocalization
of the same individual can bias the system, but even a characteristic noise presented in
several samples of a class can be distinguished from noises of other classes, which is the
second hazard. This can happen when samples of the same class are recorded in the same
location with the same devices; the environment creates noise, and the recording devices
may distinguish the audio files. Based on these issues and aiming at more reliable results
for PAM systems, we proposed the concept of PAM filters, which means trying to use the
same individual always in the same set, whether it be the training or test set.

In the database we used, it was possible to separate the individuals from the same
class by location and date of record, trying our best to avoid the recognition of individuals,
devices, and noise. Experiments were also conducted with a randomized version of the
database, and the results were fairly disparate: as we expected, the accuracy rates decreased
when the filters proposed here were applied, indicating the influence of other aspects of the
audio in the learning system. The main result of our investigation was to collect a database
where a very reliable testing protocol was created, and we made it all available, so other
researchers can validate their own classification systems.

The rest of this document is organized as follows: in Section 2, we present the database,
the novel idea, the concepts related to this research, and the methodology. The results are
presented in Section 3 and discussed in detail in Section 4. Final remarks are presented in
Section 5.
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2. Materials and Methods

In this section, we describe the database used for the experimentation (Section 2.1),
the novelty (Section 2.2), and the creation of the protocols and their peculiarities (Section 2.3).
Furthermore, we present the theoretical concepts of the research in Section 2.4, and with these
all these discussed, the methodologies of the experiments are presented in Section 2.5.

2.1. Watkins Marine Mammal Sound Database

Marine mammals are an informal group of animals that rely on a marine ecosystem
for their existence. According to the taxonomy committee from The Society for Marine
Mammalogy [16], marine mammals are classified into three orders and several families,
genera, species, and subspecies; some of them may already be extinct. In this work, we
used the Watkins Marine Mammal Sound Database (WMMSD) [17]. The audio files were
recorded from the 1940s to the 2000s, and the species in the audio files were identified by
biologists. Recently, this database has been gaining attention from the PAM community [18,19].

The database is composed of almost 1600 entire tapes. Each tape is composed of several
minutes of recording, and they may contain vocalizations of several species. Smaller cuts
of these long-length audio files are available on the website, usually with vocalizations of
only one species. They are divided into two sections on the website, “all cuts” and “best
cuts”. “Best cuts” represents high-quality and low-noise cuts. “All cuts” contains all the
audio files from the “best cuts” plus other ones, which are lower in quality and noisier.

We chose to use the “best cuts” for the classification task, as noise reduction and
segmentation were not the focus of this work. “Best cuts” contains 1694 audio files from
32 species of marine mammals. There are 25 samples that contained vocalizations of more
than one species, and those were removed as we did not intend to handle multilabel
classification, nor audio segmentation.

The website also provides a metadata file for each audio cut. The data contain
additional information, such as the date and the location of the record. However, most
metadata files do not present information for all their fields. Furthermore, several classes
have most of their samples recorded for just a few locations and dates. This led us to
suspect that they may contain samples of the same individual. Furthermore, the noise
pattern in such samples was homogeneous, so using the metadata files, it was possible to
see that the cuts were extracted from the same long-length tapes.

Other research found that the recent scientific literature used the same database for
species classification [18,19]. Trawicki [18] to discriminate species of the infraorder Cetacea
using Mel-frequency cepstral coefficients and hidden Markov models. The database used
in that work was composed of 521 samples from 11 classes, and the highest accuracy rate
obtained was 84.11%. Lu et al. [19] performed the classification and identification of marine
mammals using deep and transfer learning. The database used was composed of only three
classes, and the number of samples was uncertain, as they used segments obtained from
large audio files. The highest accuracy obtained was 97.42%. Although some high-accuracy
rates were achieved in those works reported in the literature, it is worth mentioning that
none of those research works demonstrated any concern about the division of the database
aiming to avoid, for example, the occurrence of samples taken from the same individuals,
both in the training and test sets. In fact, this concern was not even expected in those works,
since they did not take into account the PAM filter analysis, which is introduced in this
work in Section 2.2.

2.2. Pam Filter

In another audio classification task, music genre classification, Flexer [20] defined the
concept of the “artist-filter”, which means to have all samples of the same artist either in the
training or test set. The author noticed that experiments with samples from the same artists
in the training and test sets presented higher accuracies and lower standard deviations,
which suggested that music genre classification systems were learning the artist instead of
the genre.
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We considered that experiments with randomized sets for training and testing may
produce overestimated results of species classification, because the classifiers may be
making decisions based on underlying patterns. This is based on the information presented
in the metadata files of the WMMSD, which indicates that there are many samples of the
same individuals and, also, the same pattern of noise was present in several samples of the
same class. The concept of “artist-filter” led us to conceive of “PAM filters”, where we tried
to use the same individual’s vocalization either in the training or test set, never in both
them. In our experiments, this was achieved by separating the files by location and date
of recording. As a consequence, we also separated the noise pattern of the environment,
which can be easily distinguished. Furthermore, we probably separated the devices used
for recording.

Figure 1 presents four different vocalizations of the species Eubalaena glacialis. All
the spectrograms were generated with the same parameters. According to the metadata
files, Figure 1a,b were extracted from the same long-length tape, recorded on the same
day, with the same devices. Vertical lines that represent the same noise in the lower area of
Figure 1a,b are discernible. The vocalization in Figure 1a is described as “grunt”, and in
Figure 1b, it is described as “one long groan”.

(a) Recorded in 1956 (b) Recorded in 1956 (c) Recorded in 1981 (d) Recorded in 1981

Figure 1. Different vocalizations of Eubalaena glacialis.

Figure 1c,d also share the same tape, date, and devices. Both vocalizations were
described as “moan”. Although noise was not visible in the vertical lines, nor reported
in the metadata, a texture pattern resembling “salt and pepper” was present all over the
spectrogram, probably generated by the sound of the ocean.

2.3. Watkins Experimental Protocols

To investigate the impact of PAM filters, we created three different protocols of the
same database, with and without PAM filters. They were called Watkins Experimental
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Protocols (WEPs). WEP#1 did not have PAM filters applied; on the other hand, WEP#2 and
WEP#3 did. They are described in Sections 2.3.1–2.3.3, and their specifications are available
online [21]. It is important to remark that we tried to use as many samples and classes of
the database as possible, but due to the limitations of the locations and dates, the protocols
had different numbers of samples and classes.

2.3.1. Watkins Experimental Protocol #1: Ten-Fold Cross-Validation

The first protocol was defined without concerning the PAM filter. We used the
database randomly divided into ten folds for cross-validation, and classes with fewer
than ten samples were removed. Table 1 presents the species, the number of samples used
in WEP#1, the number of locations where the samples were recorded, and the number of
samples present at each location.

Table 1. Composition of WEP#1: 31 species. Columns also present the number of locations were the samples were recorded,
the number of samples recorded at each location, and the number of samples per class.

Species Number of Locations Samples by Location Number of Samples in WEP#1

Balaena mysticetus 2 1; 49 50
Balaenoptera acutorostrata 1 17 17

Balaenoptera physalus 2 5; 45 50
Delphinapterus leucas 4 1; 6; 16; 27 50

Delphinus delphis 3 2; 15; 35 52
Erignathus barbatus 3 3; 9; 15 27
Eubalaena australis 2 7; 18 25
Eubalaena glacialis 4 3; 12; 19; 20 54

Globicephala macrorhynchus 4 5; 16; 18; 26 65
Globicephala melas 4 11; 12; 14; 28 65
Grampus griseus 3 1; 21; 45 67

Hydrurga leptonyx 1 10 10
Lagenodelphis hosei 1 87 87

Lagenorhynchus acutus 3 12; 12; 31 55
Lagenorhynchus albirostris 2 20; 37 57

Megaptera novaeangliae 3 1; 17; 46 64
Monodon monoceros 3 4; 10; 36 50
Odobenus rosmarus 3 1; 16; 21 38
Ommatophoca rossi 3 11; 19; 20 50

Orcinus orca 5 1; 2; 5; 8; 19 35
Pagophilus groenlandicus 1 47 47

Peponocephala electra 1 56 56
Physeter macrocephalus 6 2; 2; 2; 9; 12; 33 60

Pseudorca crassidens 2 11; 48 59
Stenella attenuata 2 11; 54 65
Stenella clymene 2 14; 49 63

Stenella coeruleoalba 4 8; 12; 27; 34 81
Stenella frontalis 1 58 58

Stenella longirostris 2 1; 113 114
Steno bredanensis 1 50 50
Tursiops truncatus 3 1; 10; 13 24

Number of samples 1645

2.3.2. Watkins Experimental Protocol #2: Training/Test Protocol

As listed in Table 1, some species, such as Balaenoptera acutorostrata, had all its records
in the same place. This indicated that the samples might contain the vocalizations of the
same individual, and also, the noise pattern generated by the environment and the devices
were usually similar. Such species were removed.
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To create an experimental protocol using the PAM filters, we scanned the metadata
files to separate the database according to the locations, and each location of each class was
allocated exclusively into the training or the test set.

Furthermore, in other cases, all samples from the same class were recorded at only
a few different locations. For species where the samples belonged to only two locations,
the location with more samples went to the training set and the second location to the
test set. Classes with three or more locations were distributed, trying to achieve a 70% for
training and 30% for testing split.

Table 2 presents the data used in WEP#2 and WEP#3. Classes with an unfilled number
of samples were not in the protocol. WEP#2 is composed of 24 classes, with 908 samples
for training and 412 for testing.

Table 2. Data used in WEP#2 and WEP#3. Classes and the number of samples of the training and test set of WEP#2 and the
two folds of WEP#3. Unfilled cells mean the class was not used, while 24 classes were used in WEP#2 and 20 in WEP#3.

Species
Number of Samples

WEP#2 WEP#3
Train Test Fold 1 Fold 2

Balaena mysticetus 49 1 - -
Balaenoptera acutorostrata - - - -

Balaenoptera physalus 45 5 - -
Delphinapterus leucas 27 23 23 27

Delphinus delphis 35 17 35 17
Erignathus barbatus 15 12 15 12
Eubalaena australis 18 7 - -
Eubalaena glacialis 31 23 31 23

Globicephala macrorhynchus 34 31 31 34
Globicephala melas 37 28 28 37
Grampus griseus 45 22 45 22

Hydrurga leptonyx - - - -
Lagenodelphis hosei - - - -

Lagenorhynchus acutus 31 24 31 24
Lagenorhynchus albirostris 37 20 37 20

Megaptera novaeangliae 46 18 46 18
Monodon monoceros 36 14 36 14
Odobenus rosmarus 21 17 21 17
Ommatophoca rossi 30 20 20 30

Orcinus orca 19 16 19 16
Pagophilus groenlandicus - - - -

Peponocephala electra - - - -
Physeter macrocephalus 33 27 33 27

Pseudorca crassidens 48 11 11 48
Stenella attenuata 54 11 11 54
Stenella clymene 49 14 14 49

Stenella coeruleoalba 42 39 42 39
Stenella frontalis - - - -

Stenella longirostris 113 1 - -
Steno bredanensis - - - -
Tursiops truncatus 13 11 13 11

Sums 908 412 542 539

2.3.3. Watkins Experimental Protocol #3: Two-Fold Cross-Validation

The third and last protocol was two-fold cross-validation. It was created to use all
the samples either for training or testing, improving the reliability of the results. We could
not increase the number of folds due to the number of locations, since eight classes had
all their samples recorded at only two locations (see Table 1), so increasing the number of
folds to three would result in a major cut of the classes.
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However, a minor cut of the classes was still necessary. For example, the class Stenella
longirostris had recordings taken from two locations, one of them with one sample and the
other one with one-hundred thirteen. If it was used in the cross-validation, there would be
one-hundred thirteen samples of a class tested in a model trained with just one sample of
the class, an unfair task. Empirically, we decided to remove classes that held fewer than ten
samples in either one of the folds. Table 2 presents the details of WEP#3. It used 20 class.
These two folds held 542 and 539 samples each.

2.4. Theoretical Framework

In this section, we present the theoretical information about the experimental protocol
used in our experiments. First, we describe how the audio signal was manipulated and the
spectrograms generated (Section 2.4.1). Then, we detail the feature extraction (Section 2.4.2)
and the classifiers with which we experimented (Section 2.4.3). We also discuss the deep
learning architecture used (Section 2.4.4) and, lastly, the evaluation metric calculated to
compare the results (Section 2.4.5).

2.4.1. Signal

Several research works that addressed audio classification performed the feature
extraction in the visual domain, typically using spectrogram images. Investigations have
already been developed to handle tasks such as infant crying motivation [22], music genre
classification [23], and music mood classification [24]. The visual domain has also been
used with animal vocalizations, in tasks such as species identification and detection [13,25].

Spectrograms are time–frequency representations of a signal, and they can be plotted
into an image. From a digital audio, a spectrogram can be generated using the Discrete
Fourier Transform (DFT). It shows the intensity of the frequency values as time varies.
An example of a spectrogram image of a vocalization of a marine mammal is presented in
Figure 2. The X-axis represents time, the Y-axis information about the frequency, and the
Z-axis (i.e., the color intensity of the image pixels) the intensity of the signal.

The spectrogram of Figure 2a represents a vocalization of a Delphinapterus leucas
individual. The audio was a bit more than one second long. Its metadata file described it
as a “moan”. It was recorded in 1965, from Coudres Island, Canada. Figure 2b represents a
vocalization of a Eubalaena glacialis individual. The audio was a bit longer than two seconds.
The metadata also described the vocalizations as “moan”. It was recorded on the coast of
Massachusetts, USA, in 1959.

2.4.2. Features

Texture is an important visual attribute in digital images. In the case of spectrograms
in particular, texture is a very prominent visual property. In this vein, the textural con-
tent of spectrograms has been used in several audio classification tasks, such as music
genre classification [26], voice classification [27], bird species classification, and whale
recognition [13].

In [28], the authors proposed the Local Binary Pattern (LBP). The texture of an image
is described using a histogram. Each cell of the histogram holds the number of occur-
rences of a binary pattern. One binary pattern is calculated for each pixel and is based
on its neighborhood. Equation (1) is computed for each pixel for the extraction of the
LBP histogram.

LBPP,R =
P−1

∑
p=0

s(gp − gc)2p, (1)
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(a) Delphinapterus leucas (b) Eubalaena glacialis

Figure 2. Examples of the spectrograms of the WMMSD.

The parameter P represents the number of neighbor pixels to be taken into account,
and R stands for the radius, the distance between the pixel and its neighbors. gc and gp
stand for the gray level of the central pixel (i.e., the pixel for which the LPB has been
calculated) and the gray level of one neighbor, respectively. The function s is defined in
Equation (2).

s(x) =

{
1, x ≥ 0
0, x < 0

(2)

An example of the computation of the LBP in one pixel of an image is illustrated in
Figure 3, considering the parameters P = 8 and R = 1.

The binary pattern begins in the top left and goes clockwise. The pattern of the central
pixel of Figure 3 is defined as the sequence of bits:

(01011011)2.

It is possible to conceptualize the binary pattern as a decimal number. This is computed
by applying the sum of binary digits times their power of two (2n):

(0 × 128) + (1 × 64) + (0 × 32) + (1 × 16) + (1 × 8) + (0 × 4) + (1 × 2) + (1 × 1) = 9110;

therefore, the decimal number of the pattern from Figure 3 is 91.
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Figure 3. Example of the computation of the LBP in a grayscale image. Adapted from [29].

Changes in the parameter P imply changes in the number of features: eight neighbors’
binary described generate 256 possible patterns (28). LBP with P = 8 presents several
nonuniform patterns, which are binary sequences that present more than two bitwise
changes, for example: the binary pattern in Figure 3 is nonuniform; it presents six bitwise
changes. Usually, LBP is used with P = 8, R = 2, and gathering together all the nonuniform
patterns into just one feature, it results in 59 features. However, Ojala et al. [30] observed
that nonuniform patterns do not contain the fundamental properties of texture, and they
suggested to sum up all the nonuniform patterns in the same feature.

2.4.3. Classifiers

To analyze the impact of the PAM filters, we tried several classifiers to observe their
performances. The first classifier considered in this work was the well-known K-Nearest
Neighbors (KNNs). This is an instance-based algorithm, which means it does not produce
a model; it only stores the instances of training. During testing, the algorithm computes the
distance between each test sample to each training sample. The prediction of a test sample
is based on the classes of the nearest neighbors. The parameters of KNN are the distance
metric and K, the number of neighbors. Other simpler classifiers used in our experiments
were Naive Bayes (NB), a probabilistic classifier that is known to assume the independence
of the features, and Decision Trees (DTs), a tree composed of conditional statements created
using information gain or impurity metrics.

Another classifier selected for the research was the Support Vector Machine (SVM),
a binary classifier proposed by Cortes and Vapnik [31]. It can be easily applied to multi-
class problems using one of the following strategies: one-vs.-one or one-vs.-all. Three
considerable benefits of the SVM are the kernel method, the maximum-margin hyper-
plane, and the soft margin. The kernel method consists of mapping the feature space into
another feature space, dimensionally higher, where the data can be linearly separable.
The maximum-margin hyperplane divides the data by taking into account that the nearest
points on each side are equally distant from the hyperplane. The soft margin is a technique
to reduce overfitting, and it treats the C samples nearest to the margin as outliers and,
with that, increases the distance between the classes. The parameters of SVM are C and the
kernel function (which may have its own parameters).

Ensembles of classifiers based on decision trees were also used here, as they were
recently considered the state-of-the-art in many machine learning tasks [32]. These are
bagging, Random Forest (RF), Extremely Randomized Trees (ERTs), AdaBoost (AB), and
Gradient Boosting (GB). The classifier bagging builds several instances of classifiers from
random subsets of the training database. RF combines the concept of bagging, but with
the idea of random subsets of features per classifier. ERTs are similar to random forest,
the differences being in the choice of the attributes and in the definition of cut-points, which
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are fully random. AB generates new classifiers by increasing the weight of samples that
were wrongly classified by the previous models. Then, the outcome is obtained by the
weighted predictions of all created models. GB is similar to AB, but the new classifiers are
created using only the residual error from the previous classifier.

2.4.4. Deep Learning

To diversify the experiments of this work, we also executed deep learning tests. We
used a pretrained neural network fine-tuned with the training samples, similar to what was
implemented by Lu et al. [19]. As is common in convolutional neural networks, we used
the spectrograms as the input. The deep learning model was used here in such a way that
it provided features, in a non-handcrafted fashion, and it also performed the classification.
Therefore, in the deep learning experiments, the classifiers described in Section 2.4.3 and
the features described in Section 2.4.2 were not applicable.

Residual Networks-50 layers (ResNet-50) was proposed by He et al. [33] as a prize-
winning network in competitions on detection and localization in images. The authors
introduced the concept of the shortcut connection to neural networks, where the output of
a layer is connected to the input of more than one of its following layers. ResNets are easier
to train because the jump connections between two layers help the gradient to flow and
reduce the probability of exploding or vanishing gradients. In this investigation, we used
ResNet-50; however, He et al. [33] tested up to ResNet-152, and it outperformed ResNet-50;
yet, the gain in accuracy was small when compared to the additional computational costs.

2.4.5. Evaluation Metric

To evaluate the results of our experiments, we used the accuracy metric. It is described
in Equation (3).

Acc =
#CP

#samples
, (3)

where #CP stands for the number of samples correctly predicted and #samples indicates
the total number of tested samples, the ones that were correctly and wrongly predicted.

2.5. Experimental Methodology

The database, the novelty, the experimental protocols, and the theoretical concepts of
this investigation were previously presented in Sections 2.1–2.4, so now, we describe each
step of our research based on such explanations. First, we present the non-deep learning
experiments of this work, and they are illustrated in Figure 4.

Figure 4. Illustration of the general methodology of this work.

The first step was to acquire the database. WMMSD is available online, but the
download is exclusively sample-by-sample. A crawler script was developed to download



J. Mar. Sci. Eng. 2021, 9, 685 11 of 16

all the samples of the database and the metadata files. After that, as a preprocessing task,
all the samples were converted to the same sample rate, 22,050 Hz. To accomplish this task,
we used LibRosa [34] (version 0.6.3; python package for music and audio analysis, McFee,
Brian et al.; Austin, TX, USA). The audio files were converted to spectrogram images using
the software SoX (version 14.4.2, maintained by Chris Bagwell et al., Dallas, TX, USA) [35].
The features of the LBP were extracted with the software library Scikit-Image (version 0.16,
created by van der Walt et al., Berkeley, CA, USA) [36]. The features from the training sets
were used to create a model with the library Scikit-Learn (version 0.22, Pedregosa et al.,
Montreal, QC, Canada) [37]. The features of the testing samples were, then, predicted by
the model. Finally, the accuracy rates were calculated.

The deep learning methodology is slightly different. A specific representation of it is
presented in Figure 5. A pretrained ResNet-50 was fine-tuned with the spectrograms of the
training samples (the same generated in Figure 4). After that, the spectrograms of the testing
samples were predicted with the neural network. The deep learning experiments were
carried out using MATLAB (version 2019b, The MathWorks, Inc., Natick, MA, USA) [38].

Figure 5. Illustration of the methodology of the deep learning experiments.

All the experiments were conducted in the three Watkins experimental protocols. For
WEP#1, the protocol composed of 31 classes, samples were randomly divided into ten
folds for cross-validation, without using the same individuals or the same noise pattern
in the training and test sets. Both WEP#2 and WEP#3 involved PAM filters. WEP#2 had
24 classes and was a training and test protocol, and WEP#3 had 20 classes and was a
two-fold cross-validation protocol. The number of classes and of samples were not the
same due to the limitations observed in Table 1.

3. Results

Table 3 presents the results obtained with the three protocols presented in Section 2.3,
WEP#1 without PAM filters and WEP#2 and #3 with PAM filters. We tried to use as much
of the database as possible, but the lack of variety in the locations and dates of the samples
imposed different limitations on each protocol, as shown in Tables 1 and 2.

The best results found using the WEP#1 were with deep learning and the classifier
SVM, 78.10%σ2.73 and 64.62%σ3.49, respectively. The protocol had 1645 samples from
31 classes. It was randomly divided into ten folds for cross-validation and did not apply
the PAM filter.

On the other hand, the protocols with the PAM filters presented much lower results,
with or without deep learning. The best results with WEP#2 were 24.27% and 19.17%,
and it was a training/testing protocol. Although it had fewer samples than WEP#1, 1320,
it also had fewer classes, 24. These results were achieved with deep learning and the
KNN classifier.

The two-fold cross-validation protocol with PAM filters, WEP#3, also obtained its
best results with deep learning and the KNN (but with a different number of neighbors).
The best accuracies were 21.38%σ1.82 and 18.86%σ5.16. WEP#3 contained fewer samples
than WEP#1, 1081, and it also dealt with fewer classes, 20.
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Table 3. Experimental results in the WMMSD. Features extracted with the LBP and several different classifiers. Experiments
with a deep learning architecture.

Classifiers Parameters
Acc. and Standard Deviation (When Applicable)

WEP#1 (31 Classes) WEP#2 (24 Classes) WEP#3 (20 Classes)

NB Gaussian naive Bayes 38.78%σ3.76 18.45% 16.56%σ2.29

DT
Splitting with entropy 39.89%σ3.82 11.65% 12.39%σ0.47

Splitting with Gini impurity 43.25%σ2.80 10.44% 10.36%σ0.74

KNN

Manhattan distance, K = 1 59.53%σ4.51 18.45% 17.02%σ1.76

Manhattan distance, K = 3 61.03%σ3.64 16.02% 17.29%σ3.46

Manhattan distance, K = 5 61.08%σ3.13 17.48% 17.38%σ4.38

Manhattan distance, K = 7 59.54%σ3.36 16.50% 17.38%σ4.90

Manhattan distance, K = 11 59.13%σ4.06 17.48% 16.09%σ4.12

Euclidean distance, K = 1 57.16%σ4.32 19.17% 17.20%σ2.03

Euclidean distance, K = 3 57.83%σ3.56 17.72% 17.20%σ3.33

Euclidean distance, K = 5 58.20%σ3.60 18.20% 18.86%σ5.16

Euclidean distance, K = 7 57.53%σ3.46 17.96% 17.94%σ5.42

Euclidean distance, K = 11 56.29%σ3.22 17.72% 17.38%σ4.39

SVM Grid search 64.62%σ3.49 13.35% 13.69%σ1.36

Ensembles

AdaBoost 12.09%σ3.55 01.46% 09.62%σ0.22

Bagging 50.75%σ3.72 13.11% 13.13%σ1.26

Extremely randomized trees 46.91%σ4.66 16.02% 14.24%σ1.51

Gradient boosting 54.54%σ3.78 12.38% 11.84%σ0.31

Random forest 47.29%σ4.51 13.11% 15.07%σ2.43

Deep learning ResNet-50 78.10% σ% σ% σ2.73 24.27%%% 21.38% σ% σ% σ1.82

The results indicated that it was more likely to achieve better accuracies without
PAM filters, since WEP#1 presented accuracies much higher than the other two protocols,
WEP#2 and WEP#3, which applied PAM filters. Therefore, the outcome corroborated the
hypothesis that PAM based on machine learning can be biased by individuals, the devices
used in the recording, and the noise pattern. In fact, we could easily notice the same noise
pattern in the samples recorded on the same date and at the same location.

In Table 4, we present the best results obtained in Table 3, but also experimenting with
the same classes of WEP#3 in the arrangements of the protocols WEP#1 and WEP#2. Therefore,
the columns designated with “20 classes” present results with the same classes and samples,
the difference between them being that WEP#1 was a 10-fold cross-validation protocol without
PAM filters and WEP#2 was a training and testing protocol with PAM filters.

The differences between the accuracy rates within WEP#1 were more expressive with
deep leaning and the KNN, when K = 5. For WEP#1, the experiments with a fewer number
of classes presented lower accuracy rates, instead of what was expected. Probably, this
happened specifically due to the 11 classes that were removed. Most of them were not
suitable for the PAM filters due to the lack of variety, and this made them easier to classify.
For example, one of these classes was Steno bredanensis: it had 50 samples, and all of them
were recorded on 4 September 1985, in the Mediterranean Sea; the metadata files describe
the locations of the recordings, either close to Sicily or Malta, which are close to each other.
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Table 4. Best results obtained in Table 3, also testing exactly the same subset from WEP#3 in the protocols WEP#1 and
WEP#2. The number of classes and the number of samples for training and testing also presented as (#training; #testing).
The values are approximated where there is cross-validation.

Classifiers Parameters

Acc. and Standard Deviation (When Applicable)

WEP#1 WEP#2 WEP#3

31 Classes 20 Classes 24 Classes 20 Classes 20 Classes
≈ (1481; 164) ≈ (973; 108) (908; 412) (683; 398) ≈ (541; 540)

KNN

Euclidean distance,
K = 1 57.16%σ4.32 56.28%σ4.94 19.17% 19.60% 17.20%σ2.03

Euclidean distance,
K = 5 58.20%σ3.60 52.05%σ3.08 18.20% 17.84% 18.86%σ5.16

SVM Grid search 64.62%σ3.49 62.99%σ4.80 13.35% 15.08% 13.69%σ1.36

Deep learning ResNet-50 78.10% σ% σ% σ2.73 73.44% σ% σ% σ3.21 24.27%%% 25.38%%% 21.38% σ% σ% σ1.82

Within WEP#2, the differences between the rates were smaller, since there was more
diversity in both sets of classes (20 and 24). One of the four classes that was used in
the original definition of WEP#2, but not in WEP#3, was Stenella longirostris, which had
one-hundred thirteen samples recorded from Hawaii in 1971 and just one other sample
recorded in 1981 from the Atlantic Ocean, making it impracticable to use with cross-
validation and PAM filters.

Yet, in Table 4, the difference between the results obtained with the same samples
and classes remained similar to what was observed in Table 3. Randomizing a database of
vocalizations of marine mammals can lead to overestimated results, if the same individuals,
noise patterns, and recording devices are presented in both the training and test sets. This
can even make a 10-fold cross-validation protocol less reliable.

The low accuracy rates obtained with all protocols, especially WEP#2 and WEP#3,
were a consequence of a real-world database, composed of samples that were recorded over
several different decades. Furthermore, some species of the database can share the same
biological family or even genus, and similar species can produce similar vocalizations.

4. Discussion

Deep learning presented the best results for all protocols. While the SVM presented
the second best accuracy in WEP#1, the KNN, a much simpler classifier, outperformed
SVM in the two PAM filter protocols, WEP#1 and WEP#2. The ensemble of classifiers is
considered the state-of-the-art for several problems [32], but in our experiments, they did
not perform very well, especially AdaBoost. The decision tree performed poorly. Naive
Bayes presented better results than the SVM in the PAM filter protocols, but also performed
poorly for WEP#1. There was a huge difference between the results with and without
PAM filters.

It is important to reiterate the potential of ResNet-50. One deep learning architecture
outperformed all the other classifiers, and this architecture was not trained from scratch.
The initial weights were generated with a general-propose image database [39] and the fine-
tuning was only carried out with the vocalizations of marine mammals in the spectrogram
format, similar to the idea of Lu et al. [19].

The negative impact caused by PAM filters on the accuracy rates be due to more than
one reason. First, PAM filters aim to put the same individuals either in the training or test
sets. Furthermore, the samples recorded on the same dates and at the same locations are
likely to share the same recording devices and ambient sounds. Therefore, for WEP#1, dif-
ferent folds might share individuals, pattern noises, and recording devices. The application
of PAM filters removed such underlying features and decreased the accuracy rates, as we
expected. In other words, if the particularities of the samples are not taken into account
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during the arrangement of experimental protocols, the evaluation of a PAM system might
be overestimated.

Further, we performed the Friedman statistical test [40,41] on the accuracy rates
obtained with each combination of the protocols and classifiers from Table 3. The test
compared the means of at least three samples; it is similar to Analysis Of Variance (ANOVA),
but nonparametric. In our case, the samples were the protocols of the database, two with
PAM filters and the other one without them. The null hypothesis of the Friedman test was
that there was no difference between the samples. The result of the Friedman test indicated
that at least one of the samples (protocols) was significantly different from another one,
with α < 0.05.

At this point, to find which one was different from the others, we executed the
Wilcoxon signed-rank test, in pairs of protocols. Since there were three samples, we also
applied Bonferroni correction to avoid the statistical error of Type 1. Therefore, now,
αb < 0.167. The null hypothesis of the Wilcoxon test argues that there is no significant
difference between the pairs. The hypothesis was retained only with the pair WEP#2 and
WEP#3, and in both comparisons with WEP#1, it was rejected.

5. Conclusions

PAM systems based on machine learning can be used to support several different
application tasks. However, the evaluation protocol is a critical point that must be carefully
crafted, so as not to perpetrate the wrong assumptions, which could compromise the
system as a whole.

The novelty of this research, PAM filters, aimed to avoid the same individual, noise
pattern, and record device in both the training and test sets, in order to better analyze
the performance of a species classification system. In our results, the use of PAM filters
decreased the accuracy rates with several different classifiers, indicating that a PAM system
may learn other aspects of the audio, and this can lead to an overestimation of the system.

Unfortunately, audio wildlife databases with information such as dates, locations,
individuals, and devices used in the recordings are not easily found. However, our results
suggested that they must be used to create appropriated experimental protocols. The main
outcome of this research was the definition of a reliable experimental protocol, which is
available online with the database [21]. With that, other PAM investigations can validate
their own classification systems.

In general, the accuracy rates we found with all protocols were unsatisfactory, espe-
cially the protocols with the PAM filters, and that provided us room for improvement.
In future works, we will try to explore the similarity between species of the same genus
with hierarchical classification, and we intend to apply noise reduction and resampling
techniques to balance the database.
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