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Abstract: Intelligent predictive methods have the power to reliably estimate water saturation (Sw)
compared to conventional experimental methods commonly performed by petrphysicists. However,
due to nonlinearity and uncertainty in the data set, the prediction might not be accurate. There
exist new machine learning (ML) algorithms such as gradient boosting techniques that have shown
significant success in other disciplines yet have not been examined for Sw prediction or other reservoir
or rock properties in the petroleum industry. To bridge the literature gap, in this study, for the first
time, a total of five ML code programs that belong to the family of Super Learner along with boosting
algorithms: XGBoost, LightGBM, CatBoost, AdaBoost, are developed to predict water saturation
without relying on the resistivity log data. This is important since conventional methods of water
saturation prediction that rely on resistivity log can become problematic in particular formations such
as shale or tight carbonates. Thus, to do so, two datasets were constructed by collecting several types
of well logs (Gamma, density, neutron, sonic, PEF, and without PEF) to evaluate the robustness and
accuracy of the models by comparing the results with laboratory-measured data. It was found that
Super Learner and XGBoost produced the highest accurate output (R2: 0.999 and 0.993, respectively),
and with considerable distance, Catboost and LightGBM were ranked third and fourth, respectively.
Ultimately, both XGBoost and Super Learner produced negligible errors but the latest is considered
as the best amongst all.

Keywords: well log DATA; water saturation; machine learning; boosting; super learner

1. Introduction

Fluid saturation, in particular, water saturation, is a critical parameter for formation
evaluation, reserve estimation, and future field planning. The estimated values of water
saturation are fed into both reservoir static and dynamic models that are used to esti-
mate original oil/gas in place (OOIP, OGIP) and consequently form the basis for future
production forecasts and the determination of the economic viability of the discovered
reservoir. Owing to its great significance, water saturation determination has always been
an active area of research in petrophysics, and because of that, a variety of methods have
been developed through the past decades and are still ongoing. We categorized all these
methods into two main categories: (1) direct methods and (2) indirect methods.
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Direct water saturation methods are mainly designed and implemented to produce
water saturation data. In this regard, (a) laboratory analysis of rock samples and (b)
empirical estimation using resistivity log data are the most typical forms. Laboratory-based
methods such as Retort method and Dean–Stark and Soxhlet extraction are assumed to
be accurate, however, these methods consider the rock sample has representative fluid
saturation, which practically is not possible except for very expensive uncommon sampling
methods such as sponge core barrel or pressure core barrel [1,2]. In addition, they are
exhaustive, time-consuming, and provide discrete data points. For example, the Retort
method is a technique of heating crushed core samples up to 650 ◦C and measuring
water and oil volumes driven off. Moreover, Dean–Stark extraction is a technique for
measurement of water and oil saturation by distillation extraction when the water in the
core is vaporized by boiling solvent, then condensed and collected in a calibrated trap [1].
It can be seen that such methods are destructive, and considering the importance of the
samples, they cannot be used in other experiments. Other laboratory approaches such
as using rock centrifuge, displacing fluid, and mercury-air capillary pressure curve for a
water-air system are expensive, time-consuming, and non-destructive.

Despite the accuracy, laboratory measurements are usually not available for all wells,
while log data are commonly acquired in the majority of the wells; furthermore, continuous
information across the well is gathered. Determination of fluids saturation is one of the
main objectives of well logging, while resistivity is a key to water saturation. In order
to utilize resistivity log data for water saturation determination, empirical relations are
applied. The most universally practical way is the equation developed by Archie (Archie,
1942) [3–6], which employs log-driven resistivity and porosity values to compute water
saturation. However, this equation was later modified to include tortuosity factor to
account for the pore throats in the reservoir, which was shown to be a function of porosity
to determine the resistivity factor, given by Equation (1), [1–5]:

Sn
w =

aRw

ϕm × Rt
(1)

where a is the tortuosity factor, m cementation factor, n saturation exponent, ϕm matrix
porosity, Rw resistivity and Rt is observed bulk resistivity.

What is more, the data represents only the initial state and cannot be used for satu-
ration forecasts. It means that numerical model prediction might be a promising tool for
optimization of expenses and filling the gaps in well log data. The exact computation of
water saturation using Archie’s formula is based on determination of accurate values of
Archie’s parameters a, m, and n. These parameters are ideally assessed from laboratory
data. However, these parameters are usually taken as constant values for clean, clastic
quartz reservoirs [1], which is not the case that can be found commonly in practice.

Well logging, although very common, could be expensive, thus we may skip running
specific tools in a well. There exist cases when a resistivity log is not available due to
the tool size limitation. Apart from that, the data obtained from the resistivity log might
be unreliable in view of unfavorable geology. In recent years, due to its huge potential,
application of machine learning (ML) in geosciences has generated considerable research
interest. ML techniques can help to improve petrophysical properties prediction, log
interpretation, to optimize core analysis planning and logging service, and to reduce the
cost of laboratory measurements. As a result, there has been extensive research regarding
the application of artificial intelligence (AI) techniques in well log interpretation [7], shear
sonic log prediction [8], and prediction of various reservoir properties such as porosity,
permeability, water saturation, lithofacies, and wellbore stability [9–15].

Numerous studies have shown an accurate prediction of petrophysical parameters
from well log data in uncored wells. For example, total organic carbon (TOC) prediction
in an unconventional well and permeability estimation in a conventional well were con-
ducted by utilizing support-vector regression (SVR) [16]. Different combinations of gamma
ray, formation resistivity, neutron porosity, and bulk density logs underwent training
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to predict core measurements. Results revealed SVR method accuracy and reliability in
TOC and permeability estimation from well-log data. Another ML technique, artificial
neural network (ANN), was successfully utilized for permeability prediction from log
data in uncored wells [17] and water saturation prediction from wireline logs in sandstone
formations [18,19].

Some models revealed a capability in fluids saturation forecasts, cutting expenses
on well logging. For example, an unsupervised class-based ML algorithm was utilized
to classify the input petrophysical data, such as gamma ray (GR), total porosity (PHIT),
effective porosity (PHIE), formation sigma (SIGM), and open hole oil saturation [20]. In this
study, seven classes were selected following time series modeling with multiple time-lapse
runs on each of the seven selected classes. Next, analyses were conducted using Facebook’s
open-source forecasting tool Prophet. Results showed a good validation of oil saturation
measurements during a natural depletion period [20].

Some studies proved that there is no need to calculate complex coefficients from
Archie’s equation, presenting a good estimation of the water saturation. Authors of the
study [21] demonstrated a new approach based on radial basis function neural (RBFNN)
for equations of water saturation from four conventional logs, including sonic (DT), deep
resistivity (LLD), density (RHOB), and neutron porosity (NPHI) in a carbonate reservoir. It
was concluded that the performance of the proposed model is considerably superior to
the empirical models, which was also repeated in a similar study [21]. In addition, it was
showed by L. Aliouane et al. [22] that the RBF neural network architecture is able to predict
formation permeability, porosity, and water saturation using laboratory measurements of
the cores and well-log data.

In order to predict water saturation, various machine learning algorithms are utilized.
For example, clustering algorithms were proposed and tested on resistivity well-logs in
work of [23], namely: fuzzy C-means clustering, Gustafson–Kessel algorithm, and Gath–
Geva clustering. The authors chose unsupervised methods because they do not require real
labeled data. Study [24] presented an application of the local linear neuro-fuzzy (LLNF)
model in estimating reservoir water saturation from well logs. This was followed by [25]
aiming to evaluate fluid saturation in oil sands by means of ensemble tree-based algorithms.
Later on [26], support vector machine, decision tree forest, and tree boost methods were
employed to predict water saturation of Mesaverde Tight Gas Sandstones located in Uinta
Basin. In paper [27], the multilayer perception (MLP-) and kernel function-based least-
squares support vector machine (LS-SVM) techniques were utilized to develop predictive
models for water saturation. Furthermore, an intelligent structure named robust committee
machine (RCM) for water saturation prediction was introduced [28].

Various well log data and petrophysical properties measured in the lab are used as
input parameters in different algorithms to predict water saturation in sandstone and
carbonate reservoirs. For example, a water saturation model was constructed based on
the lithofacies identified in different wells [29], or ANN was developed to predict a water
saturation, while porosity, permeability, and height above free water level were used as the
input data [30].

Among the machine learning methods used in practice, gradient tree boosting [31] is
a technique that stands out in many applications. This method is also known as gradient
boosting machine (GBM), or gradient boosted regression tree (GBRT). In the last two
decades, boosting algorithms have been the most widely used ones in data science to
achieve state-of-the-art results [32–34]. Boosting is a meta-algorithm based on an idea of
gradually aggregating numbers of simple algorithms, called weak learners, to obtain a final
strong learner. More specifically, each weak learner is optimized to minimize the error on
the training data using the sum of the previous weak learners’ predictions as an additional
input [35,36]. This is conducted by dividing the training data and using each part to train
different models or one model with a different setting and then using a majority vote, the
results are combined together. The Adaboost was the first successful method of boosting
discovered [37,38] for binary classification. Based on the work of Friedman [31], who



J. Mar. Sci. Eng. 2021, 9, 666 4 of 23

introduced gradient boosting of decision trees, several implementations have been recently
developed. Three effective methods of gradient boosting based on decision trees have been
proposed, namely: XGBoost [39], CatBoost [40], and LightGBM [41].

Following what was said above, AdaBoost can be useful for comparatively small
datasets, while scalable algorithms are required for much larger datasets. To resolve this
requirement, XGBoost, LightGBM, and CatBoost are intended to be employed. XGBoost
is a parallel tree boosting system, which is designed to be more flexible and portable and
efficient. XGBoost applies the loss feature to a regularization term that helps construct
more generalizable versions. In return, XGBoost is the most recently used algorithm from
a design viewpoint to model proxy reservoir simulations. Many researchers recently de-
clared the successful implementation of boosting algorithms applications in petrophysics
and reservoir characterization as the proof of reliability to be applied for water saturation
prediction [42–46]. Another powerful and flexible implementation of tree-based gradient
boosting is LightGBM, such as XGBoost. To maximize concurrent learning, it leverages
network connectivity algorithms. To speed up the training process and decrease memory
usage, it utilizes a histogram-based algorithm. Additionally, instead of level-wise, Light-
GBM grows trees leaf-wise. In ensemble learning, the tree growth technique is usually
level-wise, which can be an inefficient method. Although XGBoost and LightGBM provide
several benefits, CatBoost may provide a more effective approach while remaining scalable
when a large number of categorical features are present in the dataset [41].

The new approaches were successfully employed in business, academia, and com-
petitive machine learning [47]. While built on structurally similar ideas, these libraries
slightly differ on how decision trees are grown or how categorical variables data are han-
dled, and only investigation can validate which performs best. Ensemble modeling is a
robust method to enhance the model’s performance. Super Learner [48,49] is known as
stacking ensembles. Van der Laan et al. [48] was the first who proposed this algorithm in
biostatistics, while Polley and van der Laan [49] developed the detailed algorithm.

In the petroleum industry, there could be a significant prediction error in a single
machine learning model while another could perform well. Authors believe Super Learners
can further enhance predictive ability by stacking prediction results from algorithms that
learn from the base algorithm. Therefore, although huge research has been carried out
in recent years, the accuracy of prediction should be improved by testing more machine
learning techniques and their combinations, e.g., in petrophysics. Hence, the purpose of
this study is to describe and examine boosting methods for water saturation prediction
compared with the Super Learner that has never been examined before, to the best of our
knowledge, due to its newness. Moreover, we aimed to remove the dependency of such
predictions on resistivity logs, which are necessary for water saturation determination.
Finding an accurate prediction model will reduce the cost of core-based measurements and
well-logging services. Ultimately, it will increase the accuracy of well log interpretation,
where a certain type of data could be missing.

2. Methodology
2.1. Dataset Preparation

Well log data (Gamma, density, neutron, sonic, PEF) from 11 wells drilled in a sand-
stone reservoir in the Russian Federation were used for this study and considered as a
feature (including the entire log dataset) to develop the model, while 7 wells out of 11,
were used for training the model and the rest for final validation.

On the input dataset, we used a 4-fold cross-validation scheme. To begin, each dataset
was divided equally into 4 folds at random, and the distribution of each fold was tested to
ensure there were no substantial variations in the distribution of the entire dataset. One-
fold of samples was used as test or evaluation data for each iteration, while the remaining
3 folds of samples were used as training to match the model. On validation data, the fitted
model was then used to predict water saturation. The iteration process proceeded until
all sample folds were expected. In this case, all samples in the dataset were predicted
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using the model fitted without being used as training data themselves. This method of
cross-validation scheme eliminated the possibility of overfitting to a fixed train dataset
while simultaneously ensuring that all datasets were used to their full capacity. For better
representation, a schematic of K-fold cross-validation is shown in Figure 1.

Figure 1. Schematic of K-fold cross-validation.

Two separate approaches, one by including and the second one by excluding the
PEF log, along with their corresponding datasets, were created and labeled, A and B,
respectively. This was conducted to examine if tested ML methods can produce results with
the least dependency on input data, especially those that might not always be available in
petroleum industry more frequently, here PEF (photoelectric factor). To create the datasets,
5 readily available different well logs including: GR, sonic (DT), neutron-porosity (NPHI),
formation density (RHOB), and photoelectric factor (PEF) were used for input into the
algorithms. Two different approaches, as stated earlier, were carried out, which involved
developing different ML techniques using data sets A and B, respectively. While both
datasets benefitted from having 7 training wells and 4 blind tests, where the input features
for dataset A were GR, DT, NPHI, RHOB, and PEF and for the dataset B, only GR, DT, NPHI,
and RHOB. This was conducted based on the fact that first, we would like to examine the
hypotheses of removing the dependency of our prediction on the resistivity log although it
was available in all wells and was the basis for water saturation estimation, and second, if
some lesser common logs, here PEF, can also be ignored too. In Figure 2, the process of
constructing the ML models is illustrated.
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Figure 2. The schematic flowchart for building the ML models.

2.2. Calculating Water Saturation

The Archie equation was used to calculate the water saturation through Dean–Stark
data that was available for the formation understudy in 2 wells. The Archie estimated
value of water saturation that was obtained in the lab was set as the target value, while the
resistivity calculated water saturation was also calculated. It was observed in Figure 3 that
the interval was clean with low GR readings reflecting a sandstone formation. Hence, the
Archie equation should work well without any need to use complex empirical relationships
for the estimation of water saturation. Furthermore, water saturation was also measured
in 2 of these wells from plugs that were preserved and tested in the lab. As we can see in
Figure 3 there was a good match between the experimental value of Sw and predictions
by Archie equation, shown on the fourth track. In this track, blue dots represent experi-
mental data and the red curve was calculated water saturation through Archie’s equation
with m = 1.49 (cementation factor), n = 1.82 (saturation exponent); a = 1.532 (tortuosity
factor) and Rw = 0.35 (formation water resistivity). These parameters for accurate utiliza-
tion of the Archie equation were based on knowing/measuring them and were found in
laboratory studies for the formation understudy. Determination of Rw in the application
of Archie’s method is the main problem when there are not enough production tests and
sample water, which fortunately was not the case here. The other disadvantage of Archie’s
method was that when the rock matrix type is unknown, it can impose significant error
into the results. This issue can be addressed by having the PEF log, which provides us with
direct knowledge about the lithology (dominant lithology) of the formation. Additionally,
since there is an inherent uncertainty in estimations of m, a, and n values, extensive ex-
perimental analyses are required. Ultimately, in the case when these parameters specific
to the formation are not available, assumptions can be made, which will introduce errors
to the final water saturation calculated results. Please note, in order to avoid a lengthy
manuscript and deviate from the main idea in the study, we decided not to include steps
that were taken to estimate Sw by the conventional Archie’s equation since this is a routine
process that can easily be found in all petrophysics and reservoir engineering books [50].
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Figure 3. Petrophysical well log data from a representative well in the study area. From left to right, track 1 represents
gamma ray, track 2 represents bulk density log in red, neutron density in blue, sonic log in black and photoelectronic log in
purple. Track 3 represents deep and shallow, resistivity logs in red and blue, respectively. These logs are the input for the
proposed models to predict water saturation as shown in Track 4 through the following parameters for the Archie equation:
m = 1.49; n = 1.82; a = 1.532; Rw = 0.35. blue dots in Track 4, are experimentally measured water saturation in the lab and red
line is predicted water saturation by Archie’s equation.
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2.3. Methods

Boosting is extremely an effective machine learning technique in its dependency on
input data, using them and generating final outputs [42]. In this paper, we developed code
programs based on 4 boosting methods: XGboost, LightGBM, Catboost, and Adaboost, in
addition to the Super Learner, a total of 5 different algorithms to compare the accuracy
of water saturation predictions across the board. All calculations were carried out using
Python programming language where respective Python packages and their versions are
listed in Table 1 (developed python code programs can be provided upon request). The
Super Learner is distinct from other machine learning algorithms since it is simply a base
learners combination algorithm. In this context, any other machine learning algorithm
such as XGboost, LightGBM, Adaboost, and Catboost can be a base learner of a Super
Learner algorithm. In our study, 2 machine learning algorithms, including: XGboost and
LightGBM, were utilized as input parameters in the Super Learner ensemble.

Table 1. Machine learning Algorithms and their packages.

Algorithms ∏ Python Package Package Version Website of the Package

XGBoost xgboost 0.9.0 https://xgboost.readthedocs.io/en/latest/index.html
Lightgbm lightgbm 2.3.2 https://lightgbm.readthedocs.io/en/
Adaboost Adaboost 0.23.1 https://scikit-learn.org
Catboost Catboost 0.4 https://catboost.ai

Random Forest scikit-learn 0.22.2 https://scikit-learn.org/dev/index.html
Super learner mlens 0.1 http://ml-ensemble.com

∏ date accessed: January 2019–June 2020.

2.3.1. Models

Boosting, like bagging, is a common method for regression or grouping that can be
extended to a large number of base learners. In boosting, base learners (in our case, trees)
are given training iteratively to increase focus on findings that the current aggregation of
base learners fails to model well. Similar boosting algorithms calculate misclassification
differently and choose various settings for the next iteration. The primary goal of boosting
is to minimize bias. Because of the increased emphasis on misclassified cases, the bias part
of the mistake was minimized. AdaBoost is the most widely used boosting process [51,52],
which trains models in such a way that misclassified examples were found at the end of
each iteration, and their importance was increased in a new training set. This set is then
fed directly into the next iteration’s beginning.

The gradient Boosting method, unlike AdaBoost, fit the base-learner to the negative
gradient of the loss function measured in the previous iteration rather than re-weighted
cases. Although AdaBoost and GBMs are effective for small datasets, scalable algorithms
are needed for far larger datasets. This condition is addressed by XGBoost, LightGBM,
and CatBoost.

The main steps of Adaboost methods is represented below:

• Defining Weights: wj =
1
n , j = 1, 2, . . . , n;

• For each i, define the training data to a weak learner Wli(x) using weights and
determine the weighted error

• Erri =
∑n

j=1 wiI(tj 6=wli(x))
∑n

j=1 wj
, I(x) =

{
0 if x = false
1 if x = true

• For each i, estimate weights for predictors as: βi = log
(
(1−Erri)

Erri

)
• Updated data wights for each i to N (N is the number of learner);
• Adjust weak learner for data test (x) as output.

XGBoost is a parallel tree boosting framework that is available in large, distributed
environments such as Hadoop and is designed to be highly powerful, scalable, and portable.
Thanks to improvements over GBMs, such as the introduction of split finding algorithms
for sparse data with nodes’ default directions and fast enumeration of all feasible splits to

https://xgboost.readthedocs.io/en/latest/index.html
https://lightgbm.readthedocs.io/en/
https://scikit-learn.org
https://catboost.ai
https://scikit-learn.org/dev/index.html
http://ml-ensemble.com
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maximize the splitting threshold, it can solve problems with billions of instances. XGBoost
also has a regularization concept in the loss feature, which aids in the development of more
generalizable models. In terms of architecture, XGBoost has recently been used to simulate
steel fatigue resistance and surrogate reservoir simulation [53]. To model the performance
y for a given dataset, an ensemble of n tresses should be trained according to the following
expression, depicted in Figure 4:

ŷi = ∑N
k=1 fk(Xi), fk ∈ f .

With
{

f (X) = ωq(x)

}
, q : Rm → T, ω ∈ RT , where example x is represented by the de-

cision rule q(x) to the binary leaf index and f declares the space of regression trees;ω the
weight of the leaf; fk the kth independent tree; and T is the number of leaves on the tree.

Figure 4. XGboost level-wise tree growth representation.

LightGBM, such as XGBoost, is an effective and scalable tree-based gradient boosting
implementation. It optimizes parallel learning by using network connectivity algorithms.
It uses a histogram-based algorithm to reduce memory usage and speed up the training
process. Furthermore, LightGBM grows trees leaf-by-leaf rather than level-by-level. In
most cases, the tree growth technique used in ensemble learning is level-wise, which is
inefficient [54].

While XGBoost and LightGBM have several advantages, when a dataset contains a
large number of categorical attributes, CatBoost could be a more effective and scalable
solution. CatBoost employs oblivious decision trees, a form of level-wise expansion. It
implements a vectorized representation of the tree in this extension, which can be tested
quickly. CatBoost also improves algorithmic performance by using ordered boosting, a
permutation-driven alternative to the standard boosting algorithm, and a variety of target
statistics for categorical function processing.

Polley and van der Laan [49] created the Super Learner algorithm. A diagram of the
Super Learner algorithm is shown in Figure 5 below to make the algorithm simpler. Since
it is a hybrid algorithm with base learners, Super Learner is unlike any other machine
learning algorithm. Any machine learning algorithm, such as XGBoost or LightGBM, may
be used as the base learners of a Super Learner algorithm. After that, the base learners are
selected and configured separately using train data.

2.3.2. Model Evaluation

In Table 2, min-samples-split, n-estimators, max-depth, min-samples-leaf, learning
rate, colsample-bytree, subsample, num-leaves, depth, and iterations are the minimum
number of samples required to split an internal node, number of trees, maximum tree depth,
minimum number of samples needed at a leaf node, learning rate, column subsample ratio
when building a tree, fraction of observation ratio when building a tree.
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Figure 5. Superlearner flowchart.

Table 2. Lists the boosting algorithms applied in our work, the tuned hyperparameter search interval,
and the optimal hyperparameter values. For typical hyperparameters, we have used a common
search interval that can lead to meaningful insights by comparison.

Algorithms Hyperparameters Tuned Search Interval Optimal Values

XGBoost

Learning_rate
Subsample

Colsample_bytree
max_depth

n_estimators

0.01–0.5
0.5–1
0.5–1
1–14

1000–4000

0.1
0.8
0.8
9

3000

LightGBM

learning_rate
num_leaves
max_depth

n_estimators

0.01–0.5
3–95
1–14

1000–3000

0.1
70
7

2000

Adaboost Learning_rate
n_estimators

0.01–0.2
1500–3000

0.05
1600

Catboost
Learning_rate

depth
iterations

0.01–0.4
1–14

1500–3000

0.1
7

1800

The prediction performances of AI models highly depend on the quality of the input
data. Before feeding any data to the AI system, data analysis and pre-processing steps
were performed. Data pre-processing step involved statistical ways to remove outliers
and unrealistic values that are highly recommended in ML methods and taking advantage
of AI techniques [55,56]. To estimate the accuracy of the model, 4-fold cross-validation
was performed. In this study, the robustness and accuracy of the models have been
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evaluated using different popular evaluation metrics: the coefficient of determination
(R2), mean squared error (MSE), mean absolute error (MAE), and root mean squared error
(RMSE) [56–58], each defined by the following equations:

Root mean squared error (RMSE) metric is given by Equation (2):

RMSE =

√
∑N

i=1(Actuali − Predictedi)
2

N
(2)

where, N is total number of observations. Mean squared error (MSE) metric is given by
Equation (3):

MSE =
∑N

i=1(Actuali − Predictedi)
2

N
(3)

Mean absolute error (MAE) metric is given by Equation (4):

MAE =
∑N

i=1|Actuali − Predictedi|
N

(4)

Considering these error numbers, the lower the value of RMSE, MSE, and MAE
metrics, the better the model would be. Finally, the coefficient of determination (R2) metric
is given by Equation (5):

R2 = 1− (Actuali − Predictedi)
2

(Actuali −mean of the observed data)2 (5)

Best possible R2 score is 1.0. A constant model that always predicts the expected value,
disregarding the input data, would reach a score of 0.0.

3. Results and Discussion

To evaluate the performance of each ML method, the metric evaluation was applied.
Table 3 summarizes the evaluation metrics summary. As can be seen from these values, the
Super Learner algorithm prediction was the most accurate one, while Adaboost showed the
least favorable results. Figure 6 is the cross-plot of actual water saturation measurements
vs. the predictions for various algorithms used here, while Figure 7 provides the bar
plots of evaluation metrics for better visualization. We can see that Super Learner and
XGBoost have the lowest error values, while Adaboost has the highest error. Based on the
obtained results, it is apparent that there is no need to calculate complex coefficients such
as cementation factor, tortuosity factor, saturation exponent that are required when using
Archie’s equation for estimating water saturation.

Table 3. Evaluation metrics summary for dataset A.

Algorithm
R2 RMSE MAE MSE

Training Testing Training Testing Training Testing Training Testing

XGBoost 0.997579 0.99325 0.009750 0.009934 0.007179 0.0078357 0.000095 0.000102

LightGBM 0.924810 0.918942 0.032930 0.035976 0.010999 0.011305 0.001084 0.001294

Adaboost 0.886684 0.866633 0.062433 0.051907 0.040370 0.050834 0.003897 0.005236

Catboost 0.957758 0.941368 0.026422 0.052927 0.004381 0.035912 0.000698 0.002801

Super learner 0.998828 0.997245 0.009591 0.010400 0.001567 0.007686 0.000092 0.000108
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Figure 6. Cross-plot of water saturation prediction results by different algorithms for dataset A, which depicts well
log data-lab verified values vs. algorithm based ones, (A) XGBoost, (B) LightGBM, (C) Adaboost, (D) Catboost and (E)
Super lerner.
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Figure 7. Evaluation metrics for dataset A comparing among various methods. It is observed that Super Learner performs
the best.

Collectively, comparing the data, it can be seen that XGboost and Super Learner could
be promising tools in water saturation prediction from the well log data. The performances
of the ML techniques for the prediction of water saturation (dataset A) are summarized
in Table 3, and it can be noticed that most leading techniques in each category can be
used with confidence. It should be noted that in the following figures, Archie calculated
water saturation based on parameters that were measured in the lab and verified when
experimental data are plotted vs. AI estimated values.

Based on Figure 6, which is the cross-plot of target values vs. prediction outcomes,
it is observed that there is an excellent correlation between these two values by Super
Learner method. The metric evaluation of using different machine learning algorithms is
also shown in Figure 7. Additionally, Figure 8 explains that Super Learner is the best choice
for estimation of water saturation without resistivity logs being used as an input parameter
as well as the XGboost with comparable performance. Although the discrepancy between
various metric values of the algorithms that were utilized are not significant, Super Learner
still performs better than the rest of the algorithms. On the contrary, Adaboost and Catboost
exhibited the highest estimated errors. As shown in Figures 6–8, based on the results, Super
Learner ranked the first in all performance judging criteria and XGboost ranked the second.
Again, it should be reminded that the performance is the level of matching results in
experimentally obtained water saturation values vs. the predictions. Please note the results
containing all test wells through cross plotting predictions vs. measurement of water
saturation are depicted in the Appendix A for dataset A for Well 1 to 3.

In dataset B, the PEF log is kept out of being input in predictions. It should be noted
that the PEF log is not as common as other well logs used here while it provides us
with direct clues about the formation lithology. Knowing formation lithology is vital for
estimating porosity based on the rock physics models from neutron and density logs. The
performances of the ML techniques for the prediction of water saturation (dataset B) are
summarized in Table 4 where the most leading techniques in each category are revealed
based on the error values they generated.
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Figure 8. Water saturation well log prediction results by different algorithms for one representative
well from dataset A. In this figure, the red curve represents predicted values, and the black line is
target values. It is seen that a perfect match is obtained via Super Learner method.

Table 4. Evaluation metrics summary for dataset B where PEF log is kept out of the analysis/predictions.

Algorithm
R2 RMSE MAE MSE

Training Testing Training Testing Training Testing Training Testing

XGBoost 0.99481 0.993482 0.008164 0.008540 0.002921 0.003203 0.000066 0.000073
LightGBM 0.98391 0.982904 0.013047 0.013832 0.003913 0.004755 0.000172 0.000191
Adaboost 0.94261 0.932993 0.026952 0.027384 0.019823 0.022912 0.000726 0.000750
Catboost 0.93912 0.931926 0.027091 0.027601 0.011892 0.012272 0.000733 0.000762

Super
Learner 0.99989 0.999727 0.001711 0.001748 0.001197 0.001230 0.0000029 0.000003

In dataset B, as it was mentioned, four well log suites were used as input features
for estimation of water saturation. In dataset B, it was decided to leave the PEF log out
of the input features. This was decided based on the fact that the PEF log might not
be available and is not as commonly acquired in wells as the rest. The results illustrate
that if input features from five well log suites are reduced to four well logs, the overall
performance of ML techniques will not be affected notably across the board. Hence, water
saturation can still be predicted with high accuracy. Based on metric analysis (Figure 9)
and cross-validation (Figure 10), Super Learner and XGboost have the lowest error and the
highest accuracy among all algorithms. Moreover, Figure 11 represents the results for five
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algorithms presented as a well log format (continuous estimation of water saturation) for
the entire interval. Please note the results containing all test wells through cross plotting
predictions vs. measurement of water saturation is depicted in the Appendix B for dataset
B for Well 1 to 3.

Figure 9. Evaluation metrics for dataset B where PEF log has not been used for analysis in the algorithms where it’s found
that Super Learner is generating best results compared to other methods.
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Figure 10. Cross plot for water saturation prediction results by different algorithms for dataset B.
Cross-plots are representing target values vs. the predicted values. Here, PEF log has not been used
as an input parameter and it is observed that super leaner still is generating the best results, (A)
XGBoost, (B) LightGBM, (C) Adaboost, (D) Catboost and (E) Superlerner.

Figure 11. Water saturation prediction results by different algorithms for one well from dataset B
where PEF log is kept out, and a perfect match between predictions and Archie-based calculated
values are obtained via Super Learner method. In this image, the red line represents predicted values,
and the black line is Archie measured ones but verified by experimental tests.
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With a more detailed analysis of these graphs (Figures 9–11), we can conclude the reli-
ability and precision of these predicative models collectively. Various statistical parameters,
including correlation coefficient and relative errors, are used as a comparison basis to make
judgments to see if predictions and experimentally measured values would match. The
predictive model for dataset B in the absence of PEF log variable leads to high performance
since the PEF log has a lower impact than other variables. Its lowest impact, although its
importance was found in the results but also confirmed through sensitivity analysis as well.
Consequently, it might be unnecessary to include an additional correlating parameter as an
input feature for the prediction of water saturation. According to the statistical analysis
of feature importance shown in Figure 12, conducted for the Super Learner approach, the
decreasing order of importance of input variables for predicting water saturation would be
as follows: gamma ray, sonic log, porosity, and bulk density, and photoelectric factor log
while the latest one was found optional.

Figure 12. The estimated score for potential input parameters. It can be seen that PEF has the lowest
importance compared to all other well logs.

Iteratively, boosting approaches train a series of weak learners, where the weight of
the records is modified according to the regression effects of the previous learners’ loss
function. In terms of CPU runtime and precision, we compared three state-of-the-art
gradient boosting methods in this study. Using the same hyper-parameter optimization
time budget, XGboost is more accurate in predicting water saturation for the studied
dataset, and LightGBM appears to be considerably faster than the other gradient boosting
strategies (Table 5). Super Learner was designed for this study with two base learners, such
as XGBoost and lightgbm. The idea of a Super Learner is appealing, making it possible to
train and test a multitude of machine learning models on a single collection of data and
thereby allowing the model to optimally integrate any of the individual models to produce
better overall predictions. In this article was investigated small aspects of the protentional
of combining ML algorithms.

Table 5. The computational cost for the algorithms used in this study.

Algorithms XGboost Adaboost Superlearner Catboost Lightgbm

Run Time (s) 530.462 322.011 466.198 630.198 301.622
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The XGBoost technique also leads to almost the same findings and highly comparable
to Super Learner based on the overall error analysis and matching the predictions with
true values. In the literature, it is claimed that resistivity (RT) and porosity logs (neutron or
density) are essential to determine water saturation using petrophysical models. According
to the current study, the minimum log variables were used for the estimation of water
saturation, which was not attempted previously. The engineers and/or operators in the oil
and gas industry can utilize the developed deterministic approaches using the data from
the most contributing and available common well logs as listed here for prediction of water
saturation to save the exploration expenses and time in an effective manner.

4. Conclusions

This article demonstrates the idea of the application of machine learning algorithms,
such as XGBoost, LightGBM, AdaBoost, CatBoost, and Super Learner, to predict water
saturation from well-logging data. The study revealed that XGboost and Super Learner
might be promising tools in water saturation prediction from well log data collected by
the authors without relying on a resistivity log. These methods can be applied to reduce
the cost of core measurements and well-logging services. In all combinations of predictors
considered, Super Learner is proved to be useful to combine the merits of base machine
learning algorithms and enhance predictive robustness on water saturation.

In addition, it has the potential to increase the accuracy of well logs interpretation in
wells, where some data are not available. Two different datasets were used in this study
to observe the effect of diverse variables. The additional correlating parameter (PEF log)
has not convincingly improved the performances of ML techniques for the prediction. The
main advantage of using machine learning and intelligent methods in estimation water
saturation is that with knowing examples of previous patterns, they can be easily trained
and put to effectively solve unknown or untrained instances of the problem. In addition,
there is no need to calculate the complex coefficients such as cementation factor, tortuosity
factor, saturation exponent, etc. The results confirm the performance of the proposed ML
models in estimation water saturation, particularly never applied super leaner. In addition,
in this study, estimated water saturation was achieved without relying on resistivity log,
which could be challenging to certain geological structures. The proposed model can
be employed in several applications of static reservoir modeling, such as porosity and
permeability prediction in the future.

Author Contributions: Conceptualization, F.H. and M.O.; methodology, F.H., M.A.S. and T.B.; soft-
ware, M.A.S. and I.C.; validation, T.B., F.H. and A.S.; formal analysis, F.H., A.S. and T.B.; investigation,
F.H.; resources, I.C. and M.O.; data curation, M.A.S. and F.H.; writing— original draft preparation,
F.H. and M.O.; writing—review and editing, M.O.; visualization, F.H.; supervision, M.O.; project
administration, M.O.; funding acquisition, M.O. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data can be provided upon request to corresponding author.

Acknowledgments: Authors would like to sincerely thank Gazporomneft for providing us with the
data and allowing us to publish them. Furthermore, we appreciate input by anonymous reviewers
and respected editor for constructive comments that significantly improved this manuscript.

Conflicts of Interest: Authors declare no competing interest.



J. Mar. Sci. Eng. 2021, 9, 666 19 of 23

Appendix A. Cross Plots for All Well, Which Were Considered as Testing for Dataset A
with Five Features (PEF Included)

Figure A1. Cross plot for water saturation prediction results by different algorithms (Well 1).

Figure A2. Cross plot for water saturation prediction results by different algorithms (Well 2).
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Figure A3. Cross plot for water saturation prediction results by different algorithms (Well 3).

Appendix B. Cross Plots for All Wells, Which Were Considered as Testing for Dataset
B with Four Features (PEF Excluded)

Figure A4. Cross plot for water saturation prediction results by different algorithms (Well 1).
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Figure A5. Cross plot for water saturation prediction results by different algorithms (Well 2).

Figure A6. Cross plot for water saturation prediction results by different algorithms (Well 3).
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