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Abstract: How to improve the power generation of wave energy converters (WEC) has become one
of the main research objectives in wave energy field. This paper illustrates a framework on the use of
back propagation (BP) neural network in predicting capture power of the frustum of a cone shaped
floating body. Mathematical model of single floating body is derived, and radius, semi-vertical angle,
mass, submergence depth, power take-off (PTO) damping coefficient, and stiffness coefficient are
identified as key variables. Commercial software ANSYS-AQWA is used for numerical simulations
to obtain hydrodynamic parameters, and then capture power is calculated by these parameters. A
database containing 100 samples is established by Latin hypercube sampling (LHS) method, and a
simple feature study is conducted. A BP neural network model with high accuracy is designed and
trained for predictions based on built database. The results show that forecasting results and desired
outputs are in great agreement with error percentage not greater than 4%, correlation coefficient
(CC) greater than 0.9, P value close to 1, and root mean square error (RMSE) less than 139 W. The
proposed method provides a guideline for designers to identify basic parameters of the floating body
and system damping coefficient.

Keywords: structure parameters; ANSYS-AQWA simulations; feature study; BP neural network;
power predictions

1. Introduction

Wave energy converters (WEC), a new type of energy extractor with little pollution,
are expected to be a reliable alternative to the current generation method. There are two
stages for an oscillating body WEC transforming wave energy into other forms of energy
like electricity. A floating body is firstly required to capture the wave energy induced by a
wave’s motion. Then the moving floating body drives a generator to generate power. An
intact oscillating body WEC system is generally composed of a moving floating body, a
power take-off (PTO) system, and an anchor chain, etc. At present, the conversion efficiency
of WECs is relatively low, so the main research objective is to improve the power generation
of a specific device.

One method is to design a different floating body’s shape, and the shape is usually
irregular curved surface. McCabe [1] researched the optimization of the shape of a wave
energy collector to improve energy extraction by genetic algorithms, and a benchmark
collector shape was identified. Colby [2] used evolutionary algorithms to optimize the
ballast geometry and achieved 84% improvement in power output. Fang [3] designed a
mass-adjustable float, and a new optimization calculation method was proposed. Multi-
freedom buoys have been also proposed in [4–6]. They can translate or rotate in more
than one freedom, so more wave energy can be captured. Another means is to design an
innovative PTO system. Reabroy [7] proposed a novel floating device integrated with a
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fixed breakwater. The simulations and experiments proved that installing a breakwater
can greatly improve the conversion efficiency. Liang [8] designed a novel PTO system
which is inside the buoy with a mechanical motion rectifier (MMR). This mechanism can
convert the bidirectional wave motion into unidirectional rotation of the generator by two
one-way bearings. Li [9] improved this device by substituting one-way bearings for two
one-way clutches. Chen [10] proposed a new point-absorber WEC with an outer-floater
and a built-in power take-off mechanism. Besides, array-type WECs, integrated with
many buoys and PTO systems, are also researched to achieve large scale power generation.
The typical one is WaveNET [11], developed by Albatern in Scotland. Sun [12] proposed
an array-type energy-capturing mechanism integrated with marine structures. Liu [13]
proposed an array-type WEC combined with oscillating buoy.

The factors that affect the power generation have also been studied recently. Zou [14]
analyzed the effects of spring force, mass force, and damping force on energy conversion
efficiency based on a 3D wave tank model. Yu [15] and Wu [16] discussed the influence
of the floating body’s shape, PTO damping coefficient, system stiffness coefficient, and
geometry parameters on power generation. Zheng [17] established an optimization model
of energy conversion performance via genetic algorithm. Ma [18] researched the two-body
floating point absorber and the results showed that stiffness coefficient had less effect on the
power generation than damping coefficient. Ji [19] proved that PTO damping coefficient
and submerged body volume were the most important parameters that affect the output
power, and that the significant wave height had little influence on conversion efficiency.
Tongphong [20] analyzed the effects of wave frequency, PTO damping coefficient, and
structure form (floating or fixed) on capture factors.

Wave load and hydrodynamic parameters are vital factors in the analysis process
of floating body’s motions. Numerical simulations are widely used in hydrodynamic
performance analysis to obtain these parameters. Ma [21] used ANSYS-AQWA software
to assess the hydrodynamic performance and energy conversion of a pitching float WEC
and analyzed key factors’ influences on the performance. Amiri [22] presented a numerical
simulation scheme for a point wave absorber and analyzed its performance. Yu [23]
applied Reynolds-Averaged Navier-Stokes (RANS) computational method for analyzing
the hydrodynamic heave response of a specific WEC device.

In addition to the traditional physical model [24,25], novel methods and models based
on big data and machine learning have also been presented. Law [26] carried out wave
prediction over a large distance downstream using artificial neural network, introducing
machine learning algorithm into ocean engineering. Desouky [27] utilized non-linear
autoregressive with exogenous input network to predict the surface elevation with the help
of an ahead located sensor. Kumar [28] used the Minimal Resource Allocation Network
(MRAN) and the Growing and Pruning Radial Basis Function (GAP-RBF) network to
predict the daily wave heights based on real marine data. Some elevating measurements
are also proposed to assess the performance of predictions in [29]. Avila [30] combined
Fuzzy Inference Systems (FIS) and Artificial Neural Networks (ANN) to forecast wave
energy in Canary Islands. Wang [31] predicted power outputs of a WEC in shallow water,
taking bottom effects into accounts. Halliday [32] utilized Fast Fourier Transform (FFT) to
predict wave behavior in short term based on real marine data. Davis [33] used a nonlinear
Extended Kalman Filter to estimate the wave excitation force based on experimental wave
tank data. Ni [34] combined the Long Short-Term Memory (LSTM) algorithm and the
principal component analysis (PCA) together to predict the power generation of a WEC.

Different from traditional mathematical model, this paper presents an agent model
using BP neural network to determine the complex non-linear reflection between design
variables and power generation. Power predictions are the foundation of multi-objective
optimizations of a floating body. Accurate power prediction can provide a guide for
the electricity consumption, allocation, and distribution in power grid. Through the
prediction, the unknown generation power becomes measurable, so reasonable manners
can be arranged to increase the grid capacity.
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The remainder of this paper is organized as follows: Section 2 develops the mathemat-
ical model of the oscillating float-type WEC. In Section 3, a sample database is established
by LHS method, and a simple feature study is conducted. The geometric model and simu-
lations of each sample are done in ANSYS-AQWA (developed by ANSYS company, based
in Canonsburg, Pennsylvania, USA) in Section 4. Section 5 designs a BP neural network
model and it is used to predict the capture power. Results and discussion are given in
Section 6 and conclusions are presented in Section 7.

2. Mathematical Model

A schematic diagram of the oscillating body WEC is shown in Figure 1. To simplify
the study, some assumptions are made as below:

1. linear wave theory and potential flow theory are suitable for this model, and they are
used to describe wave motion;

2. only the heave motion of the floating body is considered;
3. the viscous force and mooring force acting on the floating body are ignored [10];
4. the PTO system is linear.
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Under three assumptions, the following forces act on the floating body: hydrodynamic
forces (excitation and radiation force); hydrostatic buoyancy; PTO damping force; rigid
restoring force. According to the theory of fluid mechanics and Newton’s law, the governing
equation of the floating body can be expressed as follows:

M0
..
z(t) = fE − fR − fS − fPTO − fK (1)

where M0 represents mass; z(t) represents the heave displacement; fE represents excitation
force; fR represents radiation force; fS represents hydrostatic buoyancy; fPTO represents PTO
damping force; fK represents rigid restoring force.

The excitation force imparts on the floating body by the incoming wave. It is the
summation of the Froude-Krylov force fFK and the diffraction force fD, so it can be written
as follows:

fE = fFK + fD (2)

The radiation force is induced by the floating body’s motion and can be decomposed
into an added mass term and a radiation damping term [25], so it can be expressed
as follows:

fR = AM
..
z(t) + BC

.
z(t) (3)

where AM and BC are the added mass and radiation damping in the vertical direc-
tion, respectively.
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The hydrostatic buoyancy, induced by seawater static pressure, is the resultant force
of gravity and buoyancy. It is a force that restores the structure to hydrostatic equilibrium
and is linear with the heave displacement of the floating body. It can be written as:

fS = ρgAWz(t) (4)

where ρ is seawater density; g is acceleration of gravity; AW is water cross area of the
floating body. In this paper, the value of PTO damping is relatively large, and the heave
displacement of the floating body is small. As a result, it is assumed that the water cross area
of the floating body does not change. It is the section where the water line is located when
the floating body is in still water. Therefore, the hydrostatic buoyancy can be expressed as:

fS =
1
4

πρgD2z(t) (5)

where D is the diameter of the floating body.
The energy conversion system can be simplified to a linear spring damping system, so

the PTO damping force is
fPTO = c

.
z(t) (6)

where c is the damping coefficient of the PTO system.
The rigid restoring force is proportional to the heave displacement, and it can be

written as follows:
fk = kz(t) (7)

where k is stiffness coefficient.
Reformulate Equation (1) through Equations (2), (3), (5)–(7):

[M0 + AM]
..
z(t) + (BC + c)

.
z(t) + (ρgAW + k)z(t) = fE(t) (8)

Apply Fourier transform to Equation (8) and obtain another governing equation in
the frequency domain. It is[

(ρgAW + k) + jω(BC + c)−ω2(M0 + AM)
]

Z(ω) = FE(ω) (9)

where ω is the wave frequency; j is imaginary unit; Z(ω) and FE(ω) are functions of
displacement and excitation force in the frequency domain, respectively.

In the frequency domain, the excitation force can be expressed by the product of the
unit excitation force and the incident wave amplitude [35]. It is

FE(ω) = Funit(ω)A(ω) (10)

Equation (9) can be rewritten as follows:[
(ρgAW + k) + jω(BC + c)−ω2(M0 + AM)

]
Z(ω) = Funit(ω)A(ω) (11)

Formula (11) is a typical damped and forced vibration equation, so the natural fre-
quency and damping factor can be expressed as below:

ωn =

√
ρgAW + k
M0 + AM

(12)

βn =
BC + c

2(M0 + AM)
(13)

From Equations (12) and (13), the natural frequency and damping factor of a given
WEC change over added mass and added damping.
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According to Equation (11), the heave response in the frequency domain is

Z(ω) =
Funit(ω)A(ω)

(ρgAW + k) + jω(BC + c)−ω2(M0 + AM)
(14)

The average power in one wave period, captured by the floating body with heave
motion, can be written as the product of damping force and vertical velocity. The work
done by damping force is the energy absorbed by the floating body, so the mean capture
power is

Pmean = 1
T
∫ T

0 fPTO
.
z(t)dt

= 1
T
∫ T

0 c
.
z(t)2dt

= 1
2 ω2c|Z(ω)|2

= 1
2 c ω2|FE |2

[−ω2(M0+AM)+k+ρgAW ]
2
+ω2(BC+c)2

= 1
2 c |FE |2

[
−ω2(M0+AM)+k+ρgAW

ω ]
2
+(BC+c)2

(15)

The mean capture power reaches the maximum when the following conditions are met.

k = ω2(M0 + AM)− ρgAW (16)

c =
{

BC, BC > 0
−BC, BC < 0

(17)

This stiffness and damping are called the best stiffness and the best damping, respec-
tively. When Bc > 0, the natural frequency, damping factor, and displacement are

ωn = ω (18)

βn =
BC

M0 + AM
(19)

Z(ω) = − jFunit(ω)A(ω)

2ωBC
(20)

The max capture power is

Pmax =
|FE|2

8BC
(21)

3. Design of Experiments (DOE) Method
3.1. Latin Hypercube Sampling

The sampling method is of great importance in experimental design. A good sampling
method can result in more reasonable sample distribution, leading to a better model with
higher accuracy. In this paper, a Latin hypercube sampling (LHS) method is utilized to
generate sample points. Different from random sampling, LHS has a high efficiency of
space filling by maximizing the stratification of each edge distribution, which improves
the uniformity.

According to Equation (15), the factors that determine the capture power under given
wave conditions are PTO damping coefficient c, system stiffness coefficient k, wave exciting
force FE, float mass m, added mass AM, and added damping BC. Added mass, added
damping, and wave exciting force are related to the geometry and submergence depth of
the floating body. The geometric features of the floating body depend on radius R, semi-
vertical angle α, and mass m. As a result, four main geometric parameters, including radius
R, semi-vertical angle α, mass m, and submergence depth d, plus two system parameters,
PTO damping coefficient c and stiffness coefficient k, are selected as key variables that
affect the capture power.
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The sample space of six key variables are defined as follows:

d ∈ [2, 3]
R ∈ [1.5, 3]

m ∈ [7000, 8000]
α ∈ [5, 25]

c ∈ [10, 000, 30, 000]
k ∈ [3000, 6000]

(22)

A database covering 100 sample points is established (see in Appendix A) and scatter
diagrams of these samples are shown in Figure 2.

J. Mar. Sci. Eng. 2021, 9, 656 6 of 18 

to generate sample points. Different from random sampling, LHS has a high efficiency of 
space filling by maximizing the stratification of each edge distribution, which improves 
the uniformity.  

According to Equation (15), the factors that determine the capture power under given 
wave conditions are PTO damping coefficient c, system stiffness coefficient k, wave excit-
ing force FE, float mass m, added mass AM, and added damping BC. Added mass, added 
damping, and wave exciting force are related to the geometry and submergence depth of 
the floating body. The geometric features of the floating body depend on radius R, semi-
vertical angle α, and mass m. As a result, four main geometric parameters, including ra-
dius R, semi-vertical angle α, mass m, and submergence depth d, plus two system param-
eters, PTO damping coefficient c and stiffness coefficient k, are selected as key variables 
that affect the capture power. 

The sample space of six key variables are defined as follows: 

[2,3]
[1.5,3]
[7000,8000]
[5,25]
[10000,30000]
[3000,6000]

d
R
m

c
k

α

 ∈
 ∈
 ∈
 ∈
 ∈


∈

(22) 

A database covering 100 sample points is established (see in Appendix A) and scatter 
diagrams of these samples are shown in Figure 2. 

(a) (b) 

(c) (d) 

5

9

13

17

21

25

0 20 40 60 80 100

Se
m

i-v
er

tic
al

 a
ng

le
/°

Sample number

1.5

1.8

2.1

2.4

2.7

3.0

0 20 40 60 80 100

Ra
di

us
/m

Sample number

2.0

2.2

2.4

2.6

2.8

3.0

0 20 40 60 80 100

Su
bm

er
ge

nc
e 

de
pt

h/
m

Sample number

7000

7200

7400

7600

7800

8000

0 20 40 60 80 100

M
as

s/
kg

Sample number
J. Mar. Sci. Eng. 2021, 9, 656 7 of 18 

(e) (f) 

Figure 2. Sample scatter diagrams. (a) semi-vertical angle; (b) radius; (c) submergence depth; (d) mass; (e) damping; (f) 
stiffness. 

In Figure 2, each variable fills the whole sample space and the standard deviation of 
the value is small. It can reflect the relationship between the factor and the response in the 
six spaces. 

3.2. Feature Study 
Suitable feature study on the data set can give an insight to the correlation between 

the inputs and output. Pearson correlation analysis is conducted in this section to identify 
the correlation between six key variables and the capture power. Figure 3 shows the cor-
relation coefficients in different wave situations. In this heatmap, a negative value means 
a negative correlation, and a positive value means a positive correlation. A large absolute 
value means a strong correlation. 

Figure 3. The correlation coefficients between the inputs and output. 

In general, radius, submergence depth, and damping show a strong correlation, 
while semi-vertical angle, mass, and stiffness behave a weak correlation. Besides, the cor-
relation is different at different wave frequency. When the wave frequency is 0.53 and 0.81 
rad/s, semi-vertical angle shows a negative correlation, while a positive correlation comes 
up at other frequencies. The similar situation happens on stiffness. Mass and damping 

10,000

14,000

18,000

22,000

26,000

30,000

0 20 40 60 80 100

D
am

pi
ng

/(N
/(m

/s
))

Sample number

3000

3600

4200

4800

5400

6000

0 20 40 60 80 100

St
iff

ne
ss

/(N
/m

)

Sample number

Figure 2. Sample scatter diagrams. (a) semi-vertical angle; (b) radius; (c) submergence depth; (d) mass; (e) damping;
(f) stiffness.



J. Mar. Sci. Eng. 2021, 9, 656 7 of 18

In Figure 2, each variable fills the whole sample space and the standard deviation of
the value is small. It can reflect the relationship between the factor and the response in the
six spaces.

3.2. Feature Study

Suitable feature study on the data set can give an insight to the correlation between the
inputs and output. Pearson correlation analysis is conducted in this section to identify the
correlation between six key variables and the capture power. Figure 3 shows the correlation
coefficients in different wave situations. In this heatmap, a negative value means a negative
correlation, and a positive value means a positive correlation. A large absolute value means
a strong correlation.
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In general, radius, submergence depth, and damping show a strong correlation, while
semi-vertical angle, mass, and stiffness behave a weak correlation. Besides, the correlation
is different at different wave frequency. When the wave frequency is 0.53 and 0.81 rad/s,
semi-vertical angle shows a negative correlation, while a positive correlation comes up at
other frequencies. The similar situation happens on stiffness. Mass and damping behave a
positive correlation, while radius and submergence depth show a negative correlation all
the time.

4. Numerical Simulations
4.1. Simulation Scheme

The structural schematic of the cone shaped floating body investigated in this study is
shown in Figure 4.

The height of the cylinder part above the waterline is a constant, 0.5 m. In ANSYS
Design Modeler, the 3D geometry with given parameters is created.

In this paper, ANSYS-AQWA, a commercial computation software based on po-
tential flow theory, is utilized to calculate hydrodynamic parameters. The simulation
process, including numerical modeling, parameters setting, mesh generation, and data
post-processing, can be conducted in the graphical interface directly. The basic simulation
steps for each sample are as follows:

1. The moment of inertia and center of mass of the floating body are calculated in Static
Structural module;
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2. Set solution environment in hydrodynamic diffusion module. The water line is at z = 0,
the seawater depth is 200 m, and the surface area are 100 m × 100 m. Details of the
point mass, additional damping, and additional hydrostatic stiffness are set according
to the results obtained in Static Structural module and parameters in Table A1. In
this study, the considered wave range is from 0 to 0.4 Hz, meaning that the wave
circular frequency within 2.5 rad/s needs to be simulated. Therefore, the defeaturing
tolerance and maximum element size are 0.5 m and 1 m, respectively. The maximum
allowed wave frequency is 0.61 Hz in this scheme;

3. Solve the model in the frequency domain and obtain Diffraction and Froude-Krylov
force Fe, added mass AM, and radiation damping BC.
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For each simulation, the given frequency range is divided into 52 frequency points.
The mean power for each sample at each frequency is calculated. The results of sample 1
and sample 2 are shown in Figure 5.

With the increase in wave frequency, the capture power rises firstly and then drops
steadily. For each sample, there is a unique optimal frequency in which the capture power
can reach the maximum. The 100 samples’ capture power are calculated so that they can
be used as training set and test set for BP neutral network. Only two samples’ results are
presented in this figure.
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Figure 5. Mean capture power of sample 1 and sample 2.

4.2. Theoretical Verification of Simulations

Falnes [36] illustrated that the maximum power that a heaving axisymmetric body
can absorb is

Pmax =
Jλ

2π
(23)

where J is the wave energy flux; λ is the wavelength. For deep-water waves, λ = g/2π. J is

J =
ρg2TH2

32π
(24)

where T and H are wave period and height, respectively. Budal’s upper bound [36] gave
another upper limit power that a submerged body with given volume V can absorb. It is

Pu <
πρgVH

4T
(25)

where V is the volume of the submerged part. The point of intersection of two theoretical
curves can be defined as (Tc, Pc). Pc is

Pc =
ρg2

32π

√
2VH3 (26)

In this study, Equations (23) and (25) are used to verify the validity of simulations. To
make comparisons, the results are normalized by dividing Pc. The three curves are shown
in Figure 6.

It can be found that the capture power curves of two samples are in the area enclosed
by curve Pmax, curve Pu, and coordinate axes, which means the simulation scheme is
accurate and reliable. All the samples are verified successfully and only two of them are
demonstrated in this section.
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Figure 6. Power curves from simulations and theories. (a) results of sample 1; (b) results of sample 2.

5. BP Neural Network

The back propagation (BP) neural network is a kind of feedforward neural network
trained by error back propagation algorithm. It is a most widely used form, and is com-
posed of many nonlinear transformation units. This algorithm has a strong non-linear
mapping ability and can simulate any nonlinear continuous functions with much higher
accuracy theoretically. After the network is trained, the reflection between the inputs and
outputs can be obtained and memorized. They are shown on the weights of each layer. BP
neural network’s structure is flexible, which means the number of layers and neurons can
be changed according to research objectives. A BP neural network generally includes an
input layer, one or two hidden layers, and an output layer. Full connections are applied
between layers. More details about BP neural network can be seen in [37].

5.1. Neural Network Design

The first step to design a good neural network is to identify the number of hidden
layers. A three layers neural network, which contains only one hidden layer, can simulate
any reflection from n-dimensional inputs to m-dimensional outputs. Hence, a three-layer
neural network with one hidden layer is selected in this study. Next, the nodes of each
layer need to be identified. In this study, six key variables are selected, so the number of
nodes in input layer is six. Only one parameter, capture power, needs to be predicted, so
the number of nodes in output layer is one. Finally, the number of nodes in hidden layer
needs to be identified. There is an empirical formula [38] that can be referred to identify
the number of hidden nodes.

l =
√

n + m + a (27)

where l, n, and m are the number of nodes in hidden layer, input layer, and output layer,
respectively; a is an adjustment constant ranging from 1 to 10.

In this paper, the number of hidden nodes is tested from 3 to 12 to identify the most
suitable value. MSE is used to elevate the performance, and the results are shown in
Table 1.

Table 1. The number of hidden nodes and the values of MSE.

Number of Nodes 3 4 5 6 7 8 9 10 11 12

MSE 0.0215 0.0160 0.0236 0.0238 0.0274 0.0263 0.0371 0.0338 0.0364 0.0341
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MSE reaches a minimum when the number of hidden nodes is 4, which is the optimal
value for this case. The final BP neural network structure designed in this paper is shown
in Figure 7.
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According to the structure, the output bj of input layer can be expressed as follows:

bj = f1(
6

∑
i=1

wijxi + θj), j = 1, 2, 3, 4 (28)

where wij is the weight from the input layer to the hidden layer; xi is the input variable; θj
is the threshold value of the hidden layer. The output y of the BP neural network is

y = f2(
4

∑
j=1

wjbj + θ′), j = 1, 2, 3, 4 (29)

where wj is the weight from the hidden layer to the output layer; θ’ is the threshold value
of the output layer.

5.2. Data Standardization and Neural Network Training

Before training, data standardization for individual features needs to be conducted to
improve training speed. The standardization formula used in this paper is

x =
xi − xmin

xmax − xmin
(30)

where x is the standardized result; xmax and xmin are the maximum and minimum values
in the dataset, respectively. The standardized data have a distribution range between 0
and 1.

The network training process is to adjust the weights and thresholds so that the value
of loss function reduces to a minimum. The training parameters for this model are shown
in Table 2.

Table 2. Training parameters.

Weight Change
Rate Learning Rate Training Epochs Performance (Judged by

Mean Square Error)
Minimum
Gradient

Validation
Checks

0.01 0.05 1000 10−5 10−7 6



J. Mar. Sci. Eng. 2021, 9, 656 12 of 18

Tangent sigmoid function (tansig) is adopted for the hidden layer, and the linear
function (purelin) is adopted for the output layer. In the training process, mean squared
error is used as loss function. It is defined as

MSE =
1
m

m

∑
i=1

(ŷ− y)2 (31)

where m is the number of samples; ŷ is the observed value; y is the real value. In this paper,
the top 80 samples are defined as training set. This model is trained in MATLAB R2019a,
and the trendline of MSE for training set is shown as Figure 8.
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The training process is terminated at 234 epochs because the gradient reaches the
minimum (10−7). The rest 20 samples are used to test, and the forecasting results after
being de-standardized are shown in the next section.

6. Results and Discussion

In this section, six groups’ forecasting data (ω = 0.53 rad/s,ω = 0.81 rad/s,ω = 1.14 rad/s,
ω = 1.42 rad/s, ω = 1.76 rad/s, and ω = 2.09 rad/s) is given because they are the most
common wave frequency. The desired outputs and forecasting results are presented in
Figure 9 under different frequency. For each sample, the output power at 52 frequency
points can be predicted.

In Figure 9a, the deviation of five samples (85, 90, 94, 99, and 100), which are at the
lowest position of the graph, are relatively large, with mean error about 60 W. In Figure 9c,
the error of sample 81 is the largest, with approximately 500 W. The forecasting results
of sample 95 and 96 are rather larger than desired outputs in Figure 9d,f, and the error
of sample 89 is around 200 W in Figure 9f. The highest accuracy is atω = 0.81 rad/s and
almost all the forecasting points fit the desired points. In contrast, the worst result is at
ω = 2.09 rad/s and there are five forecasting results deviating the desired outputs.
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To further verify the accuracy of the BP model, correlation coefficient (CC), root mean
square error (RMSE), and error percentage are introduced in this section. They are defined
as follows [29]

CC =

m
∑

i=1
(ti − t)(yi − y)√

m
∑

i=1
(ti − t)2 m

∑
i=1

(yi − y)2
(32)

RMSE =

√
1
m

m

∑
i=1

(ti − yi)
2 (33)

e =
1
m

m

∑
i=1

∣∣∣∣yi − ti
ti

∣∣∣∣ (34)

where m is the number of forecasting results; ti is the desired value; yi is the output of the
network; t and y are average values of desired and forecasting results, respectively. The
significance analysis of ANOVA is also conducted in MATLAB R2019a, and the statistical
parameters (after de-standardization) are listed in Table 3.

Table 3. The statistical parameters between desired and forecasting results.

Wave Frequency (rad/s) CC RMSE (W) Error Percentage p Value

0.53 0.95931 37.5 2.03% 0.9588
0.81 0.90129 60.5 1.79% 0.9769
1.14 0.92105 138.7 2.45% 0.9206
1.42 0.91295 78.8 2.22% 0.9691
1.76 0.92558 61.6 2.7% 0.9789
2.09 0.94852 69.3 4% 0.9362

The values of CC are greater than 0.9, meaning that the correlations with each group
are well fitted. The values of RMSE do not exceed 140 W, and the error percentage is
no more than 4%, indicating that desired outputs and forecasting results are reasonably
fitted. All P values are close to 1, which means there is no significant difference between
desired and forecasting outputs. These validation factors indicate that this model has a
good prediction accuracy and meets the engineering requirement.

7. Conclusions

In this paper, capture power predictions of a specific shape floating body are attempted
based on mathematical model, ANSYS-AQWA simulations, and BP neural network. The
key variables are identified and the simulation scheme is proposed. A sample database
is built by LHS and the corresponding power of each sample is calculated. In the end, a
BP neural network, of which training set is from simulation results, is designed to predict
the capture power at different wave frequency. Its performance and accuracy are also
evaluated through statistical parameters.

According to the results, the conclusions can be given as follows:

1. A mathematical model is constructed to identify the most important factors that affect
the capture power. Four geometric parameters (radius, semi-vertical angle, mass,
and submergence depth) and two system parameters (PTO damping coefficient and
stiffness coefficient) are identified as key variables;

2. A BP neural network with high accuracy is designed and it is used to predict the
capture power. The error percentage of top five groups is less than 2.5%, and that of
the last group is 4%. The values of CC are greater than 0.9 and that of RMSE are less
than 80 W except for the third group, of which the value of RMSE is 138.7 W. The P
values are close to 1. However, due to the error of simulations caused by commercial
software, this method needs experimental data to support.
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Appendix A

Table A1. Details of 100 sample points.

No. α R d m c k

1 21.3 2.775 2.96 7190 21,500 3990
2 22.4 1.955 2.80 7970 13,700 3570
3 20.6 2.540 2.94 7930 25,700 4960
4 23.1 2.395 2.47 7840 24,000 3680
5 14.8 1.975 2.75 7460 20,900 5520
6 22.3 2.780 2.66 7490 22,500 3790
7 18.5 2.650 2.43 7760 29,400 4500
8 24.8 2.870 2.17 7440 10,500 4000
9 12.2 2.745 2.69 7020 18,000 5390

10 12.2 2.050 2.59 7130 20,000 5550
11 22.2 2.375 2.33 7470 14,500 4090
12 14.0 2.200 2.08 7940 17,600 4280
13 10.3 1.670 2.77 7300 28,500 5870
14 16.2 2.850 2.15 7360 27,600 3720
15 17.3 2.240 2.84 7670 21,900 5420
16 5.4 2.820 2.08 7170 10,700 4930
17 7.5 1.880 2.31 7680 14,900 3850
18 20.0 2.010 2.12 7790 23,000 4200
19 6.5 2.470 2.87 7620 26,400 3920
20 13.6 2.085 2.01 7230 24,200 5730
21 12.5 1.575 2.15 7990 26,600 4200
22 23.6 2.660 3.00 7850 23,200 5640
23 19.6 2.495 2.36 7750 25,500 3410
24 7.7 2.355 2.04 7490 24,600 5050
25 11.5 1.600 2.26 7550 10,000 4690
26 10.6 1.930 2.29 7270 14,100 3460
27 13.7 2.330 2.90 7530 16,900 5030
28 14.8 2.915 2.17 7260 17,800 3320
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Table A1. Cont.

No. α R d m c k

29 21.4 1.865 2.41 7340 10,200 5250
30 7.9 1.795 2.87 7250 18,400 4810
31 8.3 2.120 2.45 7480 13,200 5990
32 10.2 2.150 2.84 7510 19,100 3180
33 6.3 2.325 2.63 7810 16,300 4610
34 17.1 1.635 2.55 7360 22,200 3140
35 21.6 2.895 2.13 7070 13,000 5960
36 13.0 1.830 2.91 7740 12,000 4330
37 5.9 2.970 2.56 7630 15,700 3450
38 15.9 2.060 2.81 7780 16,600 4890
39 19.3 2.995 2.57 7160 10,900 3160
40 8.6 1.715 2.74 7090 14,700 5670
41 11.2 1.895 2.98 7810 17,100 4050
42 9.8 1.800 2.12 7720 28,800 4660
43 11.6 2.140 2.88 7990 19,500 5220
44 18.7 2.225 2.07 7040 24,900 4860
45 12.8 2.675 2.90 7670 13,400 3740
46 15.3 2.280 2.26 7210 13,900 4730
47 17.8 2.205 2.27 7330 22,100 5070
48 11.0 2.260 2.37 7380 22,800 3500
49 16.8 1.540 2.05 7440 19,300 3760
50 13.3 2.185 2.42 7900 22,900 4360
51 19.7 2.575 2.52 7710 28,100 5210
52 9.1 2.300 2.25 7600 23,600 4420
53 22.8 2.945 2.82 7830 18,400 5890
54 7.0 2.485 2.05 7090 15,800 5440
55 21.0 1.745 2.70 7020 15,300 3010
56 5.3 1.690 2.77 7110 27,700 5830
57 7.4 2.805 2.09 7130 12,000 3390
58 15.1 2.830 2.66 7860 28,700 4290
59 15.6 1.700 2.02 7310 20,800 3280
60 16.2 1.555 2.70 7150 17,300 5330
61 9.4 1.915 2.47 7190 11,200 5930
62 6.7 2.890 2.68 7700 27,000 5130
63 23.7 2.110 2.23 7400 22,000 4570
64 18.3 2.080 2.18 7570 24,100 3620
65 24.1 2.620 2.95 7120 15,400 3340
66 16.6 1.755 2.79 7660 18,000 4490
67 24.6 2.690 2.02 7860 16,000 4230
68 8.9 2.035 2.34 7280 18,800 5720
69 5.0 2.440 2.42 7880 12,300 4770
70 21.9 1.520 2.29 7200 12,800 3930
71 13.1 2.425 2.53 7870 27,300 4750
72 9.6 2.635 2.21 7650 26,000 3820
73 24.8 2.170 2.83 7950 20,300 3650
74 10.5 1.640 2.55 7420 28,600 4160
75 11.9 1.610 2.63 7910 19,000 4920
76 23.9 2.400 2.34 7340 24,500 4630
77 5.8 1.985 2.38 7080 28,300 5470
78 22.7 2.700 2.49 7580 20,600 5540
79 18.9 1.590 2.10 7220 21,600 4070
80 24.3 2.605 2.32 7030 25,300 4990
81 15.5 2.510 2.71 7550 26,800 3570
82 17.7 2.550 2.20 7520 23,500 5360
83 11.3 1.775 2.96 7580 19,600 3080
84 18.2 2.020 2.98 7770 15,000 4550
85 10.0 2.585 2.21 7720 11,700 3890
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Table A1. Cont.

No. α R d m c k

86 19.2 1.655 2.46 7430 22,000 5310
87 8.7 2.715 2.73 7290 27,900 5630
88 13.8 2.265 2.65 7590 23,100 3240
89 20.3 2.740 2.85 7530 21,100 5120
90 14.6 2.980 2.23 7060 13,000 5180
91 7.2 2.360 2.39 7630 14,400 3110
92 20.0 1.940 2.50 7280 21,300 4460
93 17.4 1.515 2.40 7390 16,800 3530
94 6.0 2.935 2.62 7750 12,400 4390
95 20.8 2.530 2.60 7920 27,500 5770
96 21.1 1.740 2.93 7390 20,100 3060
97 23.3 2.450 2.52 7960 23,900 5800
98 16.9 1.840 2.50 7140 20,000 4120
99 8.0 2.840 2.60 7900 11,500 5600
100 14.3 1.855 2.73 7010 11,100 3270
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