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Abstract: In this paper, the publicly available dataset for the Combined Diesel-Electric and Gas
(CODLAG) propulsion system was used to obtain symbolic expressions for estimation of fuel flow,
ship speed, starboard propeller torque, port propeller torque, and total propeller torque using
genetic programming (GP) algorithm. The dataset consists of 11,934 samples that were divided into
training and testing portions in an 80:20 ratio. The training portion of the dataset which consisted
of 9548 samples was used to train the GP algorithm to obtain symbolic expressions for estimation
of fuel flow, ship speed, starboard propeller, port propeller, and total propeller torque, respectively.
After the symbolic expressions were obtained the testing portion of the dataset which consisted of
2386 samples was used to measure estimation performance in terms of coefficient of correlation (R2)
and Mean Absolute Error (MAE) metric, respectively. Based on the estimation performance in each
case three best symbolic expressions were selected with and without decay state coefficients. From
the conducted investigation, the highest R2 and lowest MAE values were achieved with symbolic
expressions for the estimation of fuel flow, ship speed, starboard propeller torque, port propeller
torque, and total propeller torque without decay state coefficients while symbolic expressions with
decay state coefficients have slightly lower estimation performance.

Keywords: CODLAG; data-driven modelling; genetic programming; decay state coefficients

1. Introduction

The marine propulsion systems are used to generate thrust to propel a ship across
the water, with various types of marine prime movers being used [1,2]. The gas turbines
are often used in combination with other types of propulsion systems due to their poor
thermal efficiency at low power output. The other key factor for using such propulsion
systems is to allow a reduction of emissions in sensitive environmental areas or while in
port [3]. In some cases, ships have steam turbines which are also used to improve the
efficiency of gas turbines in a combined cycle, where waste heat from gas turbine exhaust
is used to boil water and create steam.

The combined diesel-electric and gas (CODLAG) is a modified diesel and gas propul-
sion system for ships. In it, the electric motors which are powered by diesel generators are
connected to the propeller shafts. To achieve higher speed, the gas turbine is used to power
shafts over a cross-connecting gearbox. For cruise speed, the drive train of the turbine
is disengaged with clutches. Since electric motors work efficiently over a wide range of
revolutions they can be directly connected to the propeller shaft so simpler gearboxes are
used for combining the mechanical output of the turbine and diesel-electric system.

Literature Review

The most commonly used maintenance approach was to repair systems as neces-
sary [4]. This approach in the long run proved to be very expensive especially when
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gathering data from the field is cheaper and breakdown-related costs may overcome the
asset value [5]. Condition-based maintenance (CBM) is triggering maintenance activities as
they are indicated by the condition of the system [4]. This approach tracks the condition
of system parts which is used to predict their potential degradation and to plan when
maintenance activities will be performed. To perform accurate fault prognosis the CBM
requires real-time tracking and diagnosis of the target system.

The comprehensive approach in the simulation of CODLAG propulsion system be-
havior during transients and off-design conditions is presented by Altosole et al. (2010) [6].
With this model, the authors were able to capture the unbalance of the shaft line during
a turning maneuver. The influence of the deterioration of the main components (gas tur-
bine, propellers, and ship hull) on the behavior of the CODLAG propulsion system was
performed in [7]. The different detailed simulation models of the CODLAG propulsion
system were developed by Martelli (2017) [8] to investigate the system performance un-
der different operational conditions. The publicly available dataset has been developed
using numerical simulation of CODLAG propulsion plant [9], where the performance
advantages of exploiting machine learning (ML) methods in modeling the degradation of
the propulsion plant over time are tested. In [10], the multi-layer perceptron (MLP) was
applied on data available dataset in the prediction of the gas turbine and turbo compressor
decay state coefficients. In the case of gas turbine decay state coefficient prediction, the
lowest mean relative error of 0.622% was achieved while in the case of turbo compressor
decay state coefficient, the lowest mean relative error of 1.094% was achieved. In [11], the
MLP was again used for the estimation of the frigate speed. The results showed that MLP
could estimate the shipping speed with an error of just 3.4485× 10−5 knots. In [12], the
publicly available CODLAG dataset was used to train genetic programming algorithm
to obtain symbolic expressions for estimation gas turbine shaft torque and fuel flow. The
three best symbolic expressions obtained for gas turbine shaft torque estimation gener-
ated R2 scores of 0.999201, 0.999296, and 0.999374, respectively. The three best symbolic
expressions obtained for fuel flow estimation generated R2 scores of 0.995495, 0.996465,
and 0.996487, respectively.

Beyond the aforementioned papers, many researchers opted for an application of
AI-based modeling techniques in the application in propulsion system research area.
Cheliotis et al. (2020) [13] demonstrate the application of Exponentially Weighted Moving
Average (EWMA) for fault detection in maritime systems. The proposed research achieves
an R2 score of 0.96 in both observed cases. Uyanik et al. (2020) [14] proposed an ML
approach to the prediction of a container vessel fuel consumption. Through the application
of multiple algorithms, such as Multiple Linear Regression, Ridge and LASSO Regression,
Support Vector Regression, Tree-Based Algorithms, and Boosting Algorithms are applied
and evaluated using R2. The best results are achieved through multiple linear regression
and ridge regression with an R2 value of 0.999. Berghout et al. (2021) [15] applied an
Extreme Learning Machine in combination with other techniques in the application for pre-
diction of condition-based maintenance of naval propulsion systems. The newly proposed
approach demonstrates not only higher accuracy, but also better generalization under
different training paradigms. Tsaganos et al. (2020) [16] demonstrated the application of
AdaBoost classifier for the improvement of engine fault detection. Based on the achieved
performance, with an accuracy of 96.5%, the authors concluded that the ensemble methods
such as used are an appropriate choice for the given problem. Bachmayer et al. (2020)
[17] discussed ML applications in underwater propulsion systems, concluding that such
approaches are fast enough for use in the real-time system for detection of soft and hard
errors.

GP is an Artificial Intelligence (AI) method for evolving expressions such as computer
programs or equations. The roots of GP can be traced back to Alan Turing [18] but the
computational limitations of that time prevented further development. After almost
30 years the small programs were successfully evolved, as reported in [19]. The genetic
algorithm (GA) for evolving programs was officially introduced by Koza in 1988 [20]. The
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algorithm can be used to develop symbolic ecpressions which allow for direct modelling of
various tasks [21–23].

Based on an extensive literature review the following questions arise:

• does the correlation exist, and how strong is the correlation between the parameters
of CODLAG propulsion system dataset [9], and

• is it possible to obtain the symbolic expressions using GP algorithm for fuel flow
estimation, ship speed estimation, starboard and port propeller torque, and total
torque-with and without decay state coefficients.

The correlation analysis will give a better insight into the CODLAG propulsion system
dataset [9] which will be a good starting point for GP algorithm implementation. After
the symbolic expressions were obtained and tested the results of correlation analysis will
provide sufficient information in further investigation of symbolic expressions.

The novelty of the research lies in multiple elements. The authors have applied
the correlation analysis to determine the parameter importance of individual dataset
parameters, in order to improve the results of the AI-based methods. The main novelty
of the paper is the generation of equations which can be applied to the prediction of the
aformentioned parameters (fuel flow, ship speed, as well as starboard, port and total
propeller torque) by the future researchers. As a final research novelty, the influence of
decay coefficients has been tested.

First, the researchers will present the used dataset, with methods applied to the
analysis of it. Then, a short description of the GP algorithm is provided, along with the
used hyperparameters and evaluation metrics. The results are presented and discussed;
following that, providing information on the correlation coefficients of the parameters in
the dataset, metrics achieved with the trained models along with the used hyperparameters
and regressed equations. Drawn conclusions, addressing the posed research questions, are
given in the end.

2. Materials and Methods

In this section, the publicly available dataset [9] is described in detail as well as the
correlation analysis, genetic programming algorithm, and metric used to evaluate obtained
symbolic expressions.

2.1. Dataset Description

The dataset that was used in this paper is a publicly available dataset available at the
UCI machine learning repository [9]. The dataset was obtained using a numerical simulator
of a naval vessel (Frigate) characterized by a Gas Turbine (GT) propulsion plant. The
simulator that was used to obtain the dataset consists of different blocks such as propeller,
hull, GT, gearbox, and controller. These components were developed and fine-tuned on
several similar real propulsion plants. This dataset also incorporates the performance
decay over time of the GT components such as turbo compressors and turbines. The two
propellers are driven from power generated with GT and two electric motors which are
transmitted using a system that consists of three gearboxes and four clutches. The scheme
of the CODLAG propulsion system is shown in Figure 1.
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Figure 1. The scheme of CODLAG propulsion system (B-gear box, C-clutch, D-diesel engine,
G-electrical generator, GT- gas turbine, M-electrical motor, P-frigate propeller).

The GT shown in Figure 1 consists of a turbo compressor, combustion chamber, high
pressure (HP), and low pressure (LP) gas turbines. It should be noted that the power
produced in HP gas turbine is used only for turbo compressor drives (gas generator) while
the power produced by LP gas turbine is used for ship propulsion in combination with
power produced by electric motors. The detailed scheme of GT used in the CODLAG
propulsion system is shown in Figure 2.

Figure 2. The scheme of GT component used in CODLAG propulsion system (C-turbo compressor;
B-combustion chamber; HP-high pressure turbine; LP-low pressure turbine, O.P.-Operating Point).

As seen in Figure 2, the HP gas turbine together with turbo compressor (C) and
combustion chamber (B) represents the gas generator. The only connection between HP
gas turbine and LP gas turbine is achieved by flue gases that go from HP gas turbine to
LP gas turbine. The LP gas turbine is a free power shaft turbine. System maintenance
is an important factor of complex propulsion systems. To describe the gas turbine and
turbo compressor the decay state coefficient is used as the numerical indicator of their
condition. In this dataset, the decay state coefficients of gas turbine and turbo compressor
are simulated in the MatLab software package as the consequence of fouling. The source of
fouling is the exhaust gases and oil vapors that produce impurities on gas turbine blades
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and impurities of intake air of turbo compressor. The fouling in the gas turbine is simulated
as the gas flow rate decrease while in the turbo compressor the fouling is simulated as a
decrease of airflow rate Mc and isentropic efficiency ηc. In Table 1 the dataset parameters
with corresponding values range and units are provided, while Figure 3 shows the T-s
diagram of the Gas turbine for the CODLAG system.

Figure 3. Thermodynamic process of the gas turbine from the analyzed CODLAG propulsion system
in T-s diagram (O.P.-Operating Point).

Table 1. The list of physical values in CODLAG dataset with corresponding range of values and units.

Physical Variable Range Unit

Lever position (lp) 1.138–9.3 -
Ship speed (v) 3–27 kn

Gas turbine shaft torque (GTT) 253.547–72,784.872 kNm
GT rate of revolutions (GTn) 1307.675–3560.741 rpm

Gas generator rate of revolutions (GGn) 6589.002–9797.103 rpm
Starboard propeller torque (Ts) 5.304–645.249 kN

Port propeller torque (Tp) 5.304–645.249 kN
High pressure turbine exit temperature (T48) 442.364–1115.797 ◦C
Turbo compressor inlet air temperature (T1) 288 ◦C

Turbo compressor outlet air temperature (T2) 540.442–789.094 ◦C
HP turbine exit pressure (P48) 1.093–4.56 bar

Turbo compressor inlet air pressure (P1) 0.998 bar
Turbo compressor outlet air pressure (P2) 5.828–23.14 bar

GT exhaust gas pressure (Pexh) 1.019–1.052 bar
Turbine injection control (TIC) 0–92.556 %

Fuel flow (m f ) 0.068–1.832 kg/s
Turbo compressor decay state coefficient 0.95–1 -

Turbine decay state coefficient 0.975–1 -

2.2. Correlation Analysis

In this paper, two types of correlation analysis will be applied to the CODLAG
propulsion system dataset to determine the correlation between input and output variables
i.e., Pearsons and Spearman correlation analysis.

The Pearson’s product-moment correlation coefficient r measures the linear rela-
tionship between two continuous variables [24]. For example, let x and y represent the
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quantitative measures of two random variables on the same sample of n. The Pearson’s
correlation coefficient r can be written in the following form [25]:

r = ∑n
i=1(xi − x)(yi − y)√

∑n
i=1(xi − x)

√
∑n

i=1(yi − y)
(1)

where

x =
1
n

n

∑
i=1

xi and y =
1
n

n

∑
j=1

yi (2)

are the mean values of variable x and y, respectively. Assuming that the sample variances
of x and y are positive i.e., s2

x > 0 and s2
y > 0 the linear correlation coefficient r can be

written as the ratio of the sample covariance of the two variables to the product of their
respective standard deviations sx and sy as [26,27]:

r =
Cov(x, y)

sxsy
, (3)

where Cov represents covariance. The range of correlation measurement r is between −1
and +1. There are three different cases of correlation measurement between x and y and
these are:

• r > 0-the linear correlation between x and y are positive i.e., higher absolute levels of
one variable are associated with lower levels of the other,

• r = 0-indicates the absence of any association between x and y, and
• r < 0-the linear correlation between x and y is negative i.e., higher absolute levels of

one variable are associated with lower levels of the other.

The magnitude of the correlation coefficient indicates the strength of association, while
the sign of the linear correlation coefficient indicates the direction of the association. For
example, if the value of the correlation coefficient is equal to +1 the variables have a perfect
linear positive correlation which means that if one variable increases, the second increases
proportionally in the same direction. On the other hand, if the correlation coefficient value
is equal to −1, the variables have a negative correlation and move in the opposite direction
of each other. If the value of one variable increases the value of the other variable decreases
proportionally. When two variables x and y are normally distributed, the population
Pearson’s product-moment correlation coefficient can be determined as [28]:

ρ =
Cov(x, y)

σxσy
, (4)

where σx and σy are the population standard deviations of x and y, respectively. It should
be noted that if both variables are normally distributed the coefficient ρ is not significant
since it is affected by extreme values.

Spearman’s correlation coefficient evaluates the monotonic relationship between
two continuous variables [29]. In a monotonic relationship, the variables tend to change
together, but not at constant rate. For two variables x and y the Spearman’s rank correlation
coefficient computes the correlation between the rank of two variables which can be written
in the following form [30]:

rs =
∑n

i=1(x′i − x′)(y′i − y′)√
∑n

i=1(x′i − x′)
√

∑n
i=1(y

′
i − y′)2

(5)

where x′ and y′ are ranks of x and y, respectively. The Spearman’s correlation is basically
the rank-based version of the Pearson’s correlation coefficient. The range of Spearman’s
coefficient is from −1 up to +1. Similar to Pearson correlation coefficient, the Spearman’s
correlation coefficient is 0 for variables that are correlated in a non-monotonic way. An
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alternative formula used to calculate the Spearman rank correlation can be written in the
following form [31]:

rs = 1− 6 ∑2
i=1 di

n(n2 − 1)
, (6)

where di is the difference between the ranks of corresponding values xi and yi. To avoid
the step of determining the ranks of the variables, Equation (5) was used for the calculation
of Spearman’s correlation coefficients in this paper.

2.3. Genetic Programming

The genetic programming algorithm is a technique of evolving programs from an
initial population of random, unfit programs from generation to generation and fits them
for a particular task with the application of genetic operations (crossover and mutation) [32].
In GP computer programs are represented as three structures. The example of computer
program (X1 + 2.7X2) + (X3 − 3.7X4) is shown in Figure 4.

Figure 4. The example of computer program represented as three structure.

The variables and constants shown in Figure 4 are leaves of the tree and in GP they
are called terminals while the arithmetic operations are internal nodes called functions.
The set of functions and terminals together form the primitive set of a GP system.

As stated earlier the initial population consists of random, naive programs which are
developed using a primitive set. Various methods can be used to initialize the population
however in this paper the ramped-half-and-half method is used. This method is a combina-
tion of the full and grow method. In the full method, the nodes are taken at random from
the function set until the maximum tree depth is reached. After the maximum tree depth
is reached only terminals must be chosen. In grow method the nodes are selected from
the whole primitive set until the depth limit is reached. Once the depth limit is reached
only terminals may be chosen. Since both methods do not provide a very wide array of
sizes and shape the ramped half-and-half method is used. In this method, half of the initial
population is generated using the full method, and the other half using the grow method.
This procedure is done using a range of depth limits to ensure that the variety of tree
sizes and shapes in population. After the initial population is generated each population
member must be evaluated to determine its fitness value. In this paper, the Mean Absolute
Error is a fitness measure that will be used to evaluate each population member. The MAE
formula can be written in the following form [33]:

MAE =
∑n

i=1|yi − xi|
n

, (7)

where yi is prediction and xi is the true value thus the difference between those two values
represents an average of the absolute errors while n represents the number of samples. It
should be noted that this measure will also be used later for further evaluation of symbolic
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expressions on the testing portion of the dataset. After the initial population has been
created the selection must be performed to select population members that will represent
parents of the next generation. There are various types of the selection procedure which
can be used; however, in this paper, the tournament selection procedure was used. The
tournament selection starts from a random selection of population members from all
population members [34]. These population members are compared with each other and
the best of them (tournament winner) is chosen to be the parent. For crossover operation
two parents are needed so, two selection tournaments are made. However, for mutation
operation, only one population member (tournament winner) is required so only one
tournament selection is required. In GP the most commonly used form of crossover is the
subtree crossover. This operation requires two parents and the crossover point or a node
is randomly selected in each parent tree. The subtrees are swapped between those two
parents to generate the members of the next generation. In GP there are three types of
mutation operations and these are subtree mutation, hoist mutation, and point mutation.
In each mutation case, only one tournament winner is needed. The subtree mutation
starts by randomly selecting the subtree on the tournament winner and this subtree is
replaced by a randomly generated subtree to form an offspring of the next generation.
The hoist mutation operation starts by randomly selecting the subtree on the tournament
winner. Then a random subtree of that subtree is selected and is then hoisted into the
original subtree location to form the member of the next generation. The point mutation
operation starts by selecting random nodes on the tournament winner which will be
replaced. The terminals are then replaced by other terminals and functions are replaced by
other functions.

To terminate the execution of the GP algorithm the stopping criteria are needed. Two
different stopping criteria are usually used in GP and these are the maximum number of
generations and the stopping criteria value. The maximum number of generations is the
termination criteria that terminates the execution of GP after the maximum number of
generations is reached. The stopping criteria value represents the lowest fitness function
value which can be achieved by population members in a generation. If the lowest value is
achieved the GP algorithm execution is terminated.

The other important parameter in the GP algorithm is the parsimony coefficient [35]
which is responsible for penalizing large growth of symbolic expressions without improve-
ment in their fitness value by making them less favorable for tournament selection.

2.4. Evaluation Metrics

After all symbolic expressions were obtained with the GP algorithm on the training
portion of the dataset these symbolic expressions are then evaluated on the testing portion
of the dataset. In this paper, two metrics are used for the evaluation of estimation perfor-
mance of symbolic expressions and these are the R2 and MAE metric. Since the MAE was
already described in the previous section here only the R2 metric will be described.

The R2 metric or the coefficient of determination is the proportion of the variance in
the dependent variable that is predictable from the independent variable. The formula for
calculating the R2 metric can be written in the following form

R2 = 1− SRESIDUAL
STOTAL

= 1− ∑m
i=0(yi − ŷi)

2

∑m
i=0(yi − 1

m ∑m
i=0 yi)2

(8)

Two sets of solutions i.e., the real data y and the data obtained by the model ŷ are
compared by this metric in terms of variance. The result of R2 metric can be in the range
from 0 to 1. If the R2 value is equal to 1.0 means that there is no variance between the real
data and the data obtained by the model. The R2 value of 0 means none of the variances in
the real data are explained in the model data.
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3. Results and Discussion

In this section, the preparatory steps for implementation of GP are described as well
as the results obtained using correlation analysis and symbolic expressions obtained for
estimation of the fuel flow, ship speed, starboard, and propeller torque, and total torque,
respectively. After extensive research, the obtained results are discussed in detail.

3.1. Results

Before presenting the best symbolic expressions for estimation of specific output
values the two types of correlation analysis were performed and these are Pearsons and
Spearman’s correlation analyses. The results of Pearsons and Spearman’s correlation
analyses are shown in Figures 5 and 6.

Figure 5. The result of Pearsons correlation analysis.

As seen in Figure 5 the highest positive correlation values are obtained for 14 out of
18 variables in the dataset. This means that if the value of these input variables increases the
value with the output variable will also increase. However, the GCDSC (turbo compressor
decay state coefficient) and GTDSC (turbine decay state coefficient) have positive, negative,
and no correlation values with other variables in the dataset. Both decay state coefficients do
not correlate with ship speed (v), have small positive correlation values (0.0008, 0.0001) with
starboard and port propeller torque, and negative correlation values (−0.0137, −0.0173)
with fuel flow. If the correlation value is negative this means that if the value of input
variables increases the value of the output variable will decrease or vice versa. It should be
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noted that T1 (GT turbo compressor inlet air temperature) and P1 (GT turbo compressor
inlet air pressure) have no correlation with any variable in the dataset except with itself.
These two variables represent the ambient temperature and pressure which were set to
constant values during the simulation of the CODLAG propulsion system. The variation
of these two variables would not have any effect on the output variable. The results of
Spearman’s correlation analysis are shown in Figure 6.

Figure 6. The result of Spearman’s correlation analysis.

The results of performed Spearman’s correlation analyses have similar results as in
the case of Pearson’s correlation analysis. The correlation analysis showed that 14 out of
18 variables have positive correlation values. The T1 and P1 are constant values throughout
the entire dataset so they do not correlate with any other variable except with themselves
i.e., the correlation values are zero. The results of correlation analyses also showed that
two decay state coefficients (GCDSC and GTDSC) have positive, negative, or no correlation
value. As in the case of Pearson’s correlation analysis, the two decay state coefficients
do not correlate with ship speed (0.0, 0.0), positive and negative correlation values with
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starboard (−0.0295, 0.0174) and port propeller torque (−0.0295, 0.0174), and negative
correlation values with fuel flow (−0.0559, −0.0681).

As stated in the abstract and introduction of this paper there is a total of 10 different
GP analyses performed and these are fuel flow, ship speed, starboard propeller torque,
port propeller torque, and total propeller torque analysis with and without decay state
coefficients. It should be noted that for starboard propeller torque analysis the port pro-
peller torque variable will be excluded from the dataset. The same procedure was applied
for port propeller torque analysis. For total propeller torque analysis, the starboard and
port propeller torque values were added together and excluded from the dataset as input
variables. Table 2 shows input and output variables for each of the analyses.

Table 2. The input and output variables used in the GP algorithm to obtain symbolic expressions
for estimation of fuel flow, ship speed, starboard, port, and total propeller torque with and without
decay coefficient.

Physical Variable

Representation of Variables in GP

Fuel
Flow

Analysis

Ship
Speed

Analysis

Starboard
Propeller
Torque

Analysis

Port
Propeller
Torque

Analysis

Total
Propeller
Torque

Analysis

Lever position (lp) X0 X0 X0 X0 X0
Ship speed (v) X1 y X1 X1 X1

Gas turbine shaft
torque (GTT) X2 X1 X2 X2 X2

GT rate of
revolutions (GTn) X3 X2 X3 X3 X3

Gas generator rate of
revolutions (GGn) X4 X3 X4 X4 X4

Starboard propeller
torque (Ts) X5 X4 y - -

Port propeller
torque (Tp) X6 X5 - y -

High pressure turbine
exit temperature (T48) X7 X6 X5 X5 X5

turbo compressor
inlet air temperature (T1) X8 X7 X6 X6 X6

turbo compressor
outlet air pressure (P2) X9 X8 X7 X7 X7

HP turbine exit
pressure (P48) X10 X9 X8 X8 X8

Turbo compressor
inlet air pressure (P1) X11 X10 X9 X9 X9

Turbo compressor
outlet air pressure (P2) X12 X11 X10 X10 X10

GT exhaust gas
pressure (Pexh) X13 X12 X11 X11 X11

Turbine injection
control (TIC) X14 X13 X12 X12 X12

Fuel flow (m f ) y X14 X13 X13 X13
Turbo compressor

decay state coefficient X15 X15 X14 X14 X14

Trubine decay
state coefficient X16 X16 X15 X15 X15

Total Propeller
Torque (Ts+Tp) - - - - y
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As seen in Table 2 for fuel flow and ship speed analysis there is a total of 16 input
variables and one output variable. In the case of fuel flow and ship speed without decay
coefficients, there is a total of 14 input variables. In the case of starboard and port propeller
torque analysis, there is a total of 13 input variables in the case without decay state
coefficient while in the case with decay state coefficients there is a total of 15 input variables.
The same number of input variables with and without decay state coefficients is applied for
the total propeller torque but the output variable is the sum of starboard and port propeller
torque values. The GP range of GP parameters that were used in all these analyses is shown
in Table 3.

Table 3. The range of GP parameters used in all analyses.

GP Parameter Lower
Bound

Upper
Bound

Population size 500 1000
Number of generations 100 500

Tournament selection size 50 100
Tree depth (3–7) (6–12)

Crossover coefficient 0.9 1
Subtree mutation coefficient 0.01 0.1
Hoist mutation coefficient 0.01 0.1
Point mutation coefficient 0.01 0.1

Stopping criteria value 1× 10−6 0.001
Maximum number of samples 0.9 1.0

Constant range −0.1 0.1
Parsimony coefficient 1× 10−4 0.01

As seen in Table 3 the dominating genetic operator is crossover coefficient when
compared to three mutation coefficient. The stopping criteria range is very small; however,
in all GP algorithm execution, this value was never achieved so the GP algorithm execution
was terminated when the maximum number generation was reached. The parsimony
coefficient value is responsible for penalizing the large growth of population members
without improvement in fitness value i.e., bloat phenomenon. The values of the parsimony
coefficient in all analyses were small to allow the growth of population members from
generation to generation.

3.1.1. The Symbolic Expressions for Fuel Flow Estimation with and without Decay
State Coefficients

To obtain symbolic expressions for fuel flow estimation with decay state coefficients
total of 16 input variables were used from the training dataset part and fuel flow was used
as the output variable which is shown in Table 2. In the case of fuel flow estimation without
decay state coefficients only 14 input variables were used. After multiple GP algorithm
executions, the three best symbolic expressions with and without decay state coefficients
were selected based on their performance in terms of R2 and MAE values, respectively.
The three best symbolic expressions with and without decay state coefficients for fuel flow
estimation are presented in Tables 4 and 5.



J. Mar. Sci. Eng. 2021, 9, 612 13 of 31

Table 4. Three best symbolic expressions for fuel flow estimation with decay state coefficients with corresponding R2 and
MAE score.

GP Parameters
-

Population, Generations,
Selection Size, Tree Depth,

Crossover Coef.,
Subtree Mutation Coef.,

Hoist Mutation Coef.,
Point Mutation Coef.,

Stopping Criteria,
Samples, Constant Range,

Parsimony Coef.

Symbolic Expression R2 MAE

[930, 243, 81, (3, 11),
0.91, 0.021, 0.015, 0.041,

0.0002, 0.95,
(−0.043, 0.021), 0.0003]

ym f DF1 = (log(min(
√

sin(log( X12
X15X16

)),

tan(sin(tan(sin(log( X12
X13X15

))))))))
1
2

0.99398 0.02664

[742, 103, 92, (4, 11),
0.9, 0.026, 0.035, 0.02,

0.0002, 0.91,
(−0.071, 0.02), 0.0038]

ym f DF2 = log(X10) cos(log(cos(X16)))
cos(log(tan(X11)))max(X15, log(X10))

0.993 0.03695

[927, 346, 80, (6, 9),
0.9, 0.032, 0.039, 0.019,

0.0002, 0.92,
(−0.063, 0.056), 0.0008]

ym f DF3 = log
(

X10X15 cos
(

X13+sin(X16+X3)
sin(X0)+3.35241

))
0.95526 0.08184

Table 5. Three best symbolic expressions for fuel flow estimation without decay state coefficients with corresponding R2

and MAE score.

GP Parameters
-

Population, Generations,
Selection Size, Tree Depth,

Crossover Coef.,
Subtree Mutation Coef.,

Hoist Mutation Coef.,
Point Mutation Coef.,

Stopping Criteria,
Samples, Constant Range,

Parsimony Coef.

Symbolic Expression R2 MAE

[962, 289, 52, (6, 8),
0.91, 0.017, 0.035, 0.03,

0.000524, 0.99,
(−0.073, 0.0014), 0.0029]

ym f 1 = X10√√√√ ln(X2)

√
ln(X2)
ln(X10)

X10

0.9964 0.02276

[1000, 141, 83, (5, 9),
0.9, 0.022, 0.012, 0.032,

0.000986, 0.98,
(−0.049, 0.0943), 0.0013]

ym f 2 =
√

tan(X1) sin(
√

tan(max(X1, ln(X4)))

sin(sin(sin((sin(sin(sin(
√

sin(X1))))√
tan(max(X1, ln(X4))))

1
2 ))))

0.99591 0.02341

[582, 365, 85, (4, 7),
0.9, 0.022, 0.027, 0.018,

0.00046, 0.91,
(−0.0103, 0.0905), 0.0003]

ym f 3 = ln(X10)

tan

sin

 ln(X10)
X13
X13

+X11

 0.99578 0.023027
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When Tables 4 and 5 are compared it can be noticed that decay state coefficients are
decreasing the performance of fuel flow estimation in terms of R2 and MAE values. The
population size for each case was near 1000 except for the third case without decay state
coefficients where population size is near the lower boundary of 500. The crossover coeffi-
cient was the dominating genetic operation for each case. All six symbolic expressions are
small in size so the bloat phenomenon did not occur although the values of the parsimony
coefficients in all six cases are extremely small. The fuel flow estimation performance of all
six symbolic expressions is shown in Figure 7.

Figure 7. The comparison of estimated fuel flow with real data versus the ship speed.

As seen in Figure 7 all symbolic expressions are estimating the fuel flow with high
accuracy except for ym f DF3 which has the highest deviation from the real data. When the
estimation performance of symbolic expressions with decay state coefficients is compared to
those without decay state coefficients it can be noticed that those symbolic expressions with
decay state coefficients have slightly lower estimation accuracy. However, those symbolic
expressions with decay state coefficients are more important symbolic expressions for CBM
since they could indicate the potential degradation of system performance.

3.1.2. The Symbolic Expressions for Ship Speed Estimation with and without Decay
State Coefficients

In the case of ship speed estimation using GP with decay state coefficients, the total
of 16 input variables was considered while in the case without decay state coefficients the
GCDSC and GTDSC input variables were omitted. The output variable in both cases was
the shipping speed as indicated in Table 2. After multiple GP algorithm executions using
the training dataset part, all symbolic expressions were tested on the testing dataset part
to determine R2 and MAE value. Based on the highest R2 and MAE value the three best
symbolic expressions with and without decay state coefficients were chosen and shown in
Tables 6 and 7.
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Table 6. Three best symbolic expressions for ship speed estimation with decay state coefficients with corresponding R2 and
MAE score.

GP Parameters
-

Population, Generations,
Selection Size, Tree Depth,

Crossover Coef.,
Subtree Mutation Coef.,

Hoist Mutation Coef.,
Point Mutation Coef.,

Stopping Criteria,
Samples, Constant Range,

Parsimony Coef.

Symbolic Expression R2 MAE

[548, 311, 87, (3, 8),
0.91, 0.017, 0.017, 0.018,

0.000926, 0.92,
(−0.015, 0.044), 0.0013]

yssDF1 = (X15 + X16)
(

X0
X10+X12

+ X0

)
0.99843 0.2858

[784, 458, 77, (4, 7),
0.9, 0.015, 0.015, 0.06,

9.3× 10−5, 0.9,
(−0.0083, 0.082), 0.0063]

yssDF2 = X0X15X16 + X0X15 + X0X16 0.99788 0.32584

[585, 286, 69, (3, 12),
0.9, 0.024, 0.025, 0.023,

0.000191, 0.92,
(−0.00084, 0.018), 0.0053]

yssDF3 = ||log(X14)|+ tan(X15 + X16)|+
√

X4 0.99593 0.41067

Table 7. Three best symbolic expressions for ship speed estimation without decay state coefficients with corresponding R2

and MAE score.

GP Parameters
-

Population, Generations,
Selection Size, Tree Depth,

Crossover Coef.,
Subtree Mutation Coef.,

Hoist Mutation Coef.,
Point Mutation Coef.,

Stopping Criteria,
Samples, Constant Range,

Parsimony Coef.

Symbolic Expression R2 MAE

[732, 352, 86, (6, 10),
0.92, 0.012, 0.013, 0.023,

0.000231, 0.9,
(−0.073, 0.031), 0.003]

ysp1 = X0−0.066
X12

+ 2X0 − 0.279 0.9998925 0.06729

[945, 479, 70, (6, 7),
0.91, 0.016, 0.016, 0.014,

9.4× 10−5, 0.98,
(−0.085, 0.0049), 0.0097]

ysp2 =
√

X0(X0 − X14) log
(
X3 + X4

√
X6
)

0.999825 0.08665

[690, 152, 82, (6, 12),
0.9, 0.047, 0.01, 0.018,

3.6× 10−5, 0.94,
(−0.023, 0.058), 0.0078]

ysp3 = X14 cos(X12 − X14 cos(X0 − X10))+
log(X0) +

√
X4

0.999541 0.11797
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As seen in Tables 6 and 7 those symbolic expressions with decay state coefficients
included in the analyses have slightly lower estimation accuracy in terms of R2 and MAE
values when compared to those symbolic expressions without decay state coefficients. As
in the case of fuel flow estimations, both decay state coefficients are in all three symbolic
expressions shown in Table 6. In this analysis, the crossover coefficient was the dominating
genetic operation when compared to the remaining three mutation coefficient values, and
the parsimony coefficient was extremely low. The tree depth range of the initial population
was lower in the case of symbolic expressions with decay state coefficients. The stopping
criteria value in all these analyses was never achieved due to the extremely low value, so
the GP algorithm executions were terminated after the maximum number of generations
was reached. The estimation performance of all six symbolic expressions is shown in
Figure 8.

Figure 8. The Comparison of Estimated Ship Speed with Real Data Versus the Fuel Flow.

In Figure 8 the variation of ship speed versus the fuel flow is shown. The estimation
accuracy of ship speed using symbolic expressions with decay state coefficients is slightly
lower than those without decay state coefficients which are also indicated by achieved R2

and MAE values.

3.1.3. The Symbolic Expressions for Starboard Propeller Torque Estimation with and
without Decay State Coefficients

In the case of starboard propeller torque analysis using the GP algorithm, the port
propeller torque was excluded from the analysis since it has almost identical values as
the starboard propeller torque. Therefore, if the port propeller torque was included as an
input variable in the GP algorithm this would result in early termination of GP algorithm
execution. With the exclusion of port propeller torque from the analysis, the total number
of input variables in the case of decay state coefficient is 15 while in the case without decay
state coefficient the total number of input variables is 13. The list of input and output
variables is shown in Table 2. After multiple GP algorithm executions using the training
dataset part the obtained symbolic expressions were evaluated on the testing dataset part
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to determine the R2 and MAE values, respectively. Based on the highest R2 and lowest
MAE values the three best symbolic expressions with and without decay state coefficients
were selected and shown in Tables 8 and 9 with corresponding GP parameters.

Table 8. Three best symbolic expressions for starboard torque estimation with decay state coefficients with corresponding
R2 and MAE score.

GP Parameters
-

Population, Generations,
Selection Size, Tree Depth,

Crossover Coef.,
Subtree Mutation Coef.,

Hoist Mutation Coef.,
Point Mutation Coef.,

Stopping Criteria,
Samples, Constant Range,

Parsimony Coef.

Symbolic Expression R2 MAE

[996, 399, 69, (3, 10),
0.92, 0.013, 0.035, 0.018,

9.06× 10−7, 0.94,
(−0.078, 0.077), 0.0061]

ystDF1 = X0 + X1X10 + 5X13+
X8 + XSPTDF11 + XSPTDF12

0.99985 1.98477

[821, 418, 92, (4, 10),
0.909, 0.044, 0.018, 0.011,

1.46× 10−7, 0.98,
(−0.002, 0.07), 0.0022]

ystDF2 = X1X10 min(X11, XSPTDF21) 0.99959 3.16776

[598, 398, 63, (4, 11),
0.9, 0.033, 0.018, 0.032,

1.68× 10−7, 0.96,
(−0.0055, 0.014), 0.0016]

ystDF3 = X12XSPTDF31 0.99737 7.9579

Table 9. Three best symbolic expressions for starboard torque estimation without decay state coefficients with corresponding
R2 and MAE score.

GP Parameters
-

Population, Generations,
Selection Size, Tree Depth,

Crossover Coef.,
Subtree Mutation Coef.,

Hoist Mutation Coef.,
Point Mutation Coef.,

Stopping Criteria,
Samples, Constant Range,

Parsimony Coef.

Symbolic Expression R2 MAE

[554, 233, 81, (5, 11),
0.9, 0.052, 0.025, 0.017,

5.1× 10−7, 0.95,
(−0.087, 0.028), 0.0031]

yst1 =
√

XSPT11XSPT12 0.99994 1.0697

[792, 144, 63, (5, 8),
0.92, 0.039, 0.013, 0.025,

6.25× 10−7, 0.92,
(−0.07, 0.01), 0.0069]

yst2 = X0(X1 + XSPT21) 0.99989 1.3387

[824, 297, 57, (6, 7),
0.91, 0.014, 0.032, 0.031,

4.08× 10−7, 0.92,
(−0.08, 0.039), 0.0039]

yst3 = X1X10XSPT31
tan(tan(X9))

+ X1X10+

log(X13) + XSPT32
0.99981 1.8535



J. Mar. Sci. Eng. 2021, 9, 612 18 of 31

As seen in Tables 8 and 9 some new variables were introduced to shorten the size of
symbolic expressions in the aforementioned tables. The full form of XSPTDF11, XSPTDF12,
XSPTDF21, XSPTDF31, XSPT11, XSPT12, XSPT21, XSPT31, and XSPT32 is shown in
Appendices A.1 and A.2, respectively. The R2 values of symbolic expressions with decay
state coefficients in the estimation of starboard propeller torque are slightly lower when
compared to the symbolic expressions without decay state coefficients while the MAE
values are higher in symbolic expressions with decay state coefficients when compared to
the symbolic expressions obtained without decay state coefficients. The stopping criteria
values in all six symbolic expressions are extremely low when compared to the fuel flow
and ship speed analysis. Again, these values were never achieved so the GP execution
was terminated after a maximum number of generations was reached. The values of the
parsimony coefficient were low in all six symbolic expressions which generated very large
symbolic expressions so the aforementioned coefficients were introduced to simplify their
form. The other key factor that contributed to large symbolic expressions is the constants
range which in all analyses is very low. Therefore, the GP algorithm had to replace the
low constants range by increasing the size of symbolic expressions using mathematical
functions. The estimation performance of starboard propeller torque with and without
decay state coefficients compared to real data are shown in Figure 9.

Figure 9. The Variation of Real and Estimated Starboard Propeller Torque Values versus Ship Speed.

In Figure 9, it can be noticed that all symbolic expressions have an accurate estimation
of starboard propeller torque when compared to the values from the dataset. However,
the third symbolic expressions with decay state coefficients have the lowest estimation
accuracy when compared to the remaining five which can also be indicated with a lower
R2 value or higher MAE value, respectively.
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3.1.4. The Symbolic Expressions for Port Propeller Torque Estimation with and without
Decay State Coefficients

The procedure of obtaining symbolic expressions for estimation of port propeller
torque with and without decay state coefficient is similar to the procedure of obtaining
the symbolic expressions for starboard propeller torque. The starboard propeller torque
was omitted as an input variable from the investigation due to the equal values as port
propeller torque. Initial investigation of port propeller torque using GP algorithm with
the inclusion of starboard propeller torque showed early termination of GP algorithm. In
the case of symbolic expressions with decay state coefficient included there was a total
of 15 input variables while in the case without decay state coefficients there was a total
of 13 input variables, while the port propeller torque was output variable. The list of
input and output variables is shown in Table 2. The equations are not based on previous
knowledge or derived from other findings-but generated purely through the evolutionary
process of GP described in the Methodology, which attempts to, in a heuristic manner,
develop equations that provide a high fitness value for the used dataset. After multiple
executions with the GP algorithm using the training dataset part the obtained symbolic
expressions were evaluated on the testing dataset part to determine the R2 and MAE value.
Based on the highest R2 value and lowest MAE values the three best symbolic expressions
with and without decay state coefficients were chosen and shown in Tables 10 and 11.

Table 10. Three best symbolic expressions for port propeller torque estimation with decay state coefficients with correspond-
ing R2 and MAE score.

GP Parameters
-

Population, Generations,
Selection Size, Tree Depth,

Crossover Coef.,
Subtree Mutation Coef.,

Hoist Mutation Coef.,
Point Mutation Coef.,

Stopping Criteria,
Samples, Constant Range,

Parsimony Coef.

Symbolic Expression R2 MAE

[788, 470, 94, (6, 8),
0.93, 0.016, 0.017, 0.032,

6.00× 10−9, 0.93,
(−0.072, 0.083), 0.0044]

ypptDF1 = (log(log(X0)) + X12)
log(X9 − X0) + XPPTDF11

0.99964 1.9885

[979, 263, 77, (6, 8),
0.91, 0.047, 0.012, 0.022,

6.86× 10−9, 0.91,
(−0.062, 0.0027), 0.0043]

ypptDF2 = X1X10 + XPPTDF21 0.9996 2.61963

[986, 394, 53, (3, 12),
0.91, 0.018, 0.051, 0.013,

9.47× 10−9, 0.946,
(−0.02, 0.016), 0.0095]

ypptDF3 = X0XPPTDF31 0.99427 14.0996
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Table 11. Three best symbolic expressions for port propeller torque estimation without decay state coefficients with
corresponding R2 and MAE score.

GP Parameters
-

Population, Generations,
Selection Size, Tree Depth,

Crossover Coef.,
Subtree Mutation Coef.,

Hoist Mutation Coef.,
Point Mutation Coef.,

Stopping Criteria,
Samples, Constant Range,

Parsimony Coef.

Symbolic Expression R2 MAE

[709, 445, 70, (5, 11),
0.9, 0.023, 0.029, 0.041,

5.72× 10−7, 0.94,
(−0.041, 0.01), 0.0031]

yppt1 = X0X11XPPT11
X11+X9

0.9994 3.35254

[986, 294, 74, (4, 12),
0.91, 0.042, 0.012, 0.025,

6.99× 10−7, 0.91,
(−0.021, 0.081), 0.0061 ]

yppt2 = X10(min(X13, log(|XPPT21|)) + X1 + 0.276) 0.99922 4.06154

[769, 415, 69, (3, 11),
0.93, 0.014, 0.011, 0.028,

4.21× 10−7, 0.96,
(−0.067, 0.035), 0.0046]

yppt3 = (X1 + X13)

(
X12 sin(X0)

√
sin3(sin(

√
X12))XPPT31

X10

+XPPT32

) 1
2

0.99891 5.11714

Due to the large size of obtained symbolic expressions the coefficients XPPTDF11, XPPTDF21,
XPPTDF31, XPPT11, XPPT21, XPPT31, and XPPT32. The full form of these coefficients is given
Appendices A.3 and A.4. Although the parsimony coefficient value for all symbolic
expressions is low the bloat phenomenon did not occur. However, the large size of obtained
symbolic expressions could be explained by the low range of constant values. Since
this range is very low the GP algorithm used a large number of mathematical functions
and input variables to achieve high estimation accuracy. Based on R2 and MAE values
the symbolic expressions with and without decay state coefficients have almost similar
performance except for the third symbolic expression which has the lowest R2 value and
highest MAE value. The estimation performance of these six symbolic expressions are
compared to the real data and shown in Figure 10.

The estimation performance of all six symbolic expressions is very high when com-
pared to the real data except for the third symbolic expression with decay state coefficient
which performed poorly when compared to the other symbolic expressions.
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Figure 10. The variation of real and estimated port propeller torque versus the ship speed.

3.1.5. The Symbolic Expressions for Total Propeller Torque Estimation with and without
Decay State Coefficients

To obtain symbolic expressions for total propeller torque estimation the starboard and
port propeller torque were added together. This variable was used as the output variable
in the training and testing portion of the dataset. The starboard and port propeller torque
as input variables were omitted from the analysis so the total number of variables was
15 in the case where decay state coefficients were used and 13 in the case without decay
state coefficients. After multiple GP executions using the training portion of the dataset
the obtained symbolic expressions were evaluated on the testing portion of the dataset to
determine R2 and MAE value. Based on the highest R2 and lowest MAE value the best
symbolic expressions with and without decay state coefficients are chosen. The symbolic
expressions with and without decay state coefficients are shown in Tables 12 and 13.

In Table 12 each symbolic expression has at least one decay state coefficient since
the GP algorithm could not obtain the symbolic expression for estimation of total torque
with both decay state coefficients. To simplify presentation of symbolic expressions in
Tables 12 and 13 coefficients XTTDF11, XTT11, XTT12, XTT21, XTT31, and XTT32 were intro-
duced. The full form of these coefficient is given in Appendices A.5 and A.6. The R2

values of symbolic expressions with decay state coefficients are lower while MAE values
are higher than those values obtained using symbolic expressions without decay state
coefficients. The graphical representation and estimation performance of six symbolic
expressions from Tables 12 and 13 are shown in Figure 11.
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Table 12. Three best symbolic expressions for total propeller torque estimation with decay state coefficients with corre-
sponding R2 and MAE score.

GP Parameters
-

Population, Generations,
Selection Size, Tree Depth,

Crossover Coef.,
Subtree Mutation Coef.,

Hoist Mutation Coef.,
Point Mutation Coef.,

Stopping Criteria,
Samples, Constant Range,

Parsimony Coef.

Symbolic Expression R2 MAE

[910, 285, 69, (5, 9),
0.91, 0.038, 0.016, 0.015,

8.42× 10−7, 0.94,
(−0.029, 0.09), 0.0096]

yttDF1 = |XTTDF11|+ X12
sin(sin(sin(log(tan(sin(

√
X0))− X0))))

0.99848 11.697387

[664, 116, 75, (3, 10),
0.9, 0.058, 0.015, 0.017,

3.4e× 10−7, 0.93,
(−0.048, 0.015), 0.0096]

yttDF2 = min(X13, X14)max(X5, X13X7)

−
√

max
(
X5, X2

13X7
)
− 2 tan

(√
X3
) 0.991606 26.33334

[790, 112, 79, (3, 12),
0.91, 0.012, 0.031, 0.021,

7.67× 10−7, 0.9,
(−0.02, 0.054), 0.007]

yttDF3 = X13X15 min(X5, X7) 0.97971 49.89208

Table 13. Three best symbolic expressions for total propeller torque estimation without decay state coefficients with
corresponding R2 and MAE score.

GP Parameters
-

Population, Generations,
Selection Size, Tree Depth,

Crossover Coef.,
Subtree Mutation Coef.,

Hoist Mutation Coef.,
Point Mutation Coef.,

Stopping Criteria,
Samples, Constant Range,

Parsimony Coef.

Symbolic Expression R2 MAE

[682, 172, 56, (4, 7),
0.9, 0.018, 0.025, 0.029,

4.09× 10−7, 0.93,
(−0.012, 0.065), 0.0026]

ytt1 = |X12 − XTT11|
−XTT12 −

√
X3
X8

+ X6X8
0.99808 9.2407

[798, 103, 77, (4, 11),
0.9, 0.01, 0.061, 0.021,

6.14× 10−7, 0.92,
(−0.039, 0.046), 0.0069]

ytt2 = X12X8+
√

X2
XTT21

0.99806 13.25

[883, 209, 64, (6, 9),
0.93, 0.013, 0.023, 0.028,

8.75× 10−7, 0.96,
(−0.057, 0.057), 0.0099]

ytt3 = max
(

XTT31
XTT32

+
√

X3,

log(X2)− X12

)
+ X12

0.9976 13.6284
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Figure 11. The variation of real and estimated total torque versus ship speed.

As seen in Figure 11 the yttDF1, yttDF3 and ytt1 have some deviation from the real data
at lower ship speeds. However, the highest deviation from the real data through entire
ship speed range is produced by yttDF3.

3.2. Discussion

From conducted investigation, it can be noted that two correlation analyses showed
that 14 out of 18 dataset variables (without decay state coefficients, T1, and P1) have
positive correlation values with remaining variables in the range from 0.8791 up to 1.0. The
T1 and P1 showed no correlation with any other variable except with itself. The reason
why these two variables do not correlate is that they are constant values through the entire
dataset as seen from Table 1. As already stated these two variables represent ambient
temperature and pressure which were constant during the simulation of the CODLAG
propulsion system. The turbo compressor and turbine decay state coefficients have positive,
negative, or no correlation with other variables in the dataset. The analysis showed that
with ship speed two decay state coefficients do not have any correlation at all since the
correlation values are equal to zero. The Pearson’s correlation analysis showed that two
decay state coefficients have a small positive correlation (0.0008, 0.0001) with starboard and
port propeller torque while Spearman’s correlation analysis showed that two decay state
coefficients have a negative and positive correlation (−0.0295, 0.0174) with starboard and
port propeller torque. It should be noted that the correlation with fuel flow and decay state
coefficients is negative in Pearson’s and Spearman’s correlation analysis.

Regardless of the results from two correlation analysis, the idea was to investigate
the possibility of using the GP algorithm to obtain symbolic expressions for estimation
of fuel flow, ship-speed, starboard, port, and total propeller torque with and without
decay state coefficients since those two coefficients are possible indicators of GT system
parts degradation. The total propeller torque was generated by adding together values of
starboard and port propeller torque. All symbolic expressions were obtained on the training
portion of the dataset with the proper definition of input and output dataset values as
indicated in Table 2 and with a random selection of GP, parameters range shown in Table 3
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in each GP algorithm execution. It should be noted that in the entire investigation using
the GP algorithm the crossover operation was the dominant genetic operation and that
predefined (randomly selected) stopping criteria value was never achieved by any of the
population members. Therefore, each execution of the GP algorithm was terminated after
the maximum number of generations was reached. After the symbolic expressions were
obtained they were tested on the test part of the dataset to obtain R2 and MAE values. The
three best symbolic expressions in each case with and without decay state coefficients were
chosen based on their highest R2 value and the lowest MAE values. Another interesting
thing is that all these symbolic expressions were obtained with a minimum range of
constants which means that in the majority of cases the symbolic expressions consist of
mathematical expressions and input variables. Some symbolic expressions grew in size to
achieve low estimation error between calculated output and desired output. However, the
parsimony coefficient range was low but the bloat phenomenon did not occur.

In the case of symbolic expressions for fuel flow estimation the symbolic expressions
with decay state coefficients have slightly lower R2 values (0.99398, 0.993, 0.95526) and
slightly higher MAE (0.02664, 0.03695, 0.08184) values when compared to R2 (0.9964,
0.99591, 0.99578) and MAE (0.02276, 0.02341, 0.023027) values obtained using symbolic
expressions without decay state coefficients. The best symbolic expression with decay state
coefficients has almost similar estimation performance of fuel flow when compared to the
symbolic expressions obtained without decay state coefficients. Therefore, including those
two decay state coefficients resulted in slightly lower performance of obtained symbolic
expressions. However, these three symbolic expressions with decay state coefficients are
highly valuable since they could indicate potential degradation of the GT propulsion
system in terms of higher fuel consumption without noticeable improvement in propeller
torque or ship speed.

In the case of ship speed estimation the three obtained symbolic expressions with
decay state coefficients have achieved lower R2 (0.99843, 0.99788, and 0.99593) and higher
MAE (0.2858, 0.32584, and 0.41067) values when compared to R2 (0.9998925, 0.999825, and
0.999541) and MAE (0.06729, 0.08665, 0.11797) values achieved with symbolic expressions
obtained without decay state coefficients. Interestingly, those two decay state coefficients
do not influence ship speed since Pearson’s and Spearman’s correlation analysis showed
that these two coefficients do not have any correlation with ship speed. Therefore, in
the case of those three symbolic expressions obtained with decay state coefficients, the
other input variables are X0, X4, X10, and X14 which are lever position, starboard pro-
peller torque, turbo compressor inlet air pressure (P1), GT exhaust gas pressure, and fuel
flow, respectively.

The estimation performance of starboard propeller torque with decay state coefficient
is lower when R2 (0.99985, 0.99959, and 0.99737) and MAE (1.98477, 3.16776, and 7.9579)
values are compared to R2 (0.99994, 0.99989, and 0.99981) and MAE (1.0697, 1.3387, and
1.8535) values of three symbolic expressions obtained without decay state coefficients.
It should be noted that in these symbolic expressions the additional coefficients were
introduced to simplify their presentation in Tables 8 and 9 while the full form of these
coefficients is shown in Appendices A.1 and A.2. The correlation analysis showed that
starboard propeller torque has a positive Pearsons correlation with both decay state coef-
ficients while negative correlation coefficient with GCDSC and positive correlation with
GTDSC. The symbolic expressions for estimation of port propeller torque showed similar
behavior as in the case of starboard propeller torque. The values of Pearson’s and Spearman
correlation values of port propeller torque and decay state coefficients are the same as in
the case of starboard propeller torque.

In the case of total propeller torque, the symbolic expressions with decay state coeffi-
cients achieved higher MAE values than those obtained without decay state coefficients
which means that the decay state coefficient contributed to higher error rates. In terms
of R2 values, the first symbolic expression in Table 12 achieved a similar value as those
symbolic expressions obtained without decay state coefficients which are shown in Table 13.
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With the use of the GP algorithm, none of the obtained symbolic expressions with decay
state coefficients, including the best three symbolic expressions shown in Table 12 did not
include both of the decay state coefficients. The estimation performance is lower at low
ship speeds and they are increasing as the ship speed also increases. Generally, lower
estimation performance can be noticed for symbolic expressions with decay state coeffi-
cients when compared to those obtained without decay state coefficients. In comparison
to the previous work in the field, refs [10–12] it can be seen that GP implementation in
this paper achieves comparable results to other works using it. The same can be said for
other researchers with similar goals, such as [36] in which the used methods achieve results
that are comparable to the ones achieved by GP. In comparison to the performance of the
existing work in AI-based CODLAG system modeling, which used other ML algorithms
it is seen that results achieved by GP are comparable or better, with the benefit of clearer
models. The clearer models in question make it possible to see which of the inputs (such as
decay coefficients) ended up not being included in the best performing models signifying
their low influence in the final model.

4. Conclusions

In this paper, the publicly available dataset of the CODLAG propulsion system was
used in the GP algorithm to obtain the symbolic expressions for fuel flow, ship speed,
starboard propeller torque, port propeller torque, and total propeller torque estimation
with and without decay state coefficients. From the extensively conducted investigations,
the following conclusions can be drawn:

• the Pearson’s and Spearman’s correlation analysis showed that from a total of
18 variables in the dataset 14 of them (without decay state coefficient, T1, and P1) have
positive correlation values. The turbo compressor decay state coefficient and turbine
decay state coefficient do not correlate with ship speed, have positive Pearsons correla-
tion with starboard and port propeller torque, have positive and negative Spearman’s
correlation with starboard and port propeller torque, and negative correlation with
fuel flow. The T1 and P1 represent ambient temperature and pressure so they are
constant values throughout the entire dataset. Hence there are not any correlation
values with other parameters in the dataset.

• the GP algorithm can be used to obtain symbolic expressions for estimation of fuel
flow, ship speed, starboard propeller torque, port propeller torque, and total pro-
peller torque with and without decay state coefficients for the observed CODLAG
propulsion system,

• the symbolic expressions for estimation of fuel flow, ship speed, starboard propeller,
port propeller and total propeller torque with decay state coefficients generally have
slightly lower R2 and slightly higher MAE values when compared to those sym-
bolic expressions obtained without decay state coefficients. However, those symbolic
expressions with decay state coefficients are more valuable from the CBM perspec-
tive which mean that they could be used to estimate or potentially predict possible
degradation system states and schedule the system maintenance,

• the symbolic expressions for estimation of starboard propeller, port propeller, and
total propeller torque with and without decay state coefficients showed slightly lower
estimation performance for lower ship speeds.

Based on the conducted investigation, it can be concluded that the GP algorithm can
be used for the estimation of CODLAG propulsion system-specific variables. The use
of decay state coefficients in symbolic expressions can produce more realistic symbolic
expressions which potentially could be used to predict possible performance degradation
of the CODLAG propulsion system. The findings of the paper demonstrate the ability of
the application of GP for the regression of the CODLAG system parameters. Academical
applications are the possibility for the use of the determined equations for a precise
determination of the regressed system parameters. Such an approach can greatly decrease
the time necessary for the modeling of the system at various operating points. The use of GP
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as opposed to different AI-based modeling techniques is the shape of the generated models,
which are mathematical equations, that can be easily and more simply implemented within
existing or newly developed systems as they are not limited to an individual programming
language or a specific library as is commonly the case. While only the CODLAG system, in
particular, is modeled, the approach may be applied to different propulsion systems for
which the data can be collected in future work.
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Appendix A. Coefficients in Symbolic Expressions

The coefficient of symbolic expressions that are defined for estimation of starboard
propeller torque, port propeller torque, and total propeller torque with and without decay
state coefficients are given. It should be noted that the GP differently treats division,
natural logarithm, and square root function during its execution to avoid infinite values
and complex numbers. The division function:

yDIV(x1, x2) =

{
x1
x2

if |x2| > 0.001
x1
x2

= 1 if x2 = 0
. (A1)

The natural logarithm function:

yLOG(x1) =

{
log(|x1|) if |x1| > 0.001
log(x1) = 0 otherwise

. (A2)

The square root function:

ySQRT(x1) =
√
|x1|, (A3)

The variables x1 and x2 do not have any connections with input variables that were
used in symbolic expressions since they are general variable names used as arguments in
previously defined functions.

Appendix A.1. Coefficients in Symbolic Expressions for Starboard Propeller Torque Estimation
with Decay State Coefficients

XSPTDF11 =min
(

X13 − 3X9, X0

(
X15 −

√
X8

)
tan(tan(− tan(X0) + X13 − 2X15))

)
+

min(X13 − X9, tan(X0)) + min(X0, min(cos(X0)− 2 tan(X0)− X9,

tan(X0))− tan(tan(X0))− tan(X13 − 2X9)− X9)

(A4)

https://archive.ics.uci.edu/ml/datasets/Condition+Based+Maintenance+of+Naval+Propulsion+Plants
https://archive.ics.uci.edu/ml/datasets/Condition+Based+Maintenance+of+Naval+Propulsion+Plants
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XSPTDF12 =X0 cos(X10)
(

X9 −
√

X8

)
+
(

X0 −
√

X8

)
cos(X10)

(
X9 −

√
X8

)
(A5)

XSPTDF21 = sin(sin((min(X0, X12) + sin(min(X0, X12) + sin(sin(sin(min(X0, X12)+

sin(min(X0, X12) + X0) + sin(sin(min(X0, X12) + sin(X0))) + X0))))+

| cos(X10)|+ X0 + sin(sin(X0)))
1
2 + min(X0, X12) + sin(sin(2X0))))+

min(X0, X12, X8, tan(X15))

(A6)

XSPTDF31 =min(X1 cos(X9), X1 cos(X9) log(X1 cos(X6) log(X1 cos2(X9)))

log(X1 cos(X9) cos(
√

min(X11, X14))), log(X6 log(X6 cos(log(X6

log(X6 log(cos(X8X9))) log(cos(X6) cos(X9) sin(
X7

X6
)))))))

(A7)

Appendix A.2. Coefficients in Symbolic Expression for Starboard Propeller Torque Estimation
without Decay State

XSPT11 =

(
max(log(X3 −

min(X12, X4
2 tan(X0))

X12
),−| sin(X8)|

− tan(X0) sin(
√

tan(X0)− X1) + X1 + sin(X1) + X12 − X9)

) 1
2

(A8)

XSPT12 =min(X5 cos(log(X1)), min(X12, X6)−
(

min(
√

X8 cos(log(X1)),
log(X4)

X2
)+

log(X4)

X2

) 1
2

| X2X8

cos(X11)− log(X3 + X2X8 −
min(X2

2 X5 sin(X1),X5 sin(sin(sin(sin(X1)))))

min(X12, log(X4)
X2

)
)
|)

(A9)

XSPT21 =
max(X0X8, X1

X11
9
+ X13 + sin(X3) + 2 sin(log(X3)))

X3
9

(A10)

XSPT31 = sin

((
max(−0.057 sin(

√
X1X10) csc(sin(sin(sin(

√
X2))))(log(min(X12,√

min(X7, X11 + tan(
X3

X7
)))) + sin(

X10|X1X10 sec(X1)|√
X2

) + sin(
|X1X10 sec(X1)|

X10
)+

2 sin(
| X1X10

log(tan(X1))
|

X10
) +

√
X2 cot(tan(X9)) sin(cos(

tan(tan(X9))

X1X10
)) + X1X10 cot(tan(X9))

sin(sec(X1) sin(
√

X2

X10
)) + X1X10 sin(X1) cot(tan(X9)) + X1X10 + sin(X1 cot(X9))+

2 sin(X1) + 4 sin(
√

X2

X10
) + log(X13) + sin(

√
X2)), tan(X9))

) 1
2
)

(A11)
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XSPT32 = log(min(X12,

√
min(X7, X11 + tan(

X3

X7
)))) + sin(

X10|X1X10 sec(X1)|√
X2

)+

sin(
|X1X10 sec(X1)|

X10
) + 2 sin(

| X1X10
log(tan(X1))

|
X10

) +
√

X2 cot(tan(X9))

sin(cos(
tan(tan(X9))

X1X10
)) + X1X10 cot(tan(X9)) sin(sec(X1) sin(

√
X2

X10
))+

X1X10 sin(X1) cot(tan(X9)) + sin(X1 cot(X9)) + cot(X1) tan(X9)+

2 sin(X1) + 3 sin(
√

X2

X10
) + sin(sin(

√
X2

X10
)) + sin(

√
X2)

(A12)

Appendix A.3. Coefficients in Symbolic Expressions for Port Propeller Torque Estimation with
Decay State Coefficients

XPPTDF11 =max(X10 + X12, X15(max(X9(min(log(log(tan(log(tan(X1))))),

min(tan(X1), 2X10 log(log(X0))|X12 + tan(log(tan(tan(X1))))|))+
log(X0) + X15(X14(tan(X1) + X13X6) + tan(X1) + X9) + tan(X1))+

min(log(log(tan(log(tan(tan(X1)))))), tan(X1)) + 2 log(log(tan(log(X15 − X0))))+

log(X9 − X0)−
√
− sin(X0 − X9) + 3 log(X0) + 3 tan(X1)+

5 log(tan(tan(X1)))− X15, log(tan(X1)) + 3 tan(log(X1)) + 2X12)+

log(tan(log(
√
− sin(X0 − X15)− X0)))) + tan(X1))

(A13)

XPPTDF21 =(−X14 − cos(X14) + X8)min((X8 − X14)
2 tan(log(tan(X0)(X8 − X14)

3

tan(log((X8 − 0.999352)(X8 − X14)(X8 − |X15|))))), X0)+

log((X8 − X14)
3 log(X0(X8 − X14)) tan(log(X1X10)) tan(log(X0(X8 − X14))))+

log(X0X8(X8 − X14)
3(cos(X0)− X14 + X8) tan(log(X1X10)) tan(log(X0(X8 − X14))))

(A14)

XPPTDF31 =
X14

X0(−0.181111|sin(X1)| − 0.181111|sin(sin(X1))|+ X13)
+

X4
13X15

15

X13
9 |sin(X1)|2

+
X2

13X15

sin(X10) + log(X8)
+ X10 −

4.19971X9

X13
+ 0.004X4

(A15)

Appendix A.4. Coefficients in Symbolic Expressions for Port Propeller Torque Estimation without
Decay State Coefficients

XPPT11 =

(
max(X10, X12) +

(
X3 cos(X1(X9 − 0.002) +

√
X1) cos(

√
X1 cos(X1 + X11)+

X1X9) cos

(
cos

(√
X12(X1(X9 − 0.002)X9 +

√
X1) cos( cos(X1+X11)

X11+X9
) + X11 + X9

)
cos( X11

X11+X9
) + X9

)) 1
2
) (A16)

XPPT21 =(log(log(
log(log(min(X2

X2
5
, log(log(X0

X5
) + csc(X0) log(X7)))) + csc(X0) log(X7))

X5
)+

csc(X0) log(X7)))

(A17)

XPPT31 =

X2
12 sin(sin(X0)) log

(√
X12 sin(X12)

(
X5/2

12 sin(X12)
X1

+ X13X6

))
X2

1
+
√

X6

 (A18)
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XPPT32 = tan(cos(X10)) + 2X11 − X13X6 + 2 tan(X13) +
√

X6 (A19)

Appendix A.5. Coefficients in Symbolic Expressions for Total Propeller Torque Estimation with
Decay State Coefficients

XTTDF1 =
(

min
(

X0, log
(√

X2

)
, X12 sin(log(log(X12)))

)
+ log(X3)

)
(

X12 sin
(

log
(

min
(

X0, log
(√

X2

)
, log(X3) sin(log(X0))

)))
−
√

log(X1)

(√
− sin(X0 − X13)− tan(X15)

)
tan

(
min

(
X15, log

(√
4
√

log(X1)
√

log(X3)− X0

)
√

tan
(

min
(

X0, log
(√

X2

))))))
(A20)

Appendix A.6. Coefficients in Symbolic Expressions for Total Propeller Torque Estimation without
Decay State Coefficients

XTT11 =

(
−
√

X10 − tan
(

log(X10) + tan
(√

X10

))
+

X12 −

√
X3

X8
− tan(tan(X8))− X9

) (A21)

XTT12 =max

(
−
∣∣∣∣∣∣∣∣∣∣∣X12 − tan(log(X10) +

√
X10)

∣∣∣− tan(X8)
∣∣∣− tan(

√
X10)

−

√√√√X12 − X9 − tan(log(X10) + tan(
√

X10))−
√

X10 −

√
X3

X8

∣∣∣∣∣
− |X12 − 2 tan(

√
X10)− tan(X8)− tan(X9 +

√
X10)|+ |X6|,

X12 −
√

X3

tan(X8)

)
(A22)

XTT21 =max(|max(| cos(

√√√√−|X5| − X12|X8|+
√

X2−X12(X12|X8|+
√

X2)√
X2

−
√

X2

X12|X8|+
√

X2
)|, cos(X6))|,

log(X10)− |max(cos(X6), cos(

√
−X12X8 − |X5|

X12
))|

(
log(X10)− X12(log(X10)min(X12, X3) +

√
X2)√

X2
+ X12|X8|))

(A23)

XTT31 =min

(
log(X5),

(
min(X12,−min(X1 − 2X10 + 2

√
X12,

√
cos(

√
X3))+

√
min(X1 +

√
X1 − X10,

√
X12) + X1 − X10)

) 1
2
+ X1 − X10

) (A24)
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XTT32 =

∣∣∣∣∣ sin
(

sin
(

sin
(

sin
(

sin
(

sin
(

sin
(

sin
(

sin
(

sin
(

sin
(

sin(
sin
(

sin
(

sin
(

sin
(

sin
(

sin
(

sin
(

sin
(

sin
(

sin
(

sin
(

sin(
sin
(

sin
(

sin
(

sin
(cos X9

X12
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(A25)
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10. Lorencin, I.; And̄elić, N.; Mrzljak, V.; Car, Z. Multilayer perceptron approach to condition-based maintenance of marine CODLAG
propulsion system components. Pomorstvo 2019, 33, 181–190. [CrossRef]
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