
Journal of

Marine Science 
and Engineering

Article

An Estimation of Ship Collision Risk Based on Relevance
Vector Machine

Jinwan Park 1 and Jung-Sik Jeong 2,*

����������
�������

Citation: Park, J.; Jeong, J.S. An

Estimation of Ship Collision Risk

Based on Relevance Vector Machine.

J. Mar. Sci. Eng. 2021, 9, 538. https://

doi.org/10.3390/jmse9050538

Academic Editors: Jakub Montewka

and Brian Veitch

Received: 17 April 2021

Accepted: 12 May 2021

Published: 17 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Maritime Transportation System, Mokpo National Maritime University,
Mokpo City 58628, Korea; pjinwan2@gmail.com

2 Division of Maritime Transportation Science, Mokpo National Maritime University, Mokpo City 58628, Korea
* Correspondence: jsjeong@mmu.ac.kr; Tel.: +82-61-240-7173

Abstract: According to the statistics of maritime collision accidents over the last five years (2016–2020),
95% of the total maritime collision accidents are caused by human factors. Machine learning al-
gorithms are an emerging approach in judging the risk of collision among vessels and supporting
reliable decision-making prior to any behaviors for collision avoidance. As the result, it can be a good
method to reduce errors caused by navigators’ carelessness. This article aims to propose an enhanced
machine learning method to estimate ship collision risk and to support more reliable decision-making
for ship collision risk. In order to estimate the ship collision risk, the conventional support vector
machine (SVM) was applied. Regardless of the advantage of the SVM to resolve the uncertainty
problem by using the collected ships’ parameters, it has inherent weak points. In this study, the
relevance vector machine (RVM), which can present reliable probabilistic results based on Bayesian
theory, was applied to estimate the collision risk. The proposed method was compared with the
results of applying the SVM. It showed that the estimation model using RVM is more accurate and
efficient than the model using SVM. We expect to support the reasonable decision-making of the
navigator through more accurate risk estimation, thus allowing early evasive actions.

Keywords: ship collision risk; support vector machine; relevance vector machine

1. Introduction

Under Rules 7 and 8 of the Convention on the International Regulations for Preventing
Collisions at Sea (COLREGS) adopted by the International Maritime Organization (IMO) in
1972, all vessels must use appropriate means to determine if the risk of collision exists, and
if there is the risk of collision, prescribed action to avoid collision should be taken in ample
time [1]. Marine accidents cause enormous loss of lives and property and can cause serious
marine pollution. According to statistics from Korea Maritime Safety Tribunal (KMST) over
the last 5 years (2016–2020), 1238 collision accidents occurred, accounting for the highest
proportion (45%) among 2751 accidents related to maritime traffic [2]. In order to prevent
collision accidents, it is necessary to accurately determine whether or not there is a collision
risk in advance. However, as a result of the analysis of the causes of collision accidents in
the last 5 years, 95% of all analyzed collision accidents were caused by human factors, and
70% of them were due to look-out negligence [2]. Therefore, it is necessary to support the
decision-making of navigators. Recently, a number of methods using machine learning
have been introduced to support decision-making on the judgment of collision risk before
taking evasive action [3–5]. These methods can contribute to reducing human error by
effectively supporting the ship’s decision-making in the future. In this study, we aimed
to estimate ship collision risk quantitatively and provide it to the ship using an enhanced
machine learning algorithm, thereby assisting decision-making in determining the collision
risk and contributing to the prevention of collision accidents. The estimation of collision
risk was approached with a microscopic perspective that estimates each individual vessel
in encountering situations. The relevant existing studies are as follows:
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J. Kearon (1977) and H. Imazu et al. (1984) evaluated collision risk using weighting
methods for distance at closest point approach (DCPA) and time to closest point approach
(TCPA) [6,7]. DCPA is the distance between the own vessel and the point where the own
vessel and target vessel are expected to be closest to each other based on the current
course and speed, and TCPA is the time it takes for the own vessel to reach that point.
However, this method can lead to inaccurate results because the DCPA and the TCPA
are variables of different dimensions. In 1996, D. Zec evaluated collision risk through a
collision risk coefficient function that takes the DCPA, the relative speed, and the distance
as parameters [8]. However, in this method, when the relative speed is 0, the risk of
collision is always 0, and the change in risk according to the position of the target ship is
not reflected. In 2009, Debnath et al. conducted a perception survey for Singapore pilots
using the DCPA and the TCPA, and based on this, an ordered probit regression model
predicting CRI was derived [9]. However, this method has a limitation that a sufficient
group of experts in the target sea area should be secured for proper statistical analysis
through cognitive investigation. In 2010, Q. Xu et al. adopted the fuzzy comprehensive
evaluation (FCE), which can quantitatively evaluate a target by integrating both subjective
and objective evaluation with respect to each target factor, to estimate the collision risk [10].
They considered the distance between the own vessel and target vessel, relative bearing,
DCPA, and TCPA as the target factors. However, since the CRI obtained by the FCE reacts
sensitively with respect to the subjective opinion of the experts and the applied membership
function, it cannot secure reliability. In 2012, Ahn et al. assessed the risk of collision between
vessels using neural networks [4]. However, this method was very limited in applying
to actual navigation situations due to the disadvantage of poor generalization ability and
easily falling into the regional optimal solution [11]. In 2013, Li et al. considered the DCPA,
TCPA, and distance as factors affecting collision risk, and according to the Dempster–Shafer
theory, the basic probability assignments (BPAs) for each factor were combined to assess
the collision risk [12]. Arthur Dempster introduced the rule of combination of independent
sources of information in 1967, and Glenn Shafer extended the rule in 1976. However,
this rule of combination has a problem that can lead to counterintuitive results and is not
appropriate [13,14]. In 2016, Gang et al. built a model estimating the collision risk index
(CRI) of encountered vessels based on the support vector machine (SVM), a classifier in the
field of machine learning, with the FCE [3]. The parameters that impact the performance of
SVM were optimized through the genetic algorithm.

The vessel collision risk is influenced by many factors, and the correlation between
the factors and the collision risk is not accurately known. Various methods were used to
measure the vessel collision risk in each encounter situation. Existing statistical methods
do not have any theoretical problems, but it is difficult to derive highly reliable results
because several statistical assumptions about the data are required. Therefore, in order
to properly measure the risk of a collision that is fraught with uncertainty, rather than
applying the theoretical correlations of various factors to derive statistical results, it is more
appropriate to recognize a specific pattern through the learning process of observation
data using a machine learning method such as SVM. However, as indicated in [15,16],
the SVM has several disadvantages: Firstly, the SVM is a simple classifier and does not
provide probabilistic results. Secondly, although relatively sparse, since the SVM requires
many support vectors in proportion to the size of the training set, unnecessary basis
functions are used. Thirdly, in order to obtain the trade-off parameter ‘C’ of error and
margin (including the insensitivity parameter ‘ε’ in the case of regression problems), the
SVM has to go through an additional procedure that is profligate in the use of data and
calculations, such as cross-validation. Finally, the output value of the SVM is represented
by a linear combination of kernel functions, which are centered on the points of training
data, and the kernel must be a positive integral operator. On the other hand, the relevance
vector machine (RVM) is a sparse kernel technique based on a Bayesian framework and
generalized linear model that takes the function form of the SVM [15]. Since this alternative
method can solve the above disadvantages of the SVM, in this study, we applied the RVM
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to derive an improved CRI and compared it with the results of the SVM, and actual AIS
data were used in both comparative analysis and verification.

In the modeling process of estimating CRI, it is very important to select the major
factors that affect CRI. Firstly, DCPA and TCPA, which are frequently used as the weight
method, were selected according to [3,4,6,7,9,10,12,17]. In addition, basic navigational
factors used to determine whether there is a risk of collision between two ships encountered,
namely distance and relative bearing, are included in the factors as applied in [3,10,17].
Based on [3,17,18], speed ratio was also selected. In order to obtain input data for SVM
and RVM, it was decided to apply the FCE method, which allows objective and subjective
evaluation by combining each factor as applied in [3,10,17].

The remainder of this article is organized as follows: Section 2 proposes the method for
estimating the CRI of encountering vessels and introduces the SVM and RVM algorithms.
Section 3 shows the results of the verification experiment and simulations. Sections 4 and 5
present the discussion and the conclusions, respectively.

2. Methodology

In order to estimate the CRI of encountering vessels, our approach followed the
method illustrated in Figure 1. First, the AIS data were preprocessed to secure the variables
used as input vectors and target values. The FCE method was used to obtain the CRIs used
as the target values after that, and the SVM model and RVM model derived at the model
development stage were compared and analyzed.

Figure 1. Proposed method for estimating the CRI with AIS data.

2.1. Preprocessing AIS Data

AIS data contain inaccurate information, and some information is missing. Thus, it is
crucial to preprocess the AIS data to ensure it is accurate and efficient. We used methods
for filtering, grouping, and scaling. According to the performance standards of shipborne
AIS required by the International Maritime Organization (IMO), the static information
should be updated every 6 min or on demand, and the dynamic information should be
reported at a minimum interval of 2 s to 3 min depending on the speed of the vessel [19].
However, among the collected AIS data, the dynamic information of most vessels was not
updated according to the performance standards. Therefore, it is necessary to interpolate
the missing dynamic information in order to estimate the risk of collision between vessels
at the same time with a repeat interval. In this study, using the MATLAB software, the
observed position, speed, and course data of all target vessels were interpolated at 1 s
intervals by applying the spline function for each interval.

Moreover, as shown in Figure 1 above, in order to calculate CRI and develop an
estimated model, the values of various variables must be derived. In this study, DCPA,
TCPA, distance (D), relative bearing (B), and velocity ratio (K) were selected as target
factors among the many factors affecting CRI to calculate CRI by FCE method. In the
Cartesian coordinate system, it is assumed that its origin is the position of the own vessel,
(X, Y) denotes the coordinates corresponding to the relative position of the target vessel,
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Vo denotes the true velocity of the own vessel, Vt denotes the true velocity of the target
vessel, Vr denotes the relative velocity of the target vessel with respect to the own vessel,
and Vrx, Vry denote the components of Vr. Based on this assumption, we can obtain the
DCPA, TCPA, D, and K as follows [20,21]:

DCPA =

∣∣∣∣XVry −YVrx

Vr

∣∣∣∣ (1)

TCPA = −
XVrx + YVry

V2
r

(2)

D =
√

X2 + Y2 (3)

K = Vt / Vo (4)

2.2. CRI Calculation

According to FCE method, CRI can be obtained by the dot product of weight vector
and membership vector as follows [3,10]:

CRI = W·U = WDCPA·UDCPA + WTCPA·UTCPA + WD·UD + WB·UB + WK·UK (5)

where W denotes the weight vector of target factors. It was determined by using the
analytic hierarchy process (AHP), which is a measurement theory for deriving priority
scales through pairwise comparisons based on the judgments of experts [22]. According
to this process, we surveyed the experts of navigation and constructed the set of pairwise
comparison matrices to calculate the weight values of each target factor. As a result, the
following weight vector was obtained [21]:

W = [WDCPA, WTCPA, WD, WB, WK] = [0.4457, 0.2258, 0.1408, 0.1321, 0.0556]. (6)

U denotes the membership vector of target factors. The greater the membership value,
the greater the collision risk of encountered vessels. The membership value of each
target factor could be obtained through the following membership functions as applied
in [3,12,17,21,23]:

DCPA is the most important factor that is considered as a spatial indicator of collision
risk, and the smaller the value of DCPA, the greater the collision risk. The membership
function of DCPA is as follows:

UDCPA =


1, |DCPA| < d1(

d2−|DCPA|
d2−d1

)2
d1 ≤ |DCPA| ≤

0, |DCPA| > d2

d2 (7)

where d1 denotes the minimum safety distance between encountered vessels and d2 denotes
the absolute safety distance, which is equal to twice the value of d1. The value of d1 can be
obtained as follows:

d1 =


1.1, 355◦ < B ≤ 67.5◦

1, 67.5◦ < B ≤ 112.5◦

0.6, 112.5◦ < B ≤ 247.5◦

0.9, 247.5◦ < B ≤ 355◦
(8)

TCPA represents a temporal indicator of collision risk, and the smaller the value of
TCPA, the greater the collision risk of encountered vessels. The membership function of
TCPA is as follows:

UTCPA =


1 0 ≤ |TCPA| ≤ t1(

t2−|TCPA|
t2−t1

)2
t1 ≤ |TCPA| ≤ t2

0 |TCPA| > t2

(9)
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where t1 denotes the time remaining until collision and t2 denotes the collision avoidance
time. t1 and t2 can be obtained as follows:

t1 =

{ √
d2

1−DCPA2

VR
DCPA ≤ d1

0 DCPA > d1
(10)

t2 =

{ √
d2

2−DCPA2

VR
DCPA ≤ d2

0 DCPA > d2
(11)

The membership function of D is as follows:

UD =


1 0 < D < D1(

D2−D
D2−D1

)2
D1 ≤ D ≤ D2

0 D > D2

(12)

where D1 denotes critical safety distance and equals 12 times the length of the own vessel
(Lo); i.e., D1 = 12Lo. D2 denotes the distance at which the final action of collision avoidance
can be taken. D2 can be obtained as follows:

D2 = 1.7 cos(B− 19◦) +
√

4.4 + 2.89 cos2(B− 19◦) (13)

The membership function of B is as follows:

UB =
1
2

[
cos(B− 19◦) +

√
440
289

+ cos2(B− 19◦)

]
− 5

17
(14)

The membership function of K is as follows:

UK =
1

1 + 2
K
√

K2+1+2K sin C

(15)

2.3. Model Development

We modeled the dataset, applying SVM regression and RVM regression separately.
A dataset of input vectors {xn}N

n=1 with corresponding target values {tn}N
n=1 is required

in the modeling process. The variables used as input vectors are the distance (D), relative
bearing (B), the own vessel (Vo), velocity of the target vessel (Vt), course of the own vessel
(Co), course of the target vessel (Ct), length of the own vessel (Lo), and length of the target
vessel (Lt). Unlike in [3], the length of the vessel was included in the input vectors for
improving the estimation, considering that the risk of collision depends on the length of
the target vessel in an encountering situation under the same condition. The target values
refer to the CRI calculated by FCE method. All procedures of the model development were
carried out using MATLAB software.

2.3.1. SVM Regression

The SVM is a supervised learning tool for classification and regression analysis using
the optimal separating hyperplane that is built through some fixed nonlinear transfor-
mation that maps the input vectors into the high-dimensional feature space. It was first
introduced by Vladimir Vapnik, Bernhard Boser, and Isabelle Guyon in 1992 [24] and was
generalized by Vladimir Vapnik and Corinna Cortes in 1995 [25]. As indicated in [26], the
details of SVM regression are as follows:

Suppose we are given a dataset of observed pairs comprising input vectors with
corresponding target values {xn, tn}N

n=1 in order to obtain a solution in the form

y(x) = wTφ(x) + b, (16)
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where w denotes the weight vectors, φ(x) denotes a fixed function that maps the input
vectors into the high-dimensional feature space, and b denotes the bias parameter. We have
to define w and b.

To obtain sparse solutions, the ε-insensitive loss function was used as follows:

|y(x)− t|ε =

{
0 i f |y(x)− t| ≤ ε

|y(x)− t| − ε otherwise
(17)

The loss is equal to 0 if the discrepancy between the predicted and the target values is
less than ε. Therefore, we have to minimize the following regularized objective function:

C
N

∑
n=1
|y(xn)− tn|ε +

1
2
‖ w ‖2 (18)

where the last term penalizes the model for using more weight vectors and makes it as flat
as possible. The parameter C in the first term determines the relative importance of the loss
term compared with the penalty term and helps to avoid overfitting. This optimization
problem can be transformed into a problem that minimizes the following function by
introducing slack variables ξn and ξ∗n for each data point:

C
N

∑
n=1

(ξn + ξ∗n) +
1
2
‖ w ‖2 (19)

subject to the constraints
tn − y(xn) ≤ ε + ξ∗n ξ∗n ≥ 0 (20)

y(xn)− tn ≤ ε + ξn ξn ≥ 0 (21)

To solve this problem, Lagrange multipliers αn ≥ 0, α∗n ≥ 0, βn ≥ 0, and β∗n ≥ 0 are
introduced for each data point, and the Lagrangian is constructed as follows:

L =
1
2
‖ w ‖2 +C

N

∑
n=1

(ξn + ξ∗n)−
N

∑
n=1

αn(tn − y(xn) + ε + ξn) (22)

−
N

∑
n=1

α∗n(y(xn)− tn + ε + ξ∗n)−
N

∑
n=1

(βnξn + β∗nξ
∗
n)

This Lagrangian whose is minimum over w, ξn, ξ∗n leads to the following equations:

w =
N

∑
n=1

(α∗n − αn)φ(xn) (23)

N

∑
n=1

(αn − α∗n) = 0 (24)

α∗n + β∗n = C αn + βn = C (25)

Substituting (23) into (16), we can obtain the desired function as follows:

y(x) =
N

∑
n=1

(α∗n − αn)K(x, xn) + b (26)

where K(x, xn) is the kernel function that generates the inner products in a high-dimensional
feature space.
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2.3.2. RVM Regression

The RVM is also a supervised learning tool for classification and regression analysis
based on the Bayesian framework and provides posterior probabilistic outputs. It was first
introduced by Tipping in 2000 [16]. As indicated in [15,16], the details of RVM regression
are as follows:

Suppose we are given a dataset of observed pairs comprising input vectors with
corresponding target values {xn, tn}N

n=1 and we assume p(t|x) is Gaussian distribution
N(t

∣∣y(x),σ2) , where the mean y(x) is defined as

y(x) =
N

∑
n=1

wnK(x, xn) + w0 (27)

This function has the same form as the function (16) for the SVM. The likelihood of
the dataset can be written as

p
(

t|w, σ2
)
=
(

2πσ2
)− N

2 exp
{
− 1

2σ2 t−Φw2
}

(28)

where t = (t1. . .tN)
T, w = (w0. . .wN)

T, and Φ is the N × (N + 1) ‘design’ matrix with
Φ = [φ(x1) . . . φ(xN)]

T, wherein φ(xn) = [1, K(xn, x1), K(xn, x2) . . . K(xn, xN)]
T. The no-

tation of the implicit conditioning upon the set of input vectors {xn} is omitted in (28)
and subsequent expressions. Since the maximum-likelihood estimation of w and σ2 from
(28) lead to a data overfitting problem, a zero-mean Gaussian prior distribution over w is
defined as

p(w|α) =
N

∏
n=0

N
(

wn

∣∣∣0, αn
−1
)

(29)

with α as a vector of N + 1 hyperparameters. According to Bayes’ rule, the posterior
distribution over w can be obtained as follows:

p
(

w|t ,α, σ2
)
= (2π)−

(N+1)
2 |Σ|−

1
2 exp

{
−1

2
(w− µ)TΣ−1(w− µ)

}
(30)

where the posterior covariance and mean, respectively, are as follows:

Σ =
(

σ−2ΦTΦ + A
)−1

(31)

µ = σ−2ΣΦTt (32)

with A = diag(α0, α1. . .αN).
The marginal likelihood is obtained by integrating out w for the hyperparameters

p
(

t|α ,σ2
)
= (2π)−

N
2

∣∣∣σ2I + ΦA−1ΦT
∣∣∣− 1

2 exp
{
−1

2
tT
(

σ2I + ΦA−1ΦT
)−1

t
}

(33)

Since values of α and σ2 that maximize (33) cannot be obtained in closed form, the
alternative formulae are considered for their iterative re-estimation.

For α, differentiation of (33), equating to zero, and rearranging give:

αnew
n =

γn

µ2
n

(34)

where µn is the n-th posterior mean weight from (32) and the quantities γn ∈ [0, 1] are
defined as

γn ≡ 1− αnΣnn (35)
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with Σnn as the n-th diagonal element of the posterior weight covariance from (31) com-
puted with the current α and σ2 values.

For the noise variance σ2, differentiation leads to the re-estimate

(σ2)
new

=
‖ t−Φµ ‖2

N −∑n γn
(36)

2.4. Parameter Optimization

In order to obtain a model that estimates the risk of vessel collision properly, a
process of optimizing the parameters that affect the estimation performance is required.
In this study, a method of partitioning the dataset into a training set and a validation
set was applied. We inputted the validation set to the model trained with the training
set to estimate the CRI ( ˆCRI), and we selected the optimal parameters that minimize the
differences between the ˆCRI and the target value (CRI). The model that shows the lower
estimation error for the new dataset possesses a successful generalization performance,
so the data overfitting problem can be solved. The root mean square error (RMSE) was
calculated to measure the estimation error. The Gaussian kernel function is applied for
both SVM and RVM. This kernel function is as follows.:

K(x, xn) = exp
{
− x− xn

2

2σ2

}
(37)

where the σ denotes the kernel width to be optimized for both RVM and SVM. In order
to optimize the parameter σ, the range of candidate values was specified as [0.1, 20].
By applying all the values within the range, the value that minimizes the RMSE for the
verification set was determined as the best σ. In the case of SVM, additionally, parameters
C and ε were optimized with 4-fold cross-validation. Figure 2 shows the optimization
process both of RVM (left) and SVM (right) as the change of RMSE with respect to the log σ.

Figure 2. Process of optimizing the parameter for RVM (a) and SVM (b).

3. Simulations and Results
3.1. Data Collection

Table 1 shows the volume of vessel traffic and the number of marine accidents by
major ports of Korea in the last 5 years [2,27]. According to this table, the port with the
largest number of vessel entries and departures and the largest number of marine accidents
is Busan port. Therefore, in this study, we selected all vessels that were equipped with
AIS and navigated in the predetermined area of 1453 km2 in the vicinity of the entrance to
Busan port as objects of research for the use of actual AIS data.
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Table 1. Vessel entry/departure and marine accidents by major ports of Korea (2014–2018).

Content Year Busan Ulsan Gwangyang Incheon Pyeongtaek

No. of
vessel
entry/

departure

2014 95,378 51,565 46,746 35,363 18,591
2015 98,087 51,525 48,229 37,560 19,383
2016 100,197 50,495 52,263 37,407 19,924
2017 99,687 48,182 51,269 36,215 19,442
2018 94,816 46,664 48,225 31,351 18,829
Total 488,165 248,431 246,732 177,896 96,169

No. of
marine

accidents

2014 45 25 6 14 1
2015 66 58 11 22 5
2016 85 47 13 37 11
2017 52 52 27 22 10
2018 19 30 16 43 20
Total 267 212 73 138 47

In order to be used as input data in the model development process, AIS data of
vessels detected in the above-mentioned area from 1 to 3 April 2014 were selected. A total
of 543 vessels were detected, and the static information such as vessel’s name, maritime
mobile service identity (MMSI), and vessel’s length and the dynamic information such as
vessel’s position (latitude and longitude), speed, and course were selected as variables for
systematic analysis. After selecting the variables, a spreadsheet composed of the variables
was created, and then all data for each variable were entered. A total of 2350 datasets were
prepared through the collection and above-mentioned preprocessing of actual AIS data
in the target sea area. The total of 2350 preparatory datasets were partitioned into 2000
training sets and 350 validation sets.

3.2. Results of Model Development

Table 2 shows the results of regression analysis for the estimation of CRI using SVM
and RVM after the previous process of the parameter optimization. As a result of compari-
son, the values of RMSE and MAE show that the RVM model estimates more accurately
than the SVM model. Furthermore, it was also shown that the number of vectors required
in the RVM model (relevance vectors (RVs)) is much smaller than that in the SVM model
(support vectors (SVs)), so the RVM model reduced the use of unnecessary basis functions.
We can also see that the elapsed time of the RVM model for learning of data is signifi-
cantly shorter than that of the SVM model. These results indicate that the RVM has higher
accuracy and a faster, more efficient learning process compared to the SVM.

Table 2. Comparison of SVM and RVM models.

Method Best σ
Elapsed Time

(min) SVs/RVs MAE RMSE

SVM 2.7 8.73 634 0.2349 0.2518
RVM 1.6 0.14 129 0.2145 0.2401

3.3. Model Validation

In order to validate the models developed by SVM and RVM, as indicated in [20], the
algorithm for the detection of collision risk was applied [21]. The algorithm detects collision
risk stably by introducing the time to safe distance (TDs), which is the time required to
reach the safety distance (Ds) between encountering vessels. If the TDs exists, it has two
values represented by the following equations:

TDs1 = TCPA− t2 (38)

TDs2 = TCPA + t2 (39)
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where t2 denotes the time required to reach DCPA from Ds for the distance between
encountering vessels. Figure 3 is a flowchart for the detection of collision risk. The value of
Ds was applied by the value of d2, which was used to calculate the CRI, and the threshold
value of TDs (Ts) was set to 5 min to run the algorithm. The outputs of the algorithm were
programmed using a binary number to display a value of 1 if the risk of collision exists
and a value of 0 if not. The dataset used as a test dataset in the previous modeling and
the AIS data of head-on situations in which a real risk of collision exists were used as the
verification data.

Figure 3. Flowchart for the detection of collision risk.

3.4. Results of Simulations

The actual AIS data of the crossing situation between the two vessels were used
for the validation of the developed model. Figure 4 shows the trajectory of the vessels,
displaying the section where the alarm occurred for each vessel based on the algorithm
for the detection of collision risk. According to Figure 4, we can see that the target vessel
altered her course to starboard to avoid collision with the own vessel. Figure 5 represents
the results of estimating CRI for this situation using the developed SVM and RVM models.
The maximum CRI values for each model are shown in the region of the collision alarm.
Although each time point corresponding to the maximum value of CRI is similar for all
models, the highest value of CRI is 0.92 for the FCE model, and the lowest value of CRI is
0.66 for the SVM model. Moreover, among the minimum CRI values at which an alarm
occurred for each model in the region of collision alarm, the highest value is 0.5 for the
RVM model and the lowest value is 0.2 for the FCE model.
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Figure 4. Trajectories of encountering vessels in the case of crossing situation.

Figure 5. Results of estimation in the case of crossing situation.

The actual AIS data of the head-on situation between the two vessels were used
for additional verification. Figure 6 shows the trajectory of the vessels, displaying the
section where the alarm occurred for each vessel based on the algorithm for the detection
of collision risk. According to Figure 6, we can see that the own vessel altered her course
to starboard to avoid collision with the target vessel. Figure 7 represents the results
of estimating CRI for this situation using the developed SVM and RVM models. The
maximum CRI values for each model are shown in the region of the collision alarm.
Although each time point corresponding to the maximum value of CRI is similar for all
models, the highest value of CRI is 0.92 for the FCE model, and the lowest value of CRI is
0.71 for the SVM model. Moreover, among the minimum CRI values at which an alarm
occurred for each model in the region of collision alarm, the highest value is 0.62 for the
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RVM model and the lowest value is 0.19 for the FCE model. Similar to the crossing situation,
in the region of collision alarm, it was found that the CRI value of the FCE model shows a
steep curve, while each CRI value of the RVM and SVM models shows a gentle curve.

Figure 6. Trajectories of encountering vessels in the case of head-on situation.

Figure 7. Results of estimation in the case of head-on situation.

4. Discussion

In this study, we developed the models of SVM and RVM for estimating CRI using
actual AIS data, which were collected from the coastal sea area of the entrance to Busan port
in Korea. We focused on comparing RVM and SVM under the same conditions as much as
possible in the process of optimizing the parameters. As a result of the comparison between
SVM and RVM, it was shown that the accuracy of each CRI estimated by inputting a new
dataset into the developed models was higher for the RVM model than the SVM model. It
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was confirmed that the RVM model avoids the data overfitting problem and represents
successful generalization performance. In addition, we confirmed that the computational
complexity of RVM was lower than SVM since the number of basis functions required
for the SVM model was shown to be about 5 times that of the RVM model, and the time
required to create the RVM model was much shorter than that to create the SVM model, so
the efficiency of learning data was improved by RVM. As verification results of estimation
performance through applying the two cases, the FCE model has a collision alarm in the
CRI range of [0.19, 0.92], so the model represented too broad a range of collision risk
because the range of the CRI was defined as [0,1]. However, the time point at which the
highest collision risk appeared was similar to other models. In contrast, the RVM model
has a collision alarm in the CRI range of [0.5, 0.89], and the SVM model has a collision
alarm in the CRI range of [0.45, 0.71]. Considering that the actions for collision avoidance
were taken in both encounter cases used for the verification, we can know that the collision
of risk was very high in the two cases. So, it is judged that the estimation performance of
the RVM model is better than that of the SVM model, since the overall CRI estimated by
the RVM is higher than that of the SVM. In the case of the RVM model developed through
this research, it must be determined that there is a risk of collision if the CRI reaches the
value of 0.5 on the actual voyage. In order to properly verify the accuracy of this result,
a comparison with the CRI estimated by the actual navigator at the time is required. In
addition, the CRI estimation should be improved so that it can be applied even in the case
of encounters with several target vessels at the same time. If more experts’ evaluations are
additionally reflected in the FCE method, the proposed method can be further improved.
Accurate and rapid collision risk estimation can have a good effect on the development of
an excellent collision avoidance algorithm.

5. Conclusions

As described in Section 1, in order to prevent collision accidents, it is necessary to assist
individual navigators in the decision-making on the existence of collision risk. In this study,
we utilized actual AIS data to observe the CRI by the FCE method. Then, based on the
RVM and SVM, we developed the models for estimating the CRI between the encountering
vessels under the same conditions. As a result of comparing the two developed models, the
RVM model showed better performance by solving the shortcomings of the SVM model.
In addition, the comparison results of the developed model were validated through case
studies such as crossing situations and head-on situations. In particular, the CRI value
calculated using FCE has too broad a range of the collision alarm, making it difficult to
specify the quantitative risk range. However, in the case of the RVM model, since the alarm
of collision risk was generated from the CRI value of 0.5, this value can be defined as the
threshold value at which the action of collision avoidance is required.

We confirmed the possibility for accurate and intuitional assistance in determining
whether the risk of collision exists through the real-time estimation of CRI by machine
learning on the actual voyage. In order to establish a collision risk estimation system appli-
cable to actual navigation, further simulations considering human factors and navigator’s
experience and skill level are required in the future. In this study, we focused on improving
conventional machine learning, and we will apply advanced machine learning in the future.
Comparing the results of the proposed method with the state-of-the-art approaches will
help to improve the estimation performance for CRI. It is expected to be of great assistance
in the development of a practical system that can automatically take collision avoidance
actions based on COLREGS and optimize the vessel’s route in real time.
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