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Abstract: Fish propelled by body and/or caudal fin (BCF) locomotion can achieve high-efficiency
and high-speed swimming performance, by changing their body motion to interact with external
fluids. This flexural body motion can be prescribed through its curvature profile. This work indicates
that when the fish swims with high efficiency, the curvature amplitude reaches a maximum at the
caudal peduncle. In the case of high-speed swimming, the curvature amplitude shows three maxima
on the entire body length. It is also demonstrated that, when the Reynolds number is in the range of
104–106, the swimming speed, stride length, and Cost of Transport (COT) are all positively correlated
with the tail-beat frequency. A sensitivity analysis of curvature amplitude explains which locations
change the most when the fish switches from the high-efficiency swimming mode to the high-speed
swimming mode. The comparison among three kinds of BCF fish shows that the optimal swimming
performance of thunniform fish is almost the same as that of carangiform fish, while it is better not to
neglect the reaction force acting on an anguilliform fish. This study provides a reference for curvature
control of bionic fish in a future time.

Keywords: swimming performance; curvature profile; sensitivity analysis; curvature distribution

1. Introduction

After hundreds of millions of years of evolution, fish show superiority in high-
efficiency and high-speed motion, which has attracted the attention of many researchers.
The study on bionic fish can lead to a new design of Automatic Underwater Vehicles (AUV).
In the nature, most fishes use the body and/or caudal fin (BCF) propulsion to generate
thrust. These fishes are distinguished into three categories: anguilliform mode, carangiform
mode, and thunniform mode (Figure 1). The paramount differences between the three
modes are the amplitude envelope of the propulsive wave and the wavelength [1,2].
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A fish uses both the active and passive mechanisms while swimming [3]. Passive
swimming reacts to external flow with no muscle activation [4]. In contrast, active swim-
ming implies swimming generated through muscular activation [5]. BCF fish can au-
tonomously control their curvature profile to achieve the compliant body motion and
realize active/passive swimming [6–11]. Hence, the research on curvature profile is impor-
tant to understand the fish locomotion mechanism. The curvature distribution is closely
related to the materials and shape of the fish body, including soft tissue (tendons, muscle,
and ligaments) and hard parts (fin rays and vertebral column). From the biological per-
spective, the curvature is controlled mostly by internal muscular activation. Specifically,
fish can receive the stretch receptors that depend on body curvature to the central nervous
system and then drive the calcium dynamics to affect the muscle activity, which can further
modulate the swimming behavior [12,13]. Many in vivo experiments and electromyogram
analyses have been conducted to discover the neuro–musculo–mechanical model, and
much progress on the model has been made [14–18]. Williams and Bowtell developed a
simple dynamic model to describe the interaction between body curvature and muscle
activation [19,20]. McMillen et al. suggested that fish neuromuscular systems produce an
intrinsic preferred curvature that can be derived from in vivo experiments [21,22]. Consid-
ering the complexity and the difficulty of the comprehensive model, some researchers turn
to study the curvature profile directly instead of the connection to muscular activation. Van
Rees et al. and Eloy combined different hydrodynamic models and bi-objective optimiza-
tion algorithms to obtain the optimal curvature profiles and body shapes for undulatory
swimming [23,24]. Such numerical optimization can help overcome some limiting con-
straints in reality. Nevertheless, these optimized body shapes show a slightly unsmooth
or strange geometry when compared to real fish. One of the possible reasons is that the
fish in nature faces many constraints in the process of evolution. In this paper, empirical
body shapes obtained by biological data of BCF fish are used to avoid this problem and the
corresponding analysis of optimal curvature profiles can provide a more reasonable value
of information.

Certain techniques have been used to achieve variable curvature structures [3,25–29].
A common method is to tune the pressure of the soft pneumatic actuator. White et al.
changed the local curvature by developing a Tunabot with different degrees of free-
dom [28,29]. In addition, some accurate curvature control methods have been proposed
and applied in the field of soft robotics [30–32]. The developments in structure fabrication
and the control methods, in turn, demand the further investigation of optimal curvature dis-
tribution of BCF fish. Therefore, swimming performance optimization through curvature
control will become the focus of future related research on bionic robotic fish. The premise
of curvature control is to understand the impact of varying the curvature distribution on
swimming performance, which is discussed in this study.

This paper is organized as follows: Section 2 describes the optimization problem
of swimming performance. Section 3 presents the optimization results including the
swimming motions, curvature profiles, the frequency effect, the change mechanism of
curvature amplitude, and comparison among BCF fishes. Section 4 discusses the similarities
and differences between our optimization and other optimizations. Finally, conclusions are
summarized in Section 5.

2. Materials and Methods
2.1. Optimization Problem Definition

Here we take the carangiform fish as an example for optimization. The optimization of
the other two kinds of BCF fish will be conducted in Section 3.4. The shape of carangiform
fish is determined by the empirical equations in [33] (see Figure 2). The views are set out in
the global coordinate system OXYZ where Y-axis is horizontal and Z-axis is vertical. The
X-axis is determined by the right-handed rule. The swimming direction is along with the
negative Y-axis.
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Figure 2. Side view (up) and top view (bottom) of carangiform fish. The shape of carangiform fish is
treated as numerous elliptical sections continuously distributed along the spine. a(s) and b(s) mean
the major semi-axis and minor semi-axis. s is the arc length and L = 0.3 m is the whole body length.

The midline kinematics can be described by a curvature profile κ(s,t), defined as an
amplitude function K(s) multiplied by a traveling wave [23], as:

κ(s, t) = K(s) cos[2π(
t
T
− τ(s)

s
L
)] (1)

where t is the time, T = 1 s is the tail-beat cycle, and τ(s) determines the wavelength. Both
K(s) and τ(s) are functions fitted at n = 11 interpolation points that are evenly distributed
on the midline. Considering the boundary conditions, K(0) = K(L) = τ(0) = 0, the kinematic
optimization problem includes 19 degrees of freedom in total. According to the biological
data gathered by Zuo Cui, the range of τ(s) is set as 0.5–2 [34].

If a specific curvature profile is given, the swimming kinematics can be determined
according to the reduced-order dynamic model developed by Eloy [24]. The general
introduction of this model is as follows (shown in Figure 3). Once the initial curvature
profile is set, the angle θ between the tangent to the midline and horizontal axis is obtained
based on the mathematical definition of curvature. The position of any point r = (x, y) on
the midline is then derived by employing the integral to a trigonometric function of θ. As a
result, the velocity components on the tangential and normal direction at any point of the
midline, namely u and v, can be calculated through the differential to the position function
and the projection analysis.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 4 of 18 
 

 

s t
s


=

d
( , )

d
The angle

 

s

s t s  = + 0 0
( , )d

The position of the 
midline

s

x x s= + 0 0
cos d

s

y y s= + 0 0
sin d

The velocity components 
y yx x

u
t s t s

= +
d dd d

d d d d
y yx x

v
t s t s

= −
d dd d

d d d d

The forces on the body
Equations of 

conservation


0
 is solved x y

0 0
, are solved

Prescribed

s t( , )

F F u v= ( , )

Swimming Kinematics

is obtained
 

Figure 3. The general introduction of the reduced dynamic model proposed by Eloy. 

The forces acting on the fish body that include reaction force Fm, skin-friction drag 

F//, form drag Fform, and resistive force F⊥, can be expressed as the functions of the velocity 

components. Their empirical formulas are shown in Equations (2)–(5), respectively. The 

reaction forces are derived by the large-amplitude elongated-body theory [35]. The de-

scription of skin-friction drag and resistive force is obtained by the hydrodynamics anal-

ysis of Taylor [36]. The empirical formula of form drag caused by the non-streamlined 

body is concluded by Hoerner [37]. 

 − 
= −

 

）2

m

( 0.5
d ( )d

muv mv mv
s

s t

n t n
F  (2) 

= −F t
/ /

d 2.9 d  ρ νav u s  (3) 

= F e
2

form 0

max( )
0.33  

Y

b
ρU S

L
 (4) 

⊥
= −F nd d  

D
C aρv v s  (5) 

where t and n are the unit vectors of tangential and normal directions of midlines, respec-

tively. ρ  = 1000 Kg/m3 is the density of both fish and fluid. m = ρ a2 is the added mass of 

each section. ν = 10−6 m2/s is the kinematic viscosity of the fluid. CD = 2-b/a is the approxi-

mation of the resistive force coefficient. U0 is the mean tangential velocity at the fish head. 

S = 0.0043 is a number that describes the streamlining of the fish body. 

The constants of integration that emerged during the process, such as θ0, x0, and y0, 

can be solved by the conservation of momentum and angular momentum (Equations (6) 

and (7)). Thus, the undulatory behavior is fully understood. 

⊥
+ + − =

2

form / / m 20

d
d d +d d 0

d

L

M s
t

r
F F F F  (6) 


⊥

+ + −  =
2 2

z / / m2 20

d d
d (d d +d ) d 0

d d

L

I s M s
t t

r
e F F F r  (7) 

where M = ρπab is the fish mass of each section. I = 0.25ρπab3 is the moment of inertia of 

each section.  

The indices used in the simulation to measure the swimming performance are shown 

in Equations (8) and (9). Consequently, each curvature profile has its corresponding swim-

ming performance. The bi-objective optimization was adopted for obtaining the maxi-

mum relative swimming speed U* and the minimum Cost of Transport (COT), deriving 

the optimal curvature profile. 

=* /U U L  (8) 

+ +
= =

0.8

tm s musc tot tot

tot tot tot

0.1327 5
COT =

P P P M P

M gU M gU M gU
 (9) 

Figure 3. The general introduction of the reduced dynamic model proposed by Eloy.

The forces acting on the fish body that include reaction force Fm, skin-friction drag
F//, form drag Fform, and resistive force F⊥, can be expressed as the functions of the
velocity components. Their empirical formulas are shown in Equations (2)–(5), respectively.
The reaction forces are derived by the large-amplitude elongated-body theory [35]. The
description of skin-friction drag and resistive force is obtained by the hydrodynamics
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analysis of Taylor [36]. The empirical formula of form drag caused by the non-streamlined
body is concluded by Hoerner [37].

dFm = (
∂(muvn− 0.5mv2t)

∂s
− ∂mvn

∂t
)ds (2)

dF// = −2.9ρ
√
|νav|uds t (3)

Fform = 0.33ρU0
2 × max(b)

L
S eY (4)

dF⊥ = −CDaρv|v|ds n (5)

where t and n are the unit vectors of tangential and normal directions of midlines, respec-
tively. ρ = 1000 Kg/m3 is the density of both fish and fluid. m = ρ a2 is the added mass
of each section. ν = 10−6 m2/s is the kinematic viscosity of the fluid. CD = 2 − b/a is the
approximation of the resistive force coefficient. U0 is the mean tangential velocity at the
fish head. S = 0.0043 is a number that describes the streamlining of the fish body.

The constants of integration that emerged during the process, such as θ0, x0, and y0, can
be solved by the conservation of momentum and angular momentum (Equations (6) and (7)).
Thus, the undulatory behavior is fully understood.

Fform +
∫ L

0
dF// + dFm+dF⊥ −M

d2r
dt2 ds = 0 (6)

∫ L

0
I

d2θ

dt2 ezds + (dF// + dFm+dF⊥ −M
d2r
dt2

)
× rds = 0 (7)

where M = ρπab is the fish mass of each section. I = 0.25ρπab3 is the moment of inertia of
each section.

The indices used in the simulation to measure the swimming performance are shown
in Equations (8) and (9). Consequently, each curvature profile has its corresponding swim-
ming performance. The bi-objective optimization was adopted for obtaining the maximum
relative swimming speed U* and the minimum Cost of Transport (COT), deriving the
optimal curvature profile.

U∗ = U/L (8)

COT =
Ptm

MtotgU
=

Ps + Pmusc

MtotgU
=

0.1327Mtot
0.8 + 5Ptot

MtotgU
(9)

where g is the acceleration of gravity and Mtot is the total fish mass. The total metabolic
power Ptm is the sum of standard metabolic rate Ps and the metabolic power Pmusc con-
sumed by the swimming muscles [38,39]. The unit of U* is Body Length/s, namely, BL/s.
COT quantifies the total energy consumption per unit mass and distance [40]. The higher
the value of COT, the lower the efficiency. Ptot serves as the total power required for
swimming, which is described in Equation (10).

Ptot = Pm + P⊥ + P// + Pform + Pi (10)

where Pm, P‖, Pform, and P⊥ are the powers consumed by reaction force, skin-friction
drag, form drag, and resistive force, respectively. These powers are easy to calculate by
multiplying the forces and the corresponding velocities. Pi is the internal dissipation power
(see Equation (11)).

Pi =

〈∫ L

0
µI (

d2θ

dsdt

)2

ds

〉
(11)

where µ = 1000 Pa s is the internal viscosity of fish and the brackets mean time averaging.
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The optimization problem is concluded here. Given the shape of carangiform fish,
(K1, K2, . . . , Kn−1, τ1, τ2, . . . , τn) were chosen as variables and the two objective functions
were the maximum U* and the minimum COT.

In the process of parameter settings, if the Kmax value is too high, the search space
will become wider and the simulation time will be longer, whereas, if the Kmax value is
too low, true optimization results may not be obtained. Therefore, it is necessary to set
the appropriate value of Kmax. Gazzola et al., Van Rees et al. and Eloy set this value to
2π/L, 3π/L, 10/L, respectively [23,24,41]. In this paper, the Kmax value was initially set to
10π/L (a number high enough to produce simulation results), while the maximum values
of K corresponding to different lengths could be thus obtained once optimization was
completed. The simulation showed that Kmax was approximately inversely proportional
to L. The inverse proportional function was fitted as Kmax = 8.4/L. This restriction can be
relaxed in some cases, which are later discussed in Section 3.3.

2.2. Optimization Algorithm

The NSGA-II algorithm for bi-objective optimization was used in this paper. NSGA-II
is nowadays one of the most popular and efficient multi-objective algorithms [42,43]. Before
introducing NSGA-II, there are two important concepts to understand: dominance and
Pareto front. For two individuals G1 and G2, if U*(G1) > U*(G2), COT(G1) ≤ COT(G2) or
U*(G1) ≥ U*(G2), COT(G1) < COT(G2), G1 is said to dominate G2. Therefore, the set of
all non-dominated points is called the Pareto front. Like genetic algorithms, the NSGA-II
procedure is roughly as follows (Figure 4). First, an offspring population was generated
from the parent population through crossover and mutation. The probability for crossover
was 0.8; next, offspring and parent population were combined into a mixed population
and sorted according to non-dominated sorting (the conception of crowding distance was
not used in our simulation); following, the set of all non-dominated points was selected
for the next parent generation; finally, the above steps were repeated until the termination
condition was met. The initial size and the maximum size of the population were set as
20 and 2000, respectively. The detailed algorithm implementation was coded using the
open-source software Python.
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3. Results
3.1. Reference Case

The case of the tail-beat frequency f = 1 Hz was taken as a reference case. Setting
ϕ(s) = −2π·τ(s)·s/L, ϕ(s) was the phase of the curvature profile. For the swimming forms
of minimum COT and maximum swimming speed in the reference case, the distributions
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of τ and ϕ along the body length are both depicted in Figure 5. To validate the effectiveness
of the simulation results, a single-objective optimization algorithm, covariance matrix
adaptation evolution strategy (CMA-ES), was used to obtain the distributions of τ for
the above-mentioned forms. It can be seen from Figure 5 that the numerical solutions
based on CMA-ES were in good agreement with these based on NSGA-II. Furthermore,
the distributions of τ and ϕ were similar for the two cases. τ increased sharply at first,
followed by a decrease, but then again increased in the last fifth of body length. The
phase distribution presented a step shape in general. As for the disagreement between
algorithms around three-tenths of the body length for the minimum COT case (Figure 5a),
it can be explained as follows. The curvature amplitude in this location was near zero for
the minimum COT case (shown in Figure 6). Therefore, according to Equation (1), the
change in τ value in this location had little effect on swimming performance. In spite of
the disagreement of τ value in this location, the swimming performance obtained by the
two algorithms was almost equal.
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Figure 6. The amplitude envelope of curvature profiles of six swimming forms. The circles of (a) represent the discrete
points of K(s). (b) shows the swimming speeds and the COT values of the six swimming forms A-F. All the curves of (a) are
fitted by piecewise cubic Hermite interpolation. For the different swimming forms A, B, C, D, E, and F, the values of U*
were 0.837BL/s, 1.022BL/s, 1.144BL/s, 1.236BL/s, 1.340BL/s, and 1.423BL/s, respectively; the values of COT were 0.093,
0.1, 0.112, 0.129, 0.165, and 0.306, respectively.

Six typical swimming forms A-F were extracted from the reference case (the speed
range was divided into fifths). Figure 6 presents the amplitude envelopes of these curvature
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profiles. When U* was small (Case A in Figure 6), the curvature amplitude was near zero
along with the first 2/3 of the body length, while its peak value appeared at the caudal
peduncle. When U* reached the maximum (Case F in Figure 6), there were three local peaks
of curvature amplitude in the whole body length, which were at the head, at the 2/3 of
the body length, and at the caudal peduncle, respectively. It indicates that the undulatory
motion mainly concentrates in the last third of the body length to achieve minimum COT,
and the large undulation also exists in the head part to reach maximum speed. In nature,
the fish head needs to keep rigid to protect the brain tissue, so the curvature of the head
part cannot reach the simulation value of the swimming form F. It can therefore be assumed
that the evolution of natural fish inclines towards the direction of maximizing swimming
efficiency. However, this does not mean that the simulation result of F is meaningless.
If different kinds of soft materials are applied in the fabrication of biomimetic fish to
realize the curvature distribution of F, the simulated maximum speed can also be achieved
in reality.

3.2. Frequency Effect

Yue and Tokić showed that when the fish mass is about 0.5 kg (the fish mass in
this paper was 0.48 kg), the range of tail-beat frequency is 1.25–4.5 Hz [44]. Therefore,
optimization results of U* and COT at various tail-beat frequencies within the range of
1 Hz–4 Hz were obtained (Figure 7). Figures 7 and 8 demonstrate that the maximum U*
and the maximum COT increased linearly with frequency while the minimum U* and
the minimum COT remained constant. Real fish swimming data observed by Videler and
Hess [7] indicate that the swimming speed is proportional to frequency when the frequency
is in the range of 1 Hz–14 Hz, also supporting the above result. Another evaluation index
often used in other references is introduced here: the stride length U’ = U*/f [7,24]. The
stride length is a dimensionless number that is the number of fish lengths travelled during
one tail-beat period. In our simulation, the maximum U’ remained stable at around 1.42,
and the minimum U’ decreased from 0.84 to 0.245, with the increasing frequency.
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Figure 7. Optimization results of U* and COT at different tail-beat frequencies. The Pareto front
remained unchanged after 5000 generations. The corresponding ranges of U* obtained at different
frequencies were: [1 Hz: 0.837 BL/s–1.423 BL/s], [1.5 Hz: 0.935 BL/s–2.166 BL/s], [2 Hz: 0.971 BL/s–
2.903 BL/s], [2.5 Hz: 0.998 BL/s–3.663 BL/s], [3 Hz: 0.988 BL/s–4.416 BL/s], [3.5 Hz: 1.002 BL/s–
5.149 BL/s], [4 Hz: 0.980 BL/s–5.912 BL/s]. The corresponding ranges of COT obtained at different
frequencies were: [1 Hz: 0.093–0.306], [1.5 Hz: 0.088–0.492], [2 Hz: 0.087–0.720], [2.5 Hz: 0.087–1.030],
[3 Hz: 0.087–1.423], [3.5 Hz: 0.087–1.738], [4 Hz: 0.087–2.260].



J. Mar. Sci. Eng. 2021, 9, 537 8 of 17

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 8 of 18 
 

 

 

Figure 7. Optimization results of U* and COT at different tail-beat frequencies. The Pareto front 

remained unchanged after 5000 generations. The corresponding ranges of U* obtained at different 

frequencies were: [1 Hz: 0.837 BL/s–1.423 BL/s], [1.5 Hz: 0.935 BL/s–2.166 BL/s], [2 Hz: 0.971 BL/s–

2.903 BL/s], [2.5 Hz: 0.998 BL/s–3.663 BL/s], [3 Hz: 0.988 BL/s–4.416 BL/s], [3.5 Hz: 1.002 BL/s–5.149 
BL/s], [4 Hz: 0.980 BL/s–5.912 BL/s]. The corresponding ranges of COT obtained at different fre-

quencies were: [1 Hz: 0.093–0.306], [1.5 Hz: 0.088–0.492], [2 Hz: 0.087–0.720], [2.5 Hz: 0.087–1.030], 

[3 Hz: 0.087–1.423], [3.5 Hz: 0.087–1.738], [4 Hz: 0.087–2.260]. 

 

Figure 8. The ranges of U* and COT at different tail-beat frequencies based on the optimization 

results shown in Figure 7. 

Swimming kinematics with different frequencies are shown in Figure 9. In the case of 

minimum COT, the amplitude envelopes decreased with frequency. Especially, at 3 Hz–

4 Hz, fish relied solely on the tail to generate thrust. However, at the maximum U*, the 

amplitude envelopes remained the same. 

(a) f = 1 Hz (b) f = 1.5 Hz 

  

(c) f = 2 Hz (d) f = 2.5 Hz 

  

 

  

Figure 8. The ranges of U* and COT at different tail-beat frequencies based on the optimization
results shown in Figure 7.

Swimming kinematics with different frequencies are shown in Figure 9. In the case
of minimum COT, the amplitude envelopes decreased with frequency. Especially, at
3 Hz–4 Hz, fish relied solely on the tail to generate thrust. However, at the maximum U*,
the amplitude envelopes remained the same.
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Figure 9. Swimming kinematics at different tail-beat frequencies. (a), (b), (c), (d), (e), (f) and (g) show the swimming
kinematics with 1 Hz, 1.5 Hz, 2 Hz, 2.5 Hz, 3 Hz, 3.5 Hz and 4 Hz, respectively. The left side represents cases with the
minimum COT and the right side represents cases with the maximum U*. The lines with green, blue, cyan, magenta, yellow,
royal, orange, violet, pink, and dark-grey color refer to the swimming kinematics at the t = 0, 0.1 T, 0.2 T, 0.3 T, 0.4 T, 0.5 T,
0.6 T, 0.7 T, 0.8 T, and 0.9 T, respectively. The black line represents the amplitude envelope.
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There are other ways to study the frequency effect on swimming performance. For
example, in the robotic fish swimming experiment presented in [45], the fishtail is driven
by the steering gear. Liu et al. kept the swing angle amplitude of steering gear constant,
meaning swimming kinematics do not change. Only the frequency is changed to investigate
the swimming performance. Similar to this method, this paper studied the relationships
of U*, U’, A*, and COT with frequency while keeping the swing angle of the fishtail (θtail)
constant. θtail can be derived based on the different undulatory locomotion of the Pareto
fronts. The premise is that these parameters should have a one-to-one mapping with
θtail. The relationships of U*, U’, A*, and COT with θtail were checked, and the one-to-one
mapping was generally satisfied.

Figure 10 displays the trends of parameters U*, U’, A*, and COT vs. frequency when
θtail was 25◦ and 35◦, respectively. U* and COT values showed a sharp increase along with
the rise in frequency while U’ and A* values exhibited a lighter increase. This shows that
the swimming speed, stride length, and COT are all positively correlated with frequency,
which agrees well with the trend of these metrics demonstrated in the experiments of
White et al. [29].
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Nevertheless, the above simulation result does not mean that the swimming speed
increases across the frequency spectrum indefinitely. It is worth noting that the proposed
optimization model is suitable for Re within the range of 104 to 106. If Re lies beyond this
range, the calculation formula of forces will change, the model will no longer be valid and
the relationship between swimming speed and frequency will also change.
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3.3. Curvature Amplitude

Figure 11 indicates that as the fish length increased from 0.3 m to 0.7 m, the minimum
COT decreased, so the swimming efficiency increased, which is consistent with the opti-
mization results presented in [44]. Two aspects give reason to this occurrence. First, as Kmax
decreased with length, the lateral amplitude at the fish head decreased while that at the
tail showed a small increase. Moreover, the slope of the amplitude envelope of swimming
kinematics became smoother when the length increased (Figure 12). These all led to a
reduction in both the recoil motion and the internal diffusion. Furthermore, though U*
decreased with length, the actual swimming speed increased with length, leading to an
increase in Re. The drag coefficient Cd~Re−0.5 also decreased with length [44].
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Figure 11. Optimization results of U* and COT with different lengths. The dimensions of body
geometry, such as a(s) and b(s), are scaled accordingly. When the length was 0.3 m, 0.4 m, 0.5 m, 0.6 m,
and 0.7 m, the range of U* was 0.837 BL/s–1.423 BL/s, 0.738 BL/s–1.454 BL/s, 0.644 BL/s–1.462 BL/s,
0.576 BL/s–1.483 BL/s, and 0.518 BL/s–1.486 BL/s, respectively; that of COT was 0.093–0.306,
0.069–0.291, 0.056–0.285, 0.047–0.280, and 0.041–0.290, respectively.
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Figure 12. Amplitude envelopes of swimming kinematics with various lengths based on the opti-
mization results shown in Figure 11.

Next, the sensitivity analysis of K(s) was conducted, namely, the impact of varying a
single feature of K(s) on swimming performance was studied. As displayed in Figure 6,
from the swimming form of high-efficiency A to the swimming form of high-speed F, the
values of K at the second, eighth, and ninth interpolation point (represented as K2, K8,
K9, respectively) increased at to different extent. On the other hand, the values of K at
five interpolation points, from the third one to the seventh one, increased synchronously
roughly. Thus, the joint sensitivity analysis of these K values (represented as K3–7) was
conducted. To study the influence of Kmax on swimming performance, the K value at the
tenth interpolation point (represented as K10) was also included in the discussion. The
variations of the aforementioned K values on the swimming performance are shown in
Figure 13. For convenience, the curvature amplitudes in the case of minimum COT (Case 0)
were a reference for other cases.
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K10 was set to 12, 16, 21, 24, 28, and 32 from case −3 to case 2, respectively. K10
appeared to have little effect on the swimming performance, as illustrated in Figure 13a.
As K10 increased, both speed and efficiency slightly increased at first and then decreased a
little, implying that there must exist some K10 value that maximizes the speed and efficiency.
Therefore, although the curvature profile changed from A to F in Figure 6, the value of
K10 kept constant. Since the value of K10 affects the swimming performance a little, the
restriction of Kmax can be relaxed appropriately.

K9 was set to 5, 8, 10.7, 13, and 16 from case −2 to case 2, respectively (Figure 13b).
K9 had a great influence on swimming speed. Higher K9 caused a dramatic improvement
(up to 50%) in speed and a small change (up to 10%) in efficiency. In the bi-objective
optimization process, case 0, case 1, and case 2 were all non-inferior solutions while both
case -2 and case -1 were inferior solutions. Consequently, the minimum K9 illustrated in
Figure 6 was the K9 value in case 0.

K8 was set to 2, 4.1, 10, 15, and 20 from case −1 to case 3, respectively (Figure 13c). K8
had a great influence on both speed and efficiency. Higher K8 value resulted in a significant
increase in speed and COT, by 62% and 68%, respectively. This change in COT meant that
the swimming efficiency was significantly reduced. Therefore, the value of K8 constantly
increased from A to F in Figure 6. The second-highest K value, K8, thus became the most
important factor in the selection of Kmax. The minimum Kmax value must be higher than
that of K8. Considering that the maximum K8 value in Figure 6 was less than 20, Kmax
could be relaxed to 6/L.

K3–7 (the average value of the sequence from K3 to K7) was set to 0, 0.6, 1.4, 2.2, and 3
from case −1 to case 3, respectively (Figure 13d). The increase in K3–7 had a similar effect to
the increase in K8, leading to a marked rise in speed and COT, by 30% and 26%, respectively.
Since the increase in K3–7 was smaller than that of K8, the swimming performance was
more sensitive to K3–7.

K2 was set to 0, 0.85, 5, 10, 15, and 20 from case −1 to case 4, respectively (Figure 13e).
K2 had little effect on speed. It meant that although K2 increased greatly from A to F in
Figure 6, it had little effect on improving the swimming speed. COT increased by 15%
along with K2, indicating that the swimming efficiency decreased moderately.

3.4. Comparison among BCF Fish

Two other kinds of fishes, anguilliform fish, and thunniform fish, are discussed
in this part. The shapes of anguilliform fish and thunniform fish are described in [46]
and [33], respectively. Based on the above two body shapes, optimization results of U* and
COT are plotted in Figure 14. Interestingly, for the same U*, carangiform fish was more
efficient, although thunniform fish is more streamlined in a general sense. This reveals
that swimming performance optimization is a comprehensive balance of the body shape,
kinematics, dynamics, not just some aspect among them. For the same COT, carangiform
fish and thunniform fish were faster than anguilliform fish. The reason is that the caudal
fin propulsion adopted by the former two can provide a higher reaction force than the
body propulsion used by anguilliform fish.

Portions of different powers included in the total power are plotted in Figure 15,
where PD = P// + Pform is the power consumed by the total drag force. Not surprisingly,
the change in power ratios of carangiform fish with the swimming speed was in agreement
with that of thunniform fish. The greatest difference between anguilliform fish and the
other two fishes was that it had a larger P⊥ ratio and a small Pm ratio. This indicates that
anguilliform fish swimming is mainly a body propulsion mode while carangiform fish and
thunniform fish combine body propulsion and caudal fin propulsion. As U* increased, all
the elements of PD decreased, while all the elements of P⊥ increased. The main cause was
that higher values of U* enhanced the lateral motion amplitude of the fish body, bringing
about the increase in P⊥. Moreover, with the increase in U*, Pi ratios in thunniform fish
and carangiform fish increase rapidly, reaching 66% and 50%, respectively. The Pm ratio
in anguilliform fish was about 8%, half that of the ratio in the other two fish types. The
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reaction force Fm at the tail is often neglected in some related studies of anguilliform
fish swimming [17,18,47,48]. Boyer et al. used Poincaré–Cosserat equations to solve the
problem of anguilliform fish swimming [48]. Compared to CFD simulation results, the
force in the swimming direction is quite different. The omittance of the reaction force may
be a factor attributing to this discrepancy.
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fish, the U* range was 0.752 BL/s–1.460 BL/s, and the COT range was 0.1–0.5, which was roughly
consistent with the ranges of carangiform fish. In the case of the anguilliform fish, the U* range was
0.562 BL/s–0.965 BL/s, and the COT range was 0.2–0.5.
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Figure 15. The proportion of different powers in the total power as a function of U*. (a), (b) and (c) are the cases of
carangiform fish, thunniform fish, and anguilliform fish, respectively. The discrete points in (a) refer to the six swimming
forms in Figure 6. The discrete points in (b) and (c) represent the six swimming forms in thunniform fish and anguilliform
fish, respectively. Both typical swimming forms are extracted from the Pareto fronts in Figure 14 (the black line and green
line in Figure 14).

4. Discussion

Triantafyllou et al. discovered that the St (St = fA/U, f is the tail-beat frequency, A is
the peak-to-peak amplitude of the tail) range of swimming animals with foil-like tails is
0.2–0.4 [49]. In our simulation, the St range of carangiform fish was 0.19–0.30 and that of
thunniform fish was 0.255–0.360, both of which can be identified for efficient propulsion.
However, the St range of anguilliform fish was 0.42–0.5 and was beyond the St range
proposed by Triantafyllou et al. On the other hand, Long et al. determined that St equals
0.56 based on the observation data of hagfish swimming and the range calculated by
Kern et al. through computational fluid dynamics is 0.59–0.67 [9,50]. Thus, it is considered
that the optimal St range, proposed by Triantafyllou et al., may not apply to anguilliform
fish swimming.

Moreover, Wiens and Hosoi found that optimally efficient swimming kinematics could
be characterized by a non-dimensional variable Ψ (Equations (12) and (13)) [51]. When Ψ is
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between 0.3 and 1.0, the swimming efficiency is near-optimal. The Ψ range of carangiform
fish in this simulation was 0.44–0.94. These analyses reflect the rationality of simulation.

Ψ = 1− sin(β)− πSt cos(β)

β− πSt
(12)

β = π
U
V

St (13)

where V is the wave propagation speed. U/V is the slip ratio that has been widely used
and detailed calculation can be found in previous studies [51,52].

The sensitivity analysis of curvature amplitude showed that K9, K8, and K3–7 were
the most significant variables, which can instruct the stiffness adjustment strategy for
robotic fish. On the other hand, it can be seen that K2 should always be near zero if the
gentle effect on speed is ignored. In other words, there is no need to improve the speed
by only one percent at the expense of keeping K2 so large. Following this way, the large
curvature amplitudes mainly existed in the last third of the fish body, which conforms to
the biological observation in reality. Furthermore, this discovery also reduced the difficulty
of the stiffness distribution implementation.

The three differences between our model and Eloy’s model are as follows. First,
the frequency was set constant in our model, which can help investigate the frequency
effect; second, the fish body shape was determined by the empirical equations. Strange
shapes (like Figure 5e,f in [24]) can be avoided through this way; third, COT, the commonly
used measure in other references, was chosen as the efficiency measure instead of a novel
measure E* first adopted by Eloy. The discussion on the differences between the two
efficiency measures is not the scope of this paper. The phenomenon of bifurcation in the
Pareto front that ever emerged in Eloy’s model did not occur in our model. The main cause
may be the biological fish shape adopted in our model.

In the case of the highest efficiency, the swimming speed and the midline kinematics
obtained by our model are similar to those obtained by Eloy’s model (the relative swimming
speed in Eloy’s model is 0.727 and the swimming kinematics are illustrated in Figure 16).
The similarity shows that the fish body shape used in our model is near the desired
body shape for the most efficient swimming. The midline kinematics of Saithe was also
used to make a comparison with the results of these two models (the relevant data is
extracted from [53]). The corresponding amplitude envelopes are depicted in Figure 17.
There was no big difference between the three cases. The differences in the head and tail
amplitudes may result from the fish body shape. It can be concluded that for the most
efficient swimming mode, the results obtained from models and the data observed in
reality reached an agreement, and the consistency was not only reflected in body shape but
also in swimming kinematics.
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Figure 16. The different midline kinematics of carangiform fish. (a) is for the case of the minimum COT in our model;
(b) is for the case of the highest efficiency in Eloy’s model; (c) is for the case of Saithe fish in nature through the
biological observation.
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5. Conclusions

Optimal curvature profiles were obtained by combining bi-objective optimization
and the reduced dynamic model proposed by Eloy [24]. As the swimming mode of the
carangiform fish transitioned from high-efficiency mode to high-speed mode, the number
of local maxima of the curvature amplitude changed from one to three along with the
body length.

The frequency effect on swimming performance was examined. The maximum U*
and the maximum COT increased linearly with the tail-beat frequency, while the minimum
U* and the minimum COT remained constant. On the other hand, when swimming kine-
matics remained unchanged, swimming speed, stride length, and COT were all positively
correlated with the tail-beat frequency.

Based on the sensitivity analysis, the changing mechanism of curvature amplitude
regarding swimming speed was revealed. The curvature amplitude at nine-tenths of body
length (K10) had little effect on both efficiency and speed. The curvature amplitude at four-
fifths of body length (K9) had a great influence on speed but had little effect on efficiency.
The curvature amplitude at seven-tenths of body length (K8) and the curvature amplitude
between fifths and three-fifths of body length (K3–7) both had a great impact on speed and
efficiency. The curvature amplitude at tenths of body length (K2) had little effect on speed,
although it increased from high-efficiency mode to high-speed mode. In addition, it was
found that the swimming efficiency increased as the fish body was longer.

Optimization in the cases of the other two kinds of BCF fishes (anguilliform fish and
thunniform fish) indicated that anguilliform fish mainly adopts body propulsion, while
carangiform fish and thunniform fish combine body propulsion and caudal fin propulsion.
Portions of different powers included in the total power were analyzed. It was indicated
that the lateral motion of anguilliform fish is large and the reaction force of anguilliform
fish is low. However, considering that the proportion of the power caused by the reaction
force (Pm) of anguilliform fish accounted for about 8%, it is better not to neglect it in the
accurate swimming analysis of anguilliform fish.

The above discussion shows that if real-time and accurate curvature control can be
achieved, bionic robot fish has the potential to surpass the swimming performance of real
fish in terms of swimming efficiency and speed. This study lays a theoretical foundation
for the design and control of high-speed and efficient AUVs.
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