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Abstract: This paper proposes a novel nonlinear control approach for a two-axis gimbal to achieve
accurate real-time tracking performance in maritime surveillance applications. For this objective, the
control system must overcome system complexities and limitations, including nonlinear dynamics,
coupled Euler angle-based measurements, and delay time constraints. The nonlinear backstepping
controller was designed, taking into consideration the nonlinearities and system couplings to preserve
the system stability. Then, an extra backstep was incorporated to minimize the control errors due to
the delay time. The proposed control scheme enhances the tracking performances and expands the
system’s bandwidth, which is validated in the simulations and experimental studies in comparison
with a super-twisting sliding mode controller introduced in a previous study.

Keywords: backstepping control; Euler angles; gimbal system; input-delay system; super-twisting
sliding mode

1. Introduction

Gimbaled mechanisms are widely used in practical applications where the line-of-
sight (LOS) of an optical sensor needs to be stabilized and steered to track a moving target.
Carried on mobile vehicles, these mechanisms are electromechanical structures consisting
of two or more independent channels. Each of these channels orientates about an axis
different from the others. The optical sensors, such as vision and thermal cameras, radars,
and laser sensors, are usually mounted on the inner channel of the gimbal. However,
in some configurations, the sensors are fixed to the vehicle carrying the gimbal where
mirrors or other optical elements are mounted. Moreover, a gyro or a set of gyros is
used to measure rotational motions in the inertial space and feedbacks the data to the
control systems. Requirements for these systems vary depending on applications. On one
hand, in applications such as mapping, security, communications, and handheld cameras,
the control problems mainly focus on attenuating unmeasured disturbances affecting the
optical sensors. On the other hand, in target tracking, surveillance, missile guidance, gun-
turret control, and astronomical telescopes applications, the sensor is required to track the
target precisely in real time. The complexity of the system dynamics, unpredicted target
direction, and disturbances make these tasks challenging even though control problems
of gimbal systems have been studied for decades. In 2018, a special issue of IEEE Control
Systems Magazine was dedicated to inertially stabilized platforms and presented several
articles overviewing many aspects of this topic [1,2].

The gimbal itself is a simple structure, but its dynamics are complex with nonlinear
factors, couplings, and disturbances. Mathematical models of the system have been derived
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from many studies to point out these problems. In [1], the kinematics of a multi-axis gimbal
was devised in terms of the trigonometric functions of the platform and rotations of
the gimbal channels. Analyzing these equations highlights the kinematics coupling and
unwanted effects on the LOS motion. Meanwhile, the representation of the simplest one-
axis gimbal dynamics was introduced in [2], and the dynamics of the two-axis one had been
derived in several studies [3]. Recent studies, such as [4–8], analyzed in detail the system
models with complex nonlinearities induced by cross-couplings, parameter uncertainties,
and external disturbances. Thus, there is a need to design an effective control system so
that robust stability and superior performance are achieved.

In order to attain these objectives, numerous control approaches were suggested.
Classical control strategies of a gimbal system proposed two control loops: an inner
rate or stabilization loop inside an outer tracking loop. The inner loop compensates
for disturbances, and the tracking loop ensures that the sensor LOS remains pointing
towards the target [2]. Additionally, in [3], two control methods have been deployed: direct
stabilization using feedback signals from the LOS orientation and indirect stabilization
based on the base motion. However, modern control techniques allow the design of a
single controller that can both track the target and suppress disturbances. The popular
schemes used to control gimbal mechanisms are the sliding mode control (SMC), robust
control, and active disturbance rejection control, thanks to their robustness and effectiveness
when facing disturbances. For instance, an integral sliding mode controller combined
with an observer, namely a reduced-order cascade extended state observer [6] and a
disturbance/uncertainty estimator [9] were suggested. A terminal SMC and a high-order
sliding mode observer were designed in [5] to overcome the cross-coupling and external
disturbances that influence the system. Moreover, a backstepping sliding mode controller
with an adaptive neural networks approach was designed in [7], and a super-twisting
sliding mode controller (STSMC) was introduced in [10]. On the other hand, robust
control theory was applied in [8,11] and several other studies. Especially, the study in [8]
introduced a new robust double active control scheme for a two-axis gimbal system, where
an inner active compensator was combined with a feedback controller designed based on
H∞ framework. This configuration was introduced so that the system was able to suppress
both external disturbances and mutual interferences. However, the design process of most
of these controllers neglected the nonlinear characteristics of the system. Instead, they were
treated as unknown disturbances and estimated by an observer.

Furthermore, practical gimbal systems and their components cannot operate ideally,
which can significantly affect the performance of the control systems. Actuator saturation,
gyro output parameterization, and communication network may be listed among practical
factors contributing to performance deterioration. However, very few studies considered
them while designing the controllers. For example, the study in [7] dealt with a gimbal
system with saturated actuators that degraded the system performance. Thus, the authors
applied an auxiliary function to define the effect of saturation and obtained a suitable SMC
law. However, the framework of this function was not thoroughly explained. Additionally,
the authors in [10] considered quaternion feedback from the gyro sensor in designing a
super-twisting controller for a three degrees-of-freedom (DoF) inertial stabilization plat-
form. Generally, gyro-type sensors provide several ways to represent the 3D orientation of
an object in space, namely Euler angles, quaternions, axis angles, and rotation matrices.
These concepts are different from the concept of angular position, angular velocity, and
angular acceleration that are usually used in motion equations. That is the feedback values
from the gyros are not the ones expected by the system model.

Besides the abovementioned factors, the time delay is receiving lots of attention thanks
to the increasing use of networked control systems and closed-loop actuators. In these
systems, a simple controller is integrated with an actuator, and they form a servo-system
that works as a node in the network. In master and slave network configurations, the main
controller works as the master, while sensors and actuators are slaves. Data, including
sensor feedback and control signal data, are transmitted via a shared network or wireless
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connections. The study of Baillieul and Antsaklis [12] reviewed the problems of control and
communication in networked real-time systems. Communication time, which introduced
the delay time to the system inputs and outputs, was listed as a challenge that reduces the
system performances. An overview article from Richard [13] recalled the characteristics of
delay systems and summarized available approaches for their control. In this article, it was
stated that the delay systems, both state or input delay, retard or neutral system, usually
had bad reputations of system stability and performance. However, while most of the
developed techniques have been proved to be effective for state delay systems, controlling
input delay systems is more complex and difficult to deal with.

Several approaches have been suggested for input delay systems, namely predictor-
like control, robust control, and sliding mode control. A classical hypothesis in the modeling
of physical processes is to assume that the future behavior of the deterministic system can
be summed up in its present state only. The idea of the predictor control is to establish
an expression of the delay-free controller by predicting values of the state and the out-
put ahead of time. The prediction can be achieved by either a state predictor technique,
reduction transformation [14], Smith predictor technique [15], or inverse backstepping
transformation [16–18]. They have been claimed to be able to achieve a globally asymptotic
stability even with time-varying delays; however, the system should be simple and linear.
A combination of backstepping and adaptive techniques (in [19–21]) was introduced for
input-delay systems represented in a strict-feedback form with uncertainties to achieve—in
the best cases—semi-uniform ultimate boundedness of systems. In addition, by taking
advantage of modern hardware, more complex control techniques can be implemented
with delay systems, such as aperiodic sampling [22] and model predictive controller [23].
Otherwise, by treating the difference between the current and delayed control signals as
input disturbance, the control objective becomes the attenuation of the matching distur-
bances, which the SMC and robust control schemes are well known to be able to deal with.
In [13], several research studies using these two methods have been listed, and most of the
time, even matching additive disturbance cannot be completely rejected. This implies the
ultimate boundedness instead of the asymptotic convergence. For example, the study in [8]
used the same kind of actuators and communication network, and neither the proposed
robust double active controller nor the integral sliding mode was able to effectively reject
the influences of the time delay in the system. In [24], the sliding mode algorithm was
used to design an observer that estimates the matching disturbances, then reconstructs
the states and delays for a system with input delay. However, it is worth noting that
any estimation from an observer is always lagging behind the true values for some time.
Along with the available delay time in the input channel and the limitations of the system
bandwidth, a combination of a controller and an observer may lead to deterioration of
the system performance and the system stability. Thus, the abovementioned approaches
in [4–11], where the common control technique is a combination of the main controller and
an observer, might not be suitable for input-delay systems.

Therefore, a novel nonlinear controller for a two-axis gimbal system is designed in this
paper to cope with the system complexities and constraints, namely nonlinear dynamic
characteristics, gyros feedback parameterization, and system delays. Designed based on
the backstepping technique and Lyapunov stability theory, the proposed control scheme
preserves the system stability, and accurate real-time tracking performances were achieved.
The design procedure of the proposed controller is presented in detail. Simulation and ex-
perimental studies were conducted to evaluate the proposed control strategy. Comparison
studies were conducted between the proposed control system and an STSMC. Accordingly,
the contributions of this paper are listed as follows:

• A mathematical representation of the two-axis gimbal system is derived, taking into
consideration the Euler angle feedbacks and the input delay time.

• A novel nonlinear backstepping controller is introduced for the two-axis gimbal
systems to overcome the abovementioned difficulties.
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• Simulation and experimental results validate the effectiveness of the proposed con-
troller.

The remainder of this paper is organized into five sections. The system mathematical
model is described in Section 2. Section 3 presents the design process of the controller
and stability analysis. Simulation and experimental studies are conducted in Section 4,
where the frequency and time responses of the controlled system are analyzed. Finally,
conclusions are drawn in Section 5.

2. System Modeling
2.1. Kinematics and Dynamics

The gimbal system considered in this paper consists of an outer channel actuating the
pan motion and an inner channel operating the tilt motion. The payload, a set of cameras,
is attached to the inner channel and its motion is measured by a gyros-type sensor. The
sensor feedbacks consist of orientations expressed in Euler angle parameterizations and
inertial angular rates. This assembly is used in marine surveillance applications, where the
camera’s LOS needs to be stabilized and steered to accurately track a predefined target in
real time. Subsequently, it is necessary to derive the mathematical model of the system,
where the outputs are given in Euler angles, and the states include Euler angles, angular
rates, and angular accelerations. The configuration of a vessel-mounted gimbal system is
illustrated in Figure 1, and the coordinate systems are as follows:

• OXYZ: earth fixed reference frame;
• OXbYbZb: platform fixed frame;
• OXpYpZp: pan motion channel fixed frame;
• OXtYtZt: tilt motion channel fixed frame.
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Figure 1. Schematic of a 2-axis gimbal system mounted on a vessel.

All of the coordinates are carried into coincidence at the rotational center of the tilt
channel of the gimbal.

Then, the kinematics of the system are given as:

 ωtx
ωty
ωtz

 =


Cθ
(

ωbxCψ + ωbySψ
)
− Sθ(ωbz + ωψ)

−ωbxSψ + ωbyCψ + ωθ

Sθ
(

ωbxCψ + ωbySψ
)
+ Cθ(ωbz + ωψ)

 (1)

where ωt = [ ωtx ωty ωtz ]
T and ωb = [ ωbx ωby ωbz ]

T are the angular rate vectors
of the tilt channel and those of the platform, respectively. S and C denote the sine and
cosine functions. ψ is the relative motion between the outer gimbal and the platform along
the Zb-axis of the platform, θ is the relative motion between the inner and the outer gimbal
along the Yp-axis of the outer channel, while ωψ and ωθ are their respective rates.
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Let the orientations of the inner channel be described by three Euler angles, namely
pan, tilt, and roll, in the following order:

• Rotation of ϕtz about the Zt-axis of the inner channel fixed frame, followed by a
• Rotation of ϕty about the Yt-axis of the moving frame, followed by a
• Rotation of ϕtx about the Xt-axis of the moving frame.

By taking the angular rate of each Euler angle about the final coordinate system, the
relationship between the angular rates of the tilt channel and the rates of change in the
Euler angles is obtained as follows: .

ϕtx.
ϕty.
ϕtz

 =

 1 Sϕtx tan ϕty Cϕtx tan ϕty
0 Cϕtx −Sϕtx
0 Sϕtx/Cϕty Cϕtx/Cϕty

 ωtx
ωty
ωtz

 (2)

Assumption 1. The roll angle is small.

From Assumption 1, Cϕtx ≈ 1 and Sϕtx ≈ 0; thus, the tilt and pan angles are
only coupled by the secant gain 1/Cϕty. The residuals will be treated as mismatched
disturbances. It shows that at 0 [deg] of the tilt orientation, the angular rate vector is equal
to the vector of Euler angles’ rate. However, the greater the tilt orientation, the smaller the
yaw rate amplitude compared to the rate of yaw expressed with Euler angles.

Next, we derive the system dynamics from the torque relationships of the inner and
outer gimbals by applying Euler’s equation of rigid body dynamics. The tilt channel is
expressed as:

Jt
.

ωt + [ωt × Jtωt] = Tt

Jt =

 Jtx 0 0
0 Jty 0
0 0 Jtz

, Tt =

 Ttx
Tty
Ttz

−
 0

Tt f c
0

 (3)

where Jt is the inertia matrix of the tilt channel. Assuming that the rotation axes are aligned
with the principal axes of inertia, the inertia matrix is, thus, diagonal. Tt is the applied
torque consisting of the driving torque from the actuator Tty, the reaction torques Ttx and
Ttz and the friction torque Tf c. The dynamics of the tilt channel about the Yt-axis yields the
following:

Jty
.

ωty + Ktωty = Tty − (Jtx − Jtz)ωtxωtz + Ktωpy (4)

where Kt is the viscous friction coefficient.
In the same manner, the dynamics of the pan channel are given by:

Jp
.

ωp +
[
ωp × Jpωp + TT/P

]
= Tp

Jp =

 Jpx 0 0
0 Jpy 0
0 0 Jpz

, Tp =

 Tpx
Tpy
Tpz

−
 0

0
Tp f c

, TT/P = PRTTt =

 Cθ 0 Sθ
0 1 0
−Sθ 0 Cθ

Tt
(5)

where ωp is the angular rate vectors of the pan channel, and Jp is the inertia matrix of the
pan channel. Tp is the applied torque, TT/P is the tilt gimbal torque as observed from the
coordinate frame of the pan gimbal, and Tp f c is the friction torques of the pan channel.
Since the pan channel only controls the motion about the Zp-axis, the resulting motion
equation is:

Jpz
.

ωpz + (Jpy − Jpx)ωpxωpy + TT/Zp = Tpz − Kpωψ (6)

Taking Equation (1) into account, Equation (6) expressed in the coordinate frame fixed
to the tilt channel with the variable ωtz instead of ωpz is given as follows:(

Jpz + JtxS2θ + JtzC2θ
) .
ωtz + Kpωtz = CθTpz + Kp

(
ωpxSθ + ωbzωbz

)
− Jpz

(
− .

ωpxSθ −ωpx
.
θCθ + ωpz

.
θSθ
)

+
[

Jtx

( .
ωpxCθ −ωpx

.
θSθ − Tθ

(
− .

ωpxSθ −ωpx
.
θCθ

)
−

.
θ

C2θ

(
ωtz −ωpxSθ

))
+ (Jtz − Jty)ωtyωtz

]
SθCθ

−
[
(Jty − Jtx)ωtxωty

]
C2θ − Cθ(Jpy − Jpx)ωpxωpy

(7)
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As seen in Equations (1), (2), (4) and (7), the kinematics and dynamics of the 2-axis
gimbal system are highly nonlinear and significantly influenced by couplings and external
disturbances.

2.2. Actuation Model

A networked real-time control system is used to operate the gimbal system. Two
servo actuators—each one integrates a stepping motor, a magnetic encoder, and an inner
controller—actuate the two channels of the gimbal independently. The input signal for
each actuator is the rate command from the main controller transmitted by an RS-232
communication network. Inside the servo actuators, proportional controllers for speed
control are used, so the driving torques are the results of:

Tty = Pt(ωθd −ωθ) + dt

Tpz = Pp

(
ωψd −ωψ

)
+ dp

(8)

where Pt and Pp are the proportional control gains, ωθd and ωψd are the rate commands, dt
and dp are the unknown disturbances.

Furthermore, in this system, sensors and actuators share a common communication
network. Since controller outputs and the data from sensors are simultaneously transmitted,
a transmission delay occurs. That is, there exists a time lag from the sensors to the controller
and from the controller to the integrated actuators. As a result, the system behaves as an
input-delay system where the actual control signal acting on the actuators at a certain time
is the delayed version of the one computed. Let the delay time be h, then at the time t, the
acting control input was computed at (t–h). Hence, the system model from Equations (1),
(2), (4), (7) and (8) can now be rewritten as in Equation (9). (The term indicating the current
time t is omitted in the remainder of the article).

A
.

ϕ = ω
.

ω = Bu(t− h)−Kω + d
(9)

where ϕ = [ ϕty ϕtz ]
T is the angular position of the tilt and pan channels expressed in

terms of Euler angles. ω = [ ωty ωtz ]
T is the angular rate vector. The varying diagonal

matrix A = diag{A1, A2} expresses the relationship between the angular rates and the
rates of the Euler angles. u(t − h) is the rate command vector, K = diag{K1, K2} and
B = diag{B1, B2} are system parameters, and d = [d1 d2]

T is the vector of unpredicted
disturbances. These parameters are expressed as:

A1 = 1, A2 = Cϕty

K1 = Kt+Pt
Jty

, K2 =
Kp

Jpz+JtzC2θ+JtxS2θ
,

B1 = Pt
Jty

, B2 =
PpCθ

Jpz+JtzC2θ+JtxS2θ
,

d1 = 1
Jty

(
dt − (Jtx − Jtz)ωtxωtz + (Kt + Pt)ωpy

)
d2 = 1

Jpz+JtzC2θ+JtxS2θ

{
dp +

(
Kp + CθPp

)(
ωpxSθ + ωbzCθ

)
− Jpz

(
− .

ωpxSθ −ωpx
.
θCθ + ωpz

.
θSθ
)
− CθPpωtz − Cθ(Jpy − Jpx)ωpxωpy

+
[

Jtx
( .
ωpxCθ −ωpx

.
θSθ − Tθ

(
− .

ωpxSθ −ωpx
.
θCθ

)
−

.
θ

C2θ

(
ωtz −ωpxSθ

))
+(Jtz − Jty)ωtyωtz

]
SθCθ−

[
(Jty − Jtx)ωtxωty

]
C2θ

}
3. Control System Design

The common objective of a gimbal control system is to stabilize the LOS and steer it
in the desired direction. In this study, the tracking performance is required to be highly
accurate, that is, the gimbal system has to follow the reference trajectory in real time with
a minimum steady-state error. However, with nonlinearities and disturbances affecting
the system performance and the input delay time, the controllable range of the system is
limited. Therefore, a backstepping control system is designed in this section to preserve
system stability. Furthermore, an extra step is proposed to help cope with the control error
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due to delay time. Besides, an STSMC is discussed, and its performance is compared to
that of the proposed controller.

3.1. Nonlinear Backstepping Controller Design
3.1.1. Tracking Controller Design

Let the tracking error be defined as:

eϕ = ϕd −ϕ (10)

where ϕd is the desired angular position expressed in terms of Euler angles. Additionally,
let the first Lyapunov candidate and its time derivative be as the following:

V1 = 1
2 eT

ϕeϕ > 0
.

V1 = eT
ϕ

.
eϕ = eT

ϕ

( .
ϕd −

.
ϕ
) (11)

A pseudo control for the Euler angles rate can be chosen as:

β =
.

ϕd + Λeϕ (12)

where Λ is a positive definite diagonal matrix that guarantees the condition of negativity
of

.
V1. Next, a stabilization error is given as:

eω = Aβ−ω (13)

which can be understood as the difference between the angular rates computed from the
pseudo-Euler angles rates and the actual angular rates of the system. From Equations (12)
and (13), the time derivative of the tracking error can be rewritten as:

.
eϕ = A−1eω −Λeϕ (14)

Additionally, the time derivative of eω is given as:

.
eω =

∂

∂t
(Aβ)− Bu(t− h)− d + Kω (15)

where
∂
∂t (Aβ) = A

..
ϕd + Ad

.
ϕd +

(
AdΛ−AΛ2)eϕ + AΛA−1eω

Ad =
.

A =

[
0 0
0 − .

ϕtySϕty

]
(16)

Theorem 1. The gimbal system controlled by the nonlinear backstepping control (BC) given by
Equation (17), namely α, with the proper choice of gains, is input to state (ISS) stable.

α =
∂

∂t
(Aβ) + Kω + A−1eϕ + Γeω + [sgn(eωi)]Π (17)

where Γ is a positive definite diagonal matrix, Π is a gain vector with positive elements, and
[sgn(eωi)] = diag{eωi/(|eωi|+ δ)} is a diagonal matrix (δ is a positive constant).

Proof of Theorem 1. The control law preserves the system stability in the sense of Lya-
punov stability theory by considering the following Lyapunov function candidate:

V2 = V1 +
1
2

eT
ωeω > 0 (18)
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Taking the time derivative of Equation (18) yields:

.
V2 =

.
V1 + eT

ω
.
eω = eT

ϕ

(
A−1eω −Λeϕ

)
+ eT

ω

[
∂

∂t
(Aβ)− Bu(t− h)− d + Kω

]
(19)

Additionally, the following expression is considered:

Bu(t− h) = Bu− [Bu− Bu(t− h)]
= Bu− ε

(20)

where the term ε = Bu− Bu(t− h) is a well-known expression in the concept of network
disturbances, and it is bounded [20]. The delayed input can be then presented as a delay-
free one with an additional unknown disturbance. Now, substituting the control law α into
Bu results in the following:

.
V2 = −eT

ϕΛeϕ − eT
ω Γeω + eT

ω(−[sgn(eωi)]Π + ε− d)
≤ −eT

ϕΛeϕ − eT
ω Γeω + eT

ω [sign(eωi)](−[sgn(|eωi|)]Π + d|εi − di|e)
(21)

where the signum matrix [sign(eωi)] = diag{sign(eωi)} and the matrix [sgn(|eωi|)] is given
by diag{|eωi|/(|eωi|+ δ)}. d|εi − di|e denotes a vector whose ith element is |εi − di|. In
the disturbance-free case, i.e., (ε− d) is the zero vector, it is easily seen that the system is
asymptotically stable. In general, the stability of the control system is preserved if the value
of the third term in Equation (21) is semi-negative. It is easy to see that the aforementioned
stability condition is fulfilled if the following is satisfied.

|eωi| ≥
Eiδ

(πi − Ei)
, πi > Ei (22)

πi is the ith element of the vector Π, while Ei is the upper bound of the ith element of
d|εi − di|e. Thus, the time derivative of the Lyapunov candidate in Equation (21) is negative
whenever the stabilization error is greater than Eiδ/(πi − Ei). That is:

.
V2 ≤ −eT

ϕΛeϕ − eT
ω Γeω (23)

A relatively larger value of πi results in a smaller bound of the error eωi. The system
is ISS stable, and V2 is the system ISS-Lyapunov function candidate [25]. �

3.1.2. Time Delay Compensator Design

Due to the input delay, the control law acting on the system at a time t is the one
computed at the time t − h. Therefore, the difference between the computed and the
actual control law should be considered. Let us introduce a new error term eu such that
eu = α − Bu(t − h) is the control input error. It represents the difference between the
current computed virtual control law and the actual control input to the system.

Assumption 2. The networked disturbance ε is a slow time-varying value, i.e.,
.
ε ≈ 0.

The assumption comes from the bandwidth limitations of a delay system and the
properties of practical applications.

Theorem 2. The feedback control law given in Equation (24) ensures the system ISS stability and
reduces the influence of the delay on the system’s performance.

Bu = α + H
t∫

0

eω(τ)dτ + Ω

t∫
0

eu(τ)dτ (24)

H and Ω are positive definite diagonal matrices.
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Proof of Theorem 2. With the introduction of the input error eu, the time derivative of the
stabilization error in Equation (15) and the input error are written as follows:

.
eω = eu −A−1eϕ − Γeω − d− [sgn(eωi)]Π.

eu =
.
α− ∂

∂t (Bu(t− h)) =
.
α− ∂

∂t (Bu)
(25)

A Lyapunov function candidate and its time derivative are given by:
V3 = V2 + eT

u H−1eu
.

V3 =
.

V2 + eT
u H−1 .

eu = −eT
ϕΛeϕ − eT

ω Γeω + eT
ω(−[sgn(eωi)]Π − d) + eT

u H−1
{ .

α− ∂
∂t [Bu] + Heω

} (26)

Substituting the control law from Equation (24) into Equation (26) becomes:

.
V3 = −eT

ϕΛeϕ − eT
ω Γeω − eT

u H−1Ωeu + eT
ω(−[sgn(eωi)]Π − d) (27)

Then, the stability of the system is preserved if the fourth term in Equation (27) is
semi-negative. By a similar calculation as in Equation (22), the compact set that every state
error trajectory converges to as t→ ∞ is determined as:

|eωi| <
Diδ

(πi − Di)
, Di ≥ |di| (28)

Outside this set,
.

V3 < 0, the system is stable, and the errors converge. Since Di < Ei,
the boundedness given by Equation (28) is smaller than the one presented in Equation (22).
Therefore, the influence of the delay time on the system performance is reduced, and the
precision is enhanced. �

In summary, from Equations (17) and (24), the final control law is a combination of the
nonlinear BC law and the time delay compensator. It is designed as in Equation (29) and
depicted in Figure 2.

Bu = A
..
ϕd + Ad

.
ϕd + Kω + Ceϕ + Deω + [sign(eωi)]Π + H

t∫
0

eω(τ)dτ + Ω
t∫

0
eu(τ)dτ

C = AdΛ−AΛ2 + A−1, D = AΛA−1 + Γ

(29)
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Figure 2. Schematic of the proposed controller.

3.2. Super-Twisting Sliding Mode Control System Design

An STSMC is put to the test in comparison with the proposed controller. Sliding mode
strategies are well known for their robustness in facing disturbance. If the nonlinearities—
including time-varying parameters, time delay, and external disturbances—are considered
as matched and unmatched disturbances, the system description becomes simpler with
constant parameters and linear characteristics. In particular, since the roll angles cannot
be controlled, their influence on the two other motions can be considered unmatched
disturbances. On the other hand, the input delay is somehow a matched disturbance,
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along with the dynamic disturbances. Then, the STSMC should be designed such that the
control errors remain on a well-behaved sliding manifold despite the presence of model
uncertainties and disturbances. The design of the STSMC has been discussed in a previous
study [26], where the nominal model of the system is experimentally identified as:

..
ϕ+ K

.
ϕ = Ru−Qϕ− P (30)

where R = diag{B1, B2/Cθ}. The total effect of external disturbances and neglected terms
are experimentally identified as Qϕ+ P, where Q is a positive definite diagonal matrix
and P is a vector of the remainder. Moreover, the sliding manifold for the two channels
is assigned by a vector sSTSMC =

[
s1 s2

]T
=

.
eϕ + Meϕ, where M is a positive definite

diagonal matrix.

Theorem 3. The feedback control law is selected based on the following super-twisting algorithm:

Ru =
..
ϕd + K

.
ϕ+ Qϕ+ Meϕ + Θ

⌈
|si|

1
2 sign(si)

⌉
+ X

.
X = Ξdsign(si)e

(31)

where Θ = diag{σ1, σ2} and Ξ = diag{ς1, ς2} are the controller gain matrices.
⌈
|si|1/2sign(si)

⌉
and dsign(si)e are vectors whose ith elements are |si|

1
2 sign(si) and sign(si), respectively. In the

sense of the Lyapunov stability theory, with the Lyapunov function candidate for each gimbal
channel being proposed as in Equation (32), the control law in Equation (31) preserves the system
stability despite the presence of matched and unmatched disturbances with suitable choices of the
controller gains Θ and Ξ.

Vi =

{
2
√

x2
i + 3α2

i σ2
i |si| − xisign(si) if xisign(si) ≤ αiσi

√
|si|

3|xi| otherwise
(32)

Proof of Theorem 3. See [26]. �

4. Simulation and Experimental Studies

In this section, the proposed controller designed in Equation (29) is investigated.
By comparing the performance of the STSMC in Equation (31) and the delay-free BC in
Equation (17), the efficiency of the proposed control system is evaluated.

The configuration of the target system, the two-axis gimbal, is illustrated in Figure 3.
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First, Figure 3c shows the overall view of the system. The system’s payload is a set of
cameras, including a vision camera and an infrared thermal imaging camera, as shown in
Figure 3a. Their orientations are sensed by an attitude heading reference system (AHRS)
attached underneath, Figure 3b. Assembled at the side of the gimbal, a belt and pulley
mechanism transmits the rotation from the driving shaft of the tilt actuator to the tilt
channel with a reduction ratio (Figure 3e). The actuators are two integrated servo systems
COOLMUSCLE CM1-C-23S30—as shown in Figure 3f—each of them is controlled with a
rate command sent through the RS-232 communication network. The sampling time of
the control system is 0.02 [s], while the average delay time is three times larger, a value
identified based on experimental results. Real-time tracking is an important requirement
for gimbal systems in ocean surveillance applications. For instance, when the camera in
Figure 3a is tracking a faraway moving target, the operator is obliged to zoom in on the
target for better visualization. In this case, the field of view of the camera is so small that
a small tracking error or a moment of lagging can make the target disappear from the
monitor; thus, the tracking fails.

Simulation tests in this study were conducted with the system model introduced in
Equation (9) and the proposed controller alongside two others. Furthermore, experimental
studies were performed on the target system. The system parameters are shown in Table 1,
while the gain matrices of the controllers are presented in Table 2.

Table 1. System parameters.

Parameter Value

System model (Equation (9))
K =

[
21.9680 0

0 30.3969

]
,

B =

[
22.2485 0

0 28.4352Cθ

]

System model for STSMC (Equation (30))
R =

[
22.2485 0

0 28.4352

]
,

Q =

[
0.2757 0

0 0.0299

]
Delay time Average 0.06 [s], worst case 0.15 [s]

Table 2. Controller gain matrices.

STSMC (Equation (31))
M =

[
2 0
0 1.5

]
, Θ =

[
120 0

0 200

]
,

Ξ =

[
100 0

0 100

]

BC (Equation (17))
Λ =

[
25 0
0 35

]
, Γ =

[
2.38 0

0 2.6

]
,

Π =

[
25
25

]
Proposed controller (Equation (29)) H =

[
15 0
0 5

]
, Ω =

[
10 0
0 5

]
, δ = 5

4.1. Simulation

In the simulation scenario, the gimbal has to track a mobile target moving along a
circular route with different speeds. This task creates the desired trajectories for the tilt and
the pan orientations for the inner gimbal given by:

ϕty(t) = r sin(2π f t)
ϕtz(t) = r cos(2π f t)

(33)
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where r is the maximum value of the angle, and f is the desired frequency value in
proportion to the target’s speed. As abovementioned, the delay limits the bandwidth of
the system. Therefore, by performing simulations with a chirp-type reference based on
Equation (33), the frequency response and the influence of the time delay are evaluated.

Simulation results are illustrated in Figure 4 in which Figure 4a,b show the frequency
responses of the two channels with a delay-free input and a 0.06 [s] delay time, respectively.
The responses are drawn from the Fourier transforms of the simulation outputs and the
reference signals. This is similar to the concept of the complementary sensitivity function
of a linear system, where the magnitude response shows the ratio of the amplitude of the
output and the reference, and the phase response indicates the phase lag. The frequency
responses of the gimbal system with no delay controlled by the STSMC and the BC are
illustrated in Figure 4a. The BC controls the tilt and pan channels accurately in real time
with slow-varying reference frequencies up to 1 and 0.8 [Hz], respectively. The values of
0 [dB] in magnitude and 0 [deg] phase shift prove these statements.

On the other hand, using the STSMC, small errors of the amplitude and the phase are
seen in the tilt channel response. However, great overshoot and incorrect phase shifts are
present in the pan channel response. A possible explanation is the neglect of trigonometric
nonlinearities in system dynamics while designing the pan channel controller.

Simulation results of the system with input delay are shown in Figure 4b, and the
influence of the time delay is easily noticed. The STSMC, BC, and the proposed controller
ensure the results of 0 [dB] and 0 [deg] when following low-frequency trajectories. Thus,
accurate tracking performances are achieved both in terms of magnitude and real-time
characteristics. However, when the target moves faster, different control performances are
obtained from the control schemes. Both the STSMC and the BC perform much worse than
they do with the delay-free system. The frequency responses of the tilt channel in Figure 4b
show that the controllers based on the backstepping approach increase the bandwidth of
the system up to 21% compared to the system controlled by the STSMC. These bandwidths
are smaller than the ones shown in Figure 4a, which shows the significant effects of such a
small time lag. In their controllable range, the STSMC performs poorly, resulting in the
highest magnitude among the three controllers. Starting from 0.2 [Hz] and increasing the
frequency, the faster the target becomes, the bigger the amplitude of the system response.
Besides, the phase shift begins to decrease at 0.3 [Hz]. Thus, the tracked trajectory using
STSMC is far behind the reference. In contrast, the proposed control system provided the
most accurate real-time tracking performance on a larger frequency range. The magnitude
was maintained at 0 [dB], but starting from 0.4 [Hz], the magnitude began increasing;
however, its peak was not higher than that of the BC. The phase lag was also small when
the proposed controller was used, as shown in the phase shift plot.

In the case of the pan channel with the input delay, the control bandwidth did not
improve much compared to the STSMC. However, both the magnitude and the phase
responses improved in the controllable range. Two examples, in particular, illustrate
the aforementioned analyses, the frequencies 0.05 and 0.3 Hz, as shown in Figure 4c.
These results validate the proposed controller as the one that preserves accurate tracking
performance of the system on the largest frequency range.
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4.2. Experimental Studies

Experimental studies were performed in two scenarios. The first one is similar to the
simulation tests; the gimbal is tracking a moving target. In the second experiment, the
system follows step-type references, similar to the point-to-point tracking. Both reference
signals are rich in information that help evaluate the effectiveness of the control system.

In the first experiment, the reference signals are chosen as in Equation (33) with a
90 [deg] difference in phase and 20 [deg] in radius. The experiments were conducted on a
large frequency range to verify the performance of the system controlled by the proposed
controller. Two responses at the specific frequencies 0.05 and 0.3 [Hz] are illustrated
geometrically in Figure 5a in a similar fashion to the simulation tests. Details of the time
responses of these two frequencies are given in the following Figure 5b,c. The difference
between the responses of the two controllers was small in the case of 0.05 [Hz], but the
differences are significant with a frequency of 0.3 [Hz]. The time responses in Figure 5b,c
indicate that the three controllers were able to attenuate the delay after a few seconds and
then track the target in real time (the controllers began to operate the system from the
10th second). However, with 0.3 [Hz], the response given by the STSMC showed a greater
overshoot and was slightly lagging behind the reference.

These results correspond with the response illustrated in Figure 4b, where the STSMC
gives the highest increase in magnitude and phase lag at 0.3 [Hz]. The proposed controller
showed the best performance, as seen in the controlled system response in Figure 5a,b, and
a minimal tracking error as shown in Figure 5c. In addition, root-mean-square error values
in Table 3 give numerical merits assessing the effectiveness of the proposed controller in
comparison with the other control systems.

Table 3. Root-mean-square error [deg].

Trajectory Channel STSMC BC Proposed

0.05 Hz
Tilt 0.2244 0.1319 0.1037
Pan 2.0602 2.1586 2.1138

0.3 Hz
Tilt 5.5564 2.2544 1.1699
Pan 5.8616 2.9772 2.4731

The second experiment was conducted with a step-type reference. The response of
each channel is shown individually in Figure 6a,b. The closeup figure at the top right of
Figure 6a shows clearly the delayed response. On the other hand, all the controllers were
able to control the system to orientate towards the desired positions with no overshoot
and small steady-state errors. The closeup figures, in particular, show that the proposed
controller provides a better transient response so that the desired positions are reached in a
short period of time.
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Figure 6. Step response of the gimbal system. (a) Time response of the tilt channel; (b) time response of the pan channel.

5. Conclusions

A novel nonlinear controller was proposed for a two-axis gimbal system to achieve
high precision tracking performance despite the system’s nonlinear characteristics and
constraints. The paper focused on integrating these factors, mainly delay time, Euler
angle-based measurement, and nonlinear dynamics, in the mathematical representation
of the system. Then, the designed controller not only preserved the system stability but
also achieved high precision tracking performance. Simulations and experiments were
conducted providing the system performances in both time and frequency domains. The
comparative studies between the proposed controller and the other control systems—
including an STSMC and a delay-free BC—proved the superiority of the proposed BC
system. The system bandwidth was expanded, and the accuracy and real-time tracking
were obtained on a larger range of frequencies. In future works, combining the control
system with a mechanism attenuating high-frequency disturbances is going to be studied
to enhance the system’s accuracy and performance.
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