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Abstract: In the complex processes of route planning, voyage monitoring, and post-voyage analysis, a
key element is the capability of merging metocean forecast data with the available knowledge of ship
responses in the encountered environmental conditions. In this context, a prototype system has been
implemented capable of integrating metocean models forecasts with ship specific performance data
and models. The work is based on the exploitation of an open source ECDIS-like system originally
developed in the e-Navigation framework. The resulting prototype system allows the uploading and
visualization of metocean data, the consequent computation of fuel consumption along each analyzed
route, and the evaluation of the encountered meteo-marine conditions on each route way point. This
allows us to “effectively and deeply dig inside” the various layers of available metocean forecast
data regarding atmospheric and marine conditions and evaluating their effects on ship performance
indicators. The system could also be used to trigger route optimization algorithms and subsequently
evaluate the results. All these functionalities are tailored in order to facilitate the “what-if” analysis
in the route selection process performed by deck officers. Many of the added functionalities can be
utilized also in a shore-based fleet monitoring and management center. A description is given of
the modeling and visualization approaches that have been implemented. Their potentialities are
illustrated through the discussion of some examples in Mediterranean navigation.

Keywords: route planning; meteo-marine forecasts; ship performance computation; graphical user
interface; ECDIS

1. Introduction

Ships and marine vessel systems are part of logistic chains [1,2] and move in a complex
geophysical environment [3]; moreover, they are subject to national and international regu-
lations pertaining to several different levels: navigational safety and navigational rules [4],
trading regulations, energy efficiency issues, and environmental protection measures (e.g.,
for a wide spectrum perspective, see References [5–14]). In this interconnected framework,
modern navigation is a complex task where the conduction of each single voyage of the
single ship is integrated in such a hierarchy of different contexts [15–17]. The development
of e-Navigation [18–20] resources is expected to give relevant contributions to improve and
rationalize such a modern integrated navigation. The e-Navigation concept, developed
under the auspices of the United Nations International Maritime Organization (IMO), is
finalized to increase safety and security in commercial shipping through better organization
of data on ships and on-shore, and better data exchange and communication between the
two and among ships [21–24]. In this context metocean conditions and weather routing
applications [25–28] play a relevant role, not only in relation with off-shore and oceanic
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navigation, but also for coastal navigation and Short Sea Shipping [29–32]. Relevant ex-
amples of integrated navigation systems already available at the commercial level can be
found in References [33–35].

Moreover, a single ship or marine vessel can be considered as a system with many
interacting levels [36–39], some of them pertain to control and management issues and
some others are directly linked to physical system dynamics [40]. All these levels are
mutually interacting and many of them interact also with external factors like logistic
chain constraints and the metocean environment. Thanks to the growth of data collection,
storage and processing capabilities, observed data pertaining to the above mentioned
levels can be integrated in the construction of ship specific Digital Twins [41–43]. Different
modeling detail level can be adopted, with different grade of integration with observed data,
generating a hierarchy of white box, gray box, and black box models [40]. The appropriate
System Identification Techniques are to be used for models calibration and parameter
estimation on one side, and for models validation on the other side. The implementation of
such an integrated system of models has many relevant potentialities, and, in the field of
the operational activity of each ship, it can help to improve and rationalize the pre-voyage
route planning, the voyage execution processes and the post-voyage analysis.

The present work has been developed aware of such a scenario. It is focused on
the meteorological navigation process, that is, on the complex activity of route planning
and voyage profile selection, keeping into account the interplay between ship responses
and environmental metocean conditions. In addition, en-route voyage monitoring and
post-voyage analysis can be considered as part of this navigation process. The key element
is the capability of making a clever and effective synthesis of the available metocean data
with the knowledge on how a ship specifically responds to the encountered environmental
conditions. Accordingly, a prototype system has been implemented in order to merge data
from numerical models for atmospheric and oceanographic forecasts, with ship specific
data and ship performance models. The work is aimed at developing a first prototype
version of a software system that allows such a synthesis to be made by exploiting an
open source ECDIS-like system. Additional features have been added to the e-Navigation
Prototype Display (EPD) system, initially developed by the Danish Maritime Authority [44].
The resulting prototype system has a wider set of functionalities that, starting from the
uploading and visualization of metocean data, enable the computation of fuel consumption
along any selected route, the detailed examination of the encountered meteo-marine
conditions on any route way point and the comparison of the results obtained for different
routes. As a result, it is possible to effectively and “deeply dig inside” the various layers
of available metocean forecast data regarding atmospheric and marine conditions. Such a
system could be used to trigger route optimization algorithms and subsequently evaluate
the results of such optimizations. All these functionalities are tailored in order to facilitate
the “meteorological navigation” task, i.e., the “what-if” analysis in the route selection
process performed by ship masters and deck officers, by exploiting graphic interfaces and
presentation modes of common ECDIS systems, that they are well trained to work on.
In addition, many of the added functionalities can be utilized also in a shore-based fleet
monitoring and management center.

Given the overall framework set out above, the present work has to be considered as
the first step of a research and development activity in which the main goal is to build-up
software resources for improving the route planning activity, by synergistically merging
academic solving approaches with professional sea requirements.

• The key element, and first requirement for the work, is the definition of a framework
for an effective integration of detailed metocean data and ship modeling approaches
with a graphical user interface very close to the industry standard utilized by seafarers
in their real life at sea.

• From the development point of view, the main requirement is that such an inte-
gration be realized through a modular structure allowing a short response time for
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the “on-line” use, and allowing also systematic tuning and validation of algorithms
and datasets.

As a first step, in this paper, the general context of the work is described highlighting
the needed innovation, then the methodology is provided through details for the relevant
implemented algorithms, and the main functionalities of the implemented prototype
system are described through the discussion of representative case studies for a deeper
understanding of the developments and their evaluation.

Further steps, still work in progress, are mainly focused on validation, tuning, and
improvement through: (i) integration of the system with in-service recorded data; (ii) “in-
the-field” testing phases aimed to asses and improve the effectiveness in real life activity;
and (iii) parallel process of improvement of the interface, as well as with new functionalities.
Some of these are related to the extension to a wider set of ship performance parameters,
the integration of more informative meteocean data, like wave spectra, with the newest
developments in ship modeling, their possible use in relation to operational dynamic
stability conditions, and the use of ensemble prediction data for the exploitation of the
forecast reliability assessment in the operational context. Many of these are already at a
quite advanced development level in the respective research communities, but their full
operational exploitation is still to come for the maritime sector, for which the present work
aims at being a step forward.

Consequently, the manuscript is organized as follows: Section 2 provides a high level
description of the prototype navigation system; in Section 3, details are given about the used
metocean data, the adopted approaches for data access and geographic visualization, and
the implemented ship modeling schemes, with a synthesis of their scientific and technical
background; in Section 4, some of the system functions are illustrated, by considering case
study voyages in the Mediterranean Sea; in Section 5, concluding remarks are drawn on
the implemented system.

2. The Prototype Navigation Interface: An Overview

Starting from the basic functions typically found in an ECDIS system, the route for
a given voyage can be defined. In Figure 1a, a route from Toulon (France) to Ajaccio
(Corse, France) is shown as an example. In the bottom left side of panel, the corresponding
dialogue window is present. It displays the details of the route as a whole and of each route
way point and permits to edit and change several of them. These are functions already
present in the original EPD system. The route shown in panel (a) is the straight shortest
one, typically adopted in fair or weakly perturbed weather conditions. Analogously, in the
right (b) panel of Figure 1, a zoom on the area is shown, where a variated route is added,
and along-route metocean data have been loaded along it, in accordance with the voyage
timing. These data are shown by arrow symbols typically adopted in ECDIS terminals, i.e.,
arrows with barbs: for wind; bold arrows: for waves; curvy arrows: for current. Route
variations like the one shown in Figure 1b are commonly adopted in order to minimize the
effects of heavy weather. The entity of the deviation must be a compromise between the
attempt to avoid the worst metocean conditions and the need to limit the consequent route
length and fuel consumption increments. This decision-making process [45] is “manually”
performed by ship officers of the deck, as well as with the aid of electronic and software
aids, as metocean data visualization and automatic route optimization tools.
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Figure 1. ECDIS-like routes visualization and editing in the prototype interface. Left panel (a): the shortest route from
Toulon (France) to Ajaccio (Corse Island). Right panel (b): a little more zoom on the area and addition of a variated route
with voyage timing-related metocean data shown with standard ECDIS-like graphics.

In the developed prototype system, improvements have been introduced through a
higher level of integration of data and novel functions, in order to render more effective
this process of route variation and evaluation.

A relevant improvement is obtained by the integrated loading of metocean forecast
data maps, as shown in Figure 2. By selecting a given point on the route (by mouse clicking),
metocean maps are loaded and data are shown for the time nearest to the one at which
the ship reaches the selected point. It is possible to select the visualization of Wind Speed,
or Current Speed, or Significant Wave Height (SWH) fields with the superposition of the
respective direction arrows. As an example, in Figure 2, the SWH field is shown together
with Wind Barbs, showing Wind Speed (with barbs standard coding) and Wind Direction
(barbs on the tail and a little red dot on the head). Once the map has been loaded at the way
point time, it is possible to load and show metocean data at the same time, but for different
points (still by mouse clicking), as well as out from the route track. Moreover, it is possible
to visualize polar diagrams of partitioned wave spectral data, if available in the loaded
metocean data files. Such a polar diagram allows a synthetic but detailed characterization of
the seaway-state at a given point and time. Each of the main wave components is described
in terms of its intensity, through the partial SWH value represented by the corresponding
symbol dimension and color, and in terms of Wave Peak Period and Peak Direction (of
provenience), by the radial and directional position, respectively. Such data can also be
directly visualized by hovering the mouse cursor upon each partition symbol. Through
inspection of the diagram, it is possible to quickly understand if a wind sea component is
present and if it is superimposed with one or more swell components, identifying the cases
when complex multimodal crossed sea-states are forecast.
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Figure 2. Loading of along-route-position time-correlated map of metocean forecast data. The SWH field is shown together
with the surface Wind Barbs. Metocean data vectors are also shown in correspondence of a selected point, out of the route
(same forecast time). In the “Wave Spectrum” window, the wave partitions diagram is shown (same point, same time).

An example is shown in the Wave Spectrum insert box of Figure 2, where the wave
spectral components are shown for the point selected on the map and evidenced by
metocean data arrows. A main wind sea partition of about 5 s, from SW, is present together
with a slightly more southerly minority swell component of 8 s (see below in Section 3.1
and Figure 3 for a deeper description).

Figure 3. Different views of the same wave spectrum computed by WW3 model in proximity of the Capo Gallo RON buoy,
for 03/10/2020 at 18:00 UTC. (a) One dimensional frequency spectrum. (b) Directional wave spectrum. (c) Corresponding
wave partitions polar diagram.

The integrated inspection of along-route metocean data and time corresponding meto-
cean maps allows us to evaluate how effective a route variation is in order to avoid adverse
environmental conditions. The analysis can be completed by activating the computation of
the fuel consumption along all the selected routes. The computation is performed by using
ship specific data and ship performance computation algorithms as described in Section 3.2.
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The output is shown in a detailed table for each analyzed route (each route dataset
is exportable in csv files, for further analysis) and in a “Routes sorting” panel, where
all analyzed routes can be included and where the Total Fuel Consumption, Total Route
Length and Total Voyage Time Duration are displayed. The possibility to sort the routes
in the panel according to any one of these three quantities allows us to quickly detect the
least consuming route, and to evaluate it through comparison with the others, as well
as with respect to voyage duration, and also keeping in due account the voyage length.
Furthermore, a detailed analysis of each route is possible thanks to the table display of
the various parameters estimated along each route leg. This allows us to trace back the
estimated fuel consumption rates to the effects of metocean conditions on the different ship
resistance components in each part of the voyage. The capability to modify the route path
and to select different ship powering configurations and speed values, for each leg in the
route, permits to construct modified routes and then test the variations effects on partial
and total voyage parameters, by enabling the computations on the modified routes and
then including them into the “Routes sorting” panel.

If a (external) route optimization software [25–29] is available and delivers its outputs
in standard route exchange format, its optimal solutions can be loaded into the prototype
system and compared with other solutions resulting from the “handmade process”. This
can be done through the routes sorting panel, after activating the in-built fuel consumption
computation. In this way, all routes are compared and evaluated by using the same
ship data and performance simulation algorithms. It must be kept in mind that these
algorithms are potentially different from those utilized to compute the cost function in the
(external) route optimization software. A deeper level of integration will be reached by
integrating route optimization algorithms directly inside the prototype system, and using
this latter to trigger the optimal route computation process. This will guarantee algorithmic
homogeneity by the use of the same ship data and modeling algorithms both for the
fuel consumption optimization cost function and for the computations reported in the
“Routes sorting” panel. Some preliminary tests with a route optimization algorithm have
been already performed in Reference [46], with a simplified version of the ship modeling
approaches described below.

A further level of the analysis comes out from the possibility to repeat the route
computations by using metocean data from different runs of the forecast models chain and
to include the results as different route solutions in the sorting panel. As an example, it
is possible to repeat the computation of the same identical route configuration, by using
metocean data from consecutive forecasts of the same set of models, or by comparing com-
putations done by loading metocean data from different forecast centers. The stability and
reliability of the forecasts, i.e., their uncertainties, can, thus, be estimated by directly analyz-
ing the consequent effects on route and ship performance parameters spreading, helping
to keep into account this relevant element when evaluating the possible introduction of a
meteo-dependent route variation.

Considering the topic of metocean forecast data reliability, it must be pointed out that
Ensemble Predictions Systems (EPS) [47] offer a rigorous way to quantitatively estimate
uncertainties, and a correct processing of their outputs allows rigorous probabilistic fore-
casts to be formulated. The possible applications of the EPS approach are very promising
also for meteorological navigation [48–51], and an EPS data visualization and exploitation
tool will be soon implemented into the prototype interface.

3. Data and Models

Some details are given about the used metocean data, their loading and visualization,
and about the implemented ship modeling schemes. Regarding this latter topic, not only
the adopted approaches are described, but also alternative and potentially more detailed
ones are briefly (and not exhaustively) reviewed in order to put in evidence a possible
scenario for further development and improvement of the ship performance modeling
components of the prototype system.
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3.1. Metocean Data

Metocean forecast data needed for the main functions of the prototype system are
atmospheric surface wind and marine surface currents and waves. These are typically
produced at forecasting centers by software chains composed of meteorological forecast
models [46,52,53], in which wind data are used to drive, in a one-way cascade mode, ma-
rine waves forecasting models [54–56]. Moreover, forecast for wind and other atmospheric
variables, characterizing atmosphere-sea fluxes, are used to force marine hydrodynamics
models [57,58]. As an improvement to these one-way cascade mode linked models’ chains,
two-way dynamically coupled atmosphere-waves-ocean modeling systems have been
developed [59–61], and their application in operational forecasting contexts is promis-
ingly growing.

Such metocean data are synergistically integrated in the prototype system for visu-
alization and for ship performance evaluations. There are also other variables in output
from atmospheric and marine hydrodynamics models, e.g., rainfall, fog, and visibility or
sea level and water temperature. These are still not used in the prototype system, but their
inclusion is straightforward and will be considered in future developments, in relation to
their potential to further improve the route decision-making process.

The prototype system requires that the input metocean data be in the standard formats
netcdf [62] or grib [63], that are commonly adopted by most of the forecasting centers. As a
consequence, the system could be used for meteorological navigation worldwide.

The Mediterranean navigation examples described in this work are made by using
data from an experimental configuration of the operational meteo-marine forecasting
system of Consorzio LaMMA [64]. The meteorological component is based on the Weather
Research and Forecasting (WRF) mesoscale [53] meteorological model, version 4.1 [65,66],
with initialization and boundary conditions from the American global model (NOAA
NCEP GFS) [67]. Wave forecasts data are generated by running, in cascade mode with
respect to WRF, the third generation spectral wave model [54] Wavewatch III (WW3)
version 6.07 [68]. The resulting wind-wave forecasting operational chain is run four times
a day (initialization at 00, 06, 12, 18 UTC) over the whole Mediterranean Sea for the next
seven days at a resolution of about 5 Km. Data for marine currents are from Copernicus
Marine Service [69], namely from MEDSEA_ANALYSIS_FORECAST_PHY_006_013 (from
the Mediterranean Sea Physics Analysis and Forecast system). It is based on the NEMO
ocean model [70], in which v3.6 operational configuration covers the whole Mediterranean
Sea, with a daily forecast repetition, at a resolution of about 4 Km.

As anticipated in Section 1, in the examples illustrated in Figures 1 and 2, metocean
data can be visualized in terms of vectors for Wind and marine Current, Average Direction
and SWH for waves, for any point along any route (“along route metoc”) in accordance
with voyage timing (Figure 1b, variated route). In this mode, metocean data can be directly
ingested by accessing local files in standard grib or netcdf format, or by connecting to an
OPeNDap server [71]. Moreover, maps of wind, current or waves fields can be visualized
in the whole area of interest (“metoc maps”), as shown in Figure 2. The validity time of
the data displayed on the map is selected, in accordance with voyage timing, by mouse
clicking on points along the route. After this selection, it is also possible to visualize
metocean data vectors, at the selected time, but on points out of the route (as shown in
Figure 2) by mouse-clicking on the map. The “metoc maps” visualization mode exploits
GIS standards [72] supported in the prototype system to access metocean data through a
Web Map Service (WMS, [72]). For standard route analysis, the two visualization modes
(“along route metoc” and “metoc maps”) can be synchronized in order to show the same
metocean data, but, alternatively, they can be targeted to different datasets, e.g., allowing
the comparison between two forecast datasets.

A further visualization tool, that allows us to analyze wave data at a deeper level, is the
spectral partitions polar diagram, as anticipated in Section 1 and shown in Figures 2 and 3.

Wave Partitioned data provide an effective synthesis of the wave spectral structure [73–75]
in correspondence of the selected point in the map, at the selected time. In the polar diagram,
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each wave component present in the wave spectrum is shown with a specific “little” geometric
symbol (inside a lager colored circular symbol): the circle for wind wave component, the
square for the first (i.e., the main) swell component, the differently oriented triangles for the
ordered sequence of the other (if present) four swell components (as shown in the bottom
of the insert box). The position of the “little” symbols in the polar diagram allows us to
graphically read the peak period (radial coordinate) and the peak direction of provenience
(angular coordinate) of each respective partition. The colored circle of variable dimension
surrounding each “little” symbol allows us to graphically read the partial SWH of each wave
component in terms of its dimension and of its color filling (with the same palette of the
total SWH shown in the map, e.g., Figure 2). The total SWH value, in which field can be
visualized in the map, is given by the partitioned SWH values (in the polar diagram) added
in quadrature [76]. An example is shown in Figure 3, where a sea state characterized by
a multimodal wave spectrum is analyzed. The central panel (b) shows the polar diagram
for the complete numerical directional wave spectrum, as computed by the WW3 model in
correspondence of the position of the RON buoy offshore Capo Gallo, near Palermo, Sicily,
Italy, for 03/10/2020 at 18:00 UTC. The value of the total SWH corresponding to that spectrum
is about 1.8 m. The directional spectrum shows that the total wave energy is mainly due
to the presence of a very long and very tuned and collimated (directionally sharp spectral
peak) swell component coming from the west, with a peak period of about 12 s. This wave
component had been generated several hours before by a relevant storm, with a very long
fetch spanning from the Alboran Sea up to the Balearic Islands, westerly far away from Capo
Gallo. Another wave component is present, with a peak period of about 5 s, nearly collinear
with respect to the dominant swell, and due to the local wind of about 16 knots, coming from
WNW. Being the wind sea component it is characterized by a wide directional spreading. Two
other very weak swell components are present, coming from the NE and SE quadrants, with
peak periods in the range 5–6 s. The one-dimensional spectrum, obtained by integrating in the
directional dimension, is shown on the left panel (a) of Figure 3. It allows us to well resolve
the frequency position and highlight the energetic relevance of the long swell component peak
with respect to the other components, the wind sea and the two minority swells. However, in
this case, it does not allow to separate the peaks of these three components, because they are
characterized by similar peak period (i.e., frequency) values and due to frequency spreading.
Only a frequency)-directional diagram allows a clear separation of them. The polar diagram
in the right panel (c) shows the spectral partitioning synthesis of the same multimodal wave
spectrum. The partitioned SWH values from the WW3 partitioning algorithm [68,75] are in
this case: 0.9 m for the wind sea component (“little” circle symbol, from WNW); 1.5 m for
the main swell (“little” square symbol, about from W); 0.4 m and 0.2 m for the two minority
swells (“little” triangle up and left, from ESE and ENE, respectively). The color coding of the
SWH values in the respective variable-dimension circles is shown in the palette bar reported
at the bottom of the (c) panel. In the prototype interface, such data values can be directly
visualized by a tooltip triggered by hovering the mouse cursor upon each partition symbol.

Through further development, this graphical representation could be integrated with
the IMO guidelines for avoiding dangerous situations in adverse weather and sea con-
ditions [77–80], and (when available) with X-band radar and other systems for on-board
wave spectra measurement [81–85] in order to implement operational aids for ship safety.
Due the potentially relevant impact of this matter, careful attention must be paid in imple-
menting the related operational functionalities, as well as making reference to the evolving
IMO Second Generation Intact Stability Regulations [86,87].

3.2. Ship Modeling

A relevant piece of information in the ship routing decision-making process is the
total fuel consumption implied by a given route. It obviously depends on ship char-
acteristics, and, once the route shape has been defined, it is determined by the speed
profile and propulsion settings along the route, in strict relationship with the encountered
meteo-marine conditions. The inherent complex bundle of kinematical and dynamical



J. Mar. Sci. Eng. 2021, 9, 502 9 of 29

interrelationships can be approximated by a computational process, in order to obtain
estimates of the fuel consumption, once the implied parameters have been fixed. The imple-
mented ship modeling components in the prototype system can be exploited to guide deck
officers to reliably perform such computations with the minimal effort. The inner comput-
ing core of this functionality has been implemented by decoupling the heaviest powering
and aero-hydrodynamic computational tasks from the along-route meteo-dependent fuel
consumption rate evaluations. This requires some approximations to be made, but the
resulting computational framework remains sound, and allows improvements to be easily
made if and where needed. Ship specific data are pre-computed and stored in Look-Up
Tables (LUTs), to be quickly accessed and combined with metocean data through simple
algebra. This allows us to obtain (through a numerical time integration) fuel consump-
tion estimates with a fast and quickly repeatable procedure, as required by an effective
meteorological navigation GUI.

The propulsive engine load and consequent fuel consumption rate are evaluated
through the dynamic balance between propeller(s) thrust and ship’s total resistance by
applying standard algorithms [88–90]. In this process, the total resistance of the ship is
evaluated by considering it as composed of two relevant terms:

Rtot = Rhull + ∆R, (1)

where Rhull is the calm-water resistance [91–93] and depends on ship hull form, hull
appendages, loading and trim conditions [94–96], and Speed Trough Water (STW). The
growth of Rhull with respect to STW is generally strong and it is one of the main elements
that determine the ship’s fuel consumption performance [11,97,98]. Hence, the dependence
of Rhull on STW, in the main loading conditions of the studied ship, is a relevant piece
of information. Sometimes it is known from the design and construction process, after
towing tank measurements [91,92,99], or through real ship sea trials [100–102]. It is also
possible to compute it by applying simplified standard general purpose computational
approaches [103–106], or by adopting tailored more complex and computationally intensive
CFD approaches [107]. The added resistance term ∆R is considered as being composed of
all the other relevant terms that need to be added to Rhull in order to reliably estimate Rtot.
As will be described below, the main terms of ∆R are strongly dependent on meteo-marine
conditions. Once the dependence of Rhull on STW is known in the speed range of interest,
the propulsion powering problem can be solved pre-computing the fuel consumption
rate FR for several values of STW in such a range, and for several values of ∆R, in a
suitable range. For the completion of such computations, propeller-hull characteristics
and engine data are needed. Propeller-hull characteristics are sometimes known from the
design, construction and testing process. In alternative, it can be estimated by standard
series approaches [108,109], or again by tailored heavy CFD [110,111]. Engine data can
be extracted from user guides and data sheets delivered by the manufacturer. In order
to span all the main alternatives, the computations should be repeated for the different
propulsive settings adopted in the conduction of the given ship (e.g., number of active
main engines, eventually active shaft generators, combinator settings in the case of CPP).
Fouling growth on hull and propeller [112,113] could be accounted for by repeating the
computations with growing hull resistance curves (e.g., as a function of the time from the
last hull cleaning), or by explicitly modeling this latter with different surface roughness
levels. The dependence of the computed Fuel Rate LUTs on the main discretized variables
can be indicated as follows:

FR (i, j) = FR (STWi, ∆Rj), (2)

where the (i, j) dependence corresponds to the ship speed and added resistance dis-
cretized values (with suitable discretization steps). In addition (but not explicitly shown
in Equation (2)) the dataset structure is also dependent on “ship-voyage configuration
parameters” defining the different ship loading conditions and propulsive configurations.
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Once these latter have been selected, and the precomputed LUTs allow to simply pick up
the estimated fuel consumption rate value FR for each desired STW, after the corresponding
value of ∆R is estimated according to the encountered meteo-marine conditions.

In the approximation adopted in this work, the added resistance term is written
as follows:

∆R = Rwi + Raw, (3)

where Rwi is the wind added resistance [91], due to the interaction of ship superstruc-
tures with the surrounding air, while Raw is the added resistance in waves [114], due
to the hydrodynamic interaction of the ship with the field of the encountered marine
surface waves.

The wind added resistance term depends on the total ship-relative wind, resulting
from the vector composition of the ship Speed Over Ground (SOG) with the wind due to
meteorological conditions. In idealized, completely calm environmental conditions, no
wind nor sea waves of “meteorological origin” are present and the total resistance is well
approximated by the sum of Rhull and the Rwi term due to the SOG only. It is evaluated by
the expression [91,115,116]:

Rwi = 0.5 ρair ATUr
2 Cx(θrwi), (4)

where ρair is air density, AT is the ship frontal area, and Ur is the modulus of the ship-relative
total wind vector. The longitudinal wind resistance coefficient Cx = Cx(θrwi) depends on
ship above waterline structures and is function of the ship-relative wind angle θrwi. It can
be computed with a suitable discretization step, in the 0◦–360◦ (or 0◦–180◦, for symmetrical
configurations) interval and stored as wind added resistance LUT. Differing functional shapes
Cx(θrwi) can be stored in the wind resistance LUTs, depending on the ship configuration or
loading condition (e.g., accounting for different loading conditions, or for different containers
arrangement and filling factor [117]). The specific details of Rwi could be accounted for by ship
specific Cx coefficients, from wind tunnel or/and from CFD [117–119]. In addition, other wind-
related added resistance terms could be included through transverse forces and moments
coefficients (Cy and CN, respectively) and corresponding “passive rudder” terms [120–122].
The inclusion of these latter terms could be useful for the meteorological navigation of ships
with wind assisted propulsion [121–124], which is a strongly re-emerging field in connection
with energy efficiency and pollution abatement issues [125–131].

The added resistance in waves term Raw in general confused seaways can be evaluated
in terms of the spectral significant value integral [114]:

Raw = 2
∞∫

0

2π∫
0

ARO(ω, θraw)Sζ(ω, θraw)dθrawdω, (5)

where ARO(ω,θraw) is the Added Resistance Operator, i.e., the longitudinal component
of the drift force in regular waves per (regular) wave amplitude squared [114,132], while
Sζ(ω,θraw) is the directional wave spectrum, and the integration variables (ω,θraw) are
the wave “angular” frequency and the ship-relative (i.e., w.r.t. ship bow) wave direction.
Computational approaches based on the full directional spectrum like those developed
in References [51,133–135] have the potential of a high accuracy, but are computationally
intensive and imply huge memory occupation for storing full spectra for the whole marine
area and forecast time horizon. A less accurate, but strongly lighter approach, which allows
us to pre-compute LUTs for Raw, has been experimented in the present study. As a first
step, the following wave spectrum factorization is introduced:

Sζ(ω, θraw) = Hs
2 Σζ(ω, θraw), (6)

where Hs is the SWH, in which square value is linked to the energy content of the sea state
described by the spectrum, and Σζ(ω,θraw) is the “unitary directional wave spectrum” [136],
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i.e., a spectrum with the same frequency-directional shape of Sζ(ω,θraw), but with unitary
SWH. As a result, Raw can be re-written as:

Raw = Hs
2 Caw, (7)

where:

Ca = 2
∞∫

0

2π∫
0

ARO(ω, θraw)Σζ(ω, θraw)dθrawdω. (8)

If a family of parametric spectra is introduced for approximating the shape of the
“unitary” spectrum in Equation (8), a dataset of Caw values can be computed by allowing
the relevant parameters to vary in suitable intervals, with suitable discretization steps.
As an example, once fixed the spectral shape, its mean wave direction (w.r.t. ship bow)
and period can be appropriately variated in order to obtain a sufficiently detailed rep-
resentation of all the possible encounter conditions. The Added Resistance Operator
functions ARO(ω,θraw) needed for evaluating the numerical integral have to be computed
by appropriate seakeeping hydrodynamic approaches [114,137–140]. A reasonably good
approximation that can be adopted here is the Strip Theory [114,141], in one of its formu-
lations, in which the general framework is compliant with the linear wave superposition
approximation implied by the adoption of a spectral approach [142,143]. More accurate
approaches, capable of accounting for the nonlinearities of added resistance in waves,
could be utilized as in References [144–147], but paying a higher computational cost. On
the other extreme, much simpler approaches could be inspired by the adoption of the JIP
STAWAVE-1,2 approaches [148–150], originally developed for the processing of data from
sea trials [101,102]. The ARO functions are obviously strongly ship dependent and for each
ship, they must be computed for the relevant loading conditions and for various values of
the ship speed STW in the speed range of interest, as for Rhull. The ship specific dataset to
be precomputed and archived in the Caw LUTs have a functional dependence on the main
discretized variables as follows:

Caw = Caw(STWi, Tm k, Drm h), (9)

where the integers (i, k, h) are the discretization indices for STW, mean wave period Tm,
and mean wave direction Drm (the subscript r stands for ship-relative), respectively. After
the Caw coefficients precomputing task have been completed for a given ship, its added
resistance in waves can be estimated by the application of Equation (7), picking the right
values of Hs and of the Caw coefficient. This can be done by considering that it is sailing
at a given STW in a seaway characterized by the values of Hs, Tm and Dm. The mean
wave direction in metocean data is usually relative to the North, and its value must be
transformed into the ship-relative one, while the complex transformation to the encounter
period [151] is usually already accounted for in the precomputed ship hydrodynamics
for ARO.

In the present study, the PDSTRIP program [152] has been used for computing the ARO
functions (a modified version of the Boese approach [153,154] is implemented in it). Example
results computed for the S175 containership [155] are shown in Figure 4 (also see Table 1). In
left and central panels, polar diagrams of the ARO, computed for a STW of 16.3 and 25 knots,
are shown. These have been computed on a grid of wave directions (waves “from”) in the
0◦–360◦ interval, with steps of 10◦, in the azimuthal direction, and wave period values in the
radial direction. The wave period values cover the interval from 3 to 18 s (radial coordinates,
green circles every 2 s) also if, in the Mediterranean Sea wave climate, peak periods greater
than 12 s are rare and spectral tails are always negligible over 13 sec. In the right panel, the
head sea directional section of the S175 ARO is shown, as a function of Lpp/λ, in adimensional
form to facilitate the comparison with other results. It has been computed for several Froude
numbers, in good accordance with other literature results (e.g., see Reference [156]).
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Figure 4. Added Resistance in waves Operator (ARO) computed by PDSTRIP for the S175 containership. (a) Polar plot of
the ARO at the speed of 16.3 knots. Red shading colors for the highest values, yellow shading for intermediate values, light
cyan for small values. (b) Polar plot of the ARO at the speed of 25 knots. (c) Adimensional ARO for the head sea condition,
computed by PDSTRIP for several values of the Froude number.

Table 1. Main particulars of the ships considered in the examples described in this article.

Ship Main Particulars RoPax S175

Full load displacement ∆ [t] 1 15,470 24,609
Length between the perp.s Lpp [m] 160 175

Beam B [m] 25 25
Mean draft T [m] 6.7 9.5

1 In the ship configuration settings of the prototype interface, this loading condition is labeled as ldcnd01.

For the generation of the Caw LUTs datasets, the JONSWAP parametric spectrum, with
a cosn directional spreading function has been adopted, and the recommendations of [157]
have been elaborated for the selection of the relevant parameters for the “generic” spectrum
(to be distinguished from more “specific” wind sea and swell). In Figure 5, example Caw
LUTs for the RoPax ship (see Table 1) considered in the case study of Section 4.1 are shown.
They have been computed, with STW of 20 and 28 knots, with the “generic” parametric
unitary wave spectrum as described above. The dependence on the relative direction of
wave provenience (Drm) is shown in the half interval 0◦–180◦ thanks to the port-starboard
symmetry of the ship. The dependence on the average wave period Tm is represented
through multiple lines from 4 to 12 s. In passing from 20 to 28 knots, the value of Caw
exhibits a not negligible increase, as expected. For growing values of STW, the head sea
resistance peak for high Tm values (Tm around 10 s, i.e., peak period Tp slightly lower than
12 s) becomes more and more prominent, while, for lower values of Tm, a resistance peak is
present for “bow-quartering” waves.
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Figure 5. Added resistance in waves coefficient Caw computed, according to Equation (8), with “generic” unitary wave
spectra, for different values of the average Wave Period Tm and of the Average Wave Direction Dm (waves from). The used
ARO functions are those computed by PDSTRIP for the RoPax ship of Table 1, at the speed of (a) 20 knots and (b) 28 knots.

A further level of detail could be obtained by utilizing different parametric spectra
for Wind Sea and Swells and pre-computing the respective Caw datasets. In this approach
Equation (7) should be generalized by a sum extended to all the spectral partitions in the
spectrum, with a similar form for each term, but with the total SWH substituted by the
corresponding partition value multiplied by the respective Caw. An approach of this kind
could allow, if also in a simplified LUTs-based approximation, to account for the effects
of spectra multimodality [84,135,136,158–161] in fuel consumption computations. In the
present work, some very preliminary tests have been performed. It must be pointed out
that, in the case of not negligible overlapping of two or more spectral partition peaks,
some kind of peaks deconvolution should be applied when summing the partitioned
contributions, in order to avoid multiple accounting of the overlapping spectral peaks tails.
This aspect will be better developed in further studies for a sound implementation into the
prototype interface. A possible alternative under study is to precompute the integrals of
Equation (8) with the most recurring spectral shapes emerging by a spectral wave climate
elaboration [162–164], as well as by adopting suitable parametric functions for fitting wave
climate spectral shapes [76,161].

The effects of marine currents can be included in the above treatment by introducing the
implied kinematics, where needed. The ship speed along each leg of a route is defined w.r.t.
the ground, i.e., it is a Speed Over Ground (SOG), so as marine currents and meteorological
wind in metocean forecast data, while ship hydrodynamics data are dependent on STW. When
marine currents are completely negligible it is possible to assume SOG = STW, otherwise a
kinematic transformation must be performed by a vector subtraction of the marine current
vector from the SOG vector, in order to determine the STW and ship relative angles in each
route leg.

The extension of the approach to other ship responses, besides the fuel consumption,
is under study, in relation to the evaluation of seakeeping performance, comfort, structural
stresses and safety indicators. Moreover, by pre-computing the suitable engine state and
emission coefficients and storing them in respective LUTs, ship pollutant emissions could
also be evaluated and included in the meteorological navigation process [165].

The availability of in-service data recording systems and big-data analysis tech-
niques [24,166–169] could allow to better define, tune, and validate the numerical ap-
proaches to be applied in the pre-computing and “on-line performance evaluation” phases.
Part of the algorithms have already been compared with in-service data, with encourag-
ing results [51], but the next planned step will be a much more systematic process. A
further relevant output of such an activity is expected to be the implementation of an
algorithmic component capable of performing a continuous data driven models tuning.
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Preliminary analyses on this are considering a potentially fruitful and synergetic merging of
the approaches here described with the frameworks of holistic ship design [36,37,170], data-
driven surrogate models [171,172] and the ample world of digital twins, whose application
in the marine context is growing at a more and more rapid pace [42,113,173].

4. Discussion of Illustrative Case Studies

In this paragraph, examples of meteorological navigation, aided by the prototype
interface, are described in order to illustrate its main functionalities. Realistic meteo-marine
conditions are considered through metocean data from Consorzio LaMMA operational
forecasting models. The character of the present study has to be considered as preliminary,
and it is primarily devoted to the “meteorological navigation” component of the passage
planning activity. As a consequence, the analysis is focused on illustrating metocean-related
functionalities, while other elements pertaining to navigation rules and constraints are
partly overlooked for the sake of exposition simplicity. Consequently, some details of the
studied cases may result not completely realistic. In real applications, the ECDIS-like nature
inherited from the original EPD system allows us to straightforwardly load and visualize
Electronic Nautical Charts, giving the possibility to include in the analysis most of the
needed data layers for a real and complete navigation activity. In this regard, other useful
functions are potentially available from the original EPD system for the improvement of
navigational safety, such as the possibility to exchange routes way points data with nearby
ships and onshore ship traffic control centers (to reduce collision risk in high traffic areas,
as well as through tactical routes suggestions) and dynamic no-go areas visualization (to
reduce the risks of squat and grounding in shallow waters) [23,174].

4.1. RoPax on a Short Route in Perturbed Metocean Conditions. Center-North Mediterranean Sea
(Sea of Corse)

As a first example, the analysis of a realistic voyage of a RoPax ship (design data:
1700 passengers, 500 cars, cruise speed 28 knots at 80% MCR; main particulars in Table 1)
is considered, along a short Mediterranean route. For this ship, a complete LUTs dataset
has been generated following the procedure described above. In the off-line computing
process data and models from [51] have been used, where a tuning process for Rhull had
been performed by exploiting in-service recorded fuel consumption data. The resulting fuel
consumption rate FR LUT have been generated for two different propulsion configurations:
with two and four engines, symmetrically active on the two shaft lines, equipped with
CPP propellers. The four Wartsila 12V46C (11,700 kW each) medium speed four stroke
diesel engines are capable of driving this ship up to 28 knots. The first configuration is
available only for low values of STW, and very calm environmental conditions. In such
cases, steaming with half the number of main engines active can allow some fuel saving
(avoiding too low engine load). At higher speed and in heavy weather, only the four
engines configuration is applicable. In both cases, if the active engines are not capable to
cope with the total resistance implied by the environmental conditions encountered in a
given route leg, the prototype interface stops computing and require the user to lower the
ship speed (involuntary speed reduction) or switch to the four engines configuration. For
the wind added resistance coefficient Cx a simplified approach has been adopted trough
data and models from [175]. Seakeeping computations have been performed by using the
PDSTRIP software for the ARO function and the Caw LUTs for the added resistance, as
described above. From the preliminary sensitivity analysis of optimal route solutions [47]
emerged a greater relevance of the modeling details of the (usually) by far greater added
resistance in waves w.r.t. wind added resistance modeling details. Hence, greater care has
been put to generate the Caw LUTs.

In Figure 6a, the prototype system dialog window is shown where the ship loading and
propulsion configurations can be defined, and through which the respective LUTs datasets
can be imported by selecting the files where precomputed data have been stored. For each
ship, it is possible to define multiple configurations, to be then selected trough the dialog
window shown in the Figure 6a before performing each new fuel consumption computation.
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For the RoPax ship in this example, the two configured propulsion configurations (with
two or four engines) are available.

Figure 6. Dialog windows of the prototype system: (a) Settings for loading ship specific data from input LUTs files and
defining different configurations for the same ship; (b) Selection of the ship configuration prior to activating each fuel
consumption computation. The case study RoPax ship settings are visualized.

The speed profile along the route can be defined by assigning different speed values
on each leg, and, correspondingly, different propulsion configurations can also be assigned
to each leg. In addition to the Caw LUTs precomputed with the “generic” spectrum, it is also
possible to utilize the Wave Components (wind sea and swell partitions)-based approach,
but it is still in a preliminary testing phase. It is also possible to perform the computations
by excluding one by one, or the whole set, of environmental conditions (selectors: skip
wind, skip wave, skip current), in order to estimate (“by difference” in the results) the
respective contribution to the fuel consumption.

In Figure 7, a recent voyage from Ajaccio (Corse Island) to Toulon (France) of a real
RoPax ship is shown together with the corresponding speed profile, so as shown by the free
online version of the Marine Traffic AIS data visualization and ship tracking system [176].
The ship is very similar to the modeled RoPax here studied; hence, this voyage has been
simulated, and it is here analyzed.

In Figure 8, the same route (labeled as: “RoPax-22/04/2020”) is shown, together with
other route variants defined through the prototype interface. The “Shortest” route is the
one usually adopted in case of fair-weather conditions and is a useful “baseline” term of
comparison. The “RoPax-22/04/2020” route performs a zig-zag around the “Shortest”
route, in order to avoid the worst conditions and improving passengers’ comfort during the
voyage. Usually, the areas with SWH greater than 2.5 m (red shading in the color-coding
palette of the Sign. Wave Height) are avoided, if possible.

The “Variated” route has been defined by avoiding the zig-zag and steaming deeper
towards North, but with the constraint of maintaining the length very similar to “RoPax-
22/04/2020”. The “Variated Short” route has been obtained by shortening the “Variated”
route, but trying to avoid areas with Hs > 2.5 m. The selected ship speed (namely, SOG) profile
along the “RoPax-22/04/2020” is very similar to the one of Figure 7. For the other routes,
roughly equivalent speed profiles have been defined (keeping into account voyage timing).
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Figure 7. Map of the route of a real RoPax ship voyage, from Toulon (France) to Ajaccio (Corse). The corresponding speed
profile is shown in the inserted box and by the colored shading along the route (from light green, for lower speed values, to
bright blue, for higher speed values). Adapted from the free access web pages of Marine Traffic [166], with permission from
Marine Traffic, 2020.

Figure 8. The route of Figure 7 labeled as “RoPax-22/04/2020” visualized through the prototype interface (evidenced in
yellow), together with three variated routes labeled as “Shortest”, “Variated”, and “Variated Short”) generated by using the
prototype interface functionalities.

The “manual construction” of the variated routes is strongly aided by the capability
of visualizing the maps at the nearest times of selectable points along the route. As an
example in Figure 9, the map of Hs, together with Mean Wave Direction arrows and Wind
Barbs, is shown at the time when the ship position along the four routes is the one shown
by the yellow full arrow for the “RoPax-22/04/2020” route and by the blue full arrows for
the other three.
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Figure 9. Visualization, through the prototype interface, of the SWH field map, together with Mean Wave Direction vectors
and Wind Barbs. The superimposed bold yellow and blue arrows mark the position of the ship along the four studied
routes. The “Routes sorting” table at top right shows the respective fuel consumption in tonnes. For some of them, the
estimates obtained by skipping one by one and all the metocen contributions to resistance are also shown. The Time column
shows voyage duration in hours and minutes (h: mm).

Several fuel consumption computations have been performed by loading the ship
specific LUTs and metocean data. In particular data from LaMMA forecasting system run
of 22/04/2020 with initialization time at 12:00 UTC (a few hours before the ship time of
departure) have been used. Some of the results are shown in the “Routes sorting table”
shown in the top right panel of Figure 9.

The “RoPax-22/04/2020” estimated fuel consumption of nearly 25 tonnes is compared
with several other variants. The estimated consumption for the “Variated” route is nearly
half a ton less (2% of the total fuel), due to slightly better metocean conditions (route length
is also slightly greater). The estimated consumption for the “Variated Short” route is one
ton less (4%), due to the combination of a moderate route length shortening and slightly
better metocean conditions. This latter appears to be the best route; hence, it has been
further analyzed by repeating the computations by alternatively switching off waves, wind,
and currents effects, in order to estimate the respective effects on fuel consumption (about:
9% waves, 1% wind, 1% currents). The wind is not weak, but, in this case, its effects are
weak (of the same order of currents effects), mainly due to nearly crosswind conditions for
most of the voyage. The fuel consumption along the shortest route, without meteo-marine
elements, i.e., the “Shortest Calm Weather” results, provides an estimate of the baseline fuel
consumption for this voyage. It allows us to have a glimpse on the overall increase in fuel
consumption due to both the direct bad weather effects and to the indirect effects related to
the route elongation (e.g., compare with “Variated Short Calm Weather”), adopted in order
to minimize dis-comfort and improve safety.

In the top right box of Figure 10, the results of a further analysis are summarized. For
the routes: “RoPax-22/04/2020”, “Variated Short”, and “Shortest”, the fuel consumption
has been estimated by using metocean data from six hourly spaced consecutive runs
of LaMMa forecast system: 21/04/2020 with initialization at 18 UTC, and the runs of
22/04/2020 with initialization at 00, 06, 12 UTC, respectively. The results pattern is
essentially the same for all three routes: for each one of them the consumptions from the
“oldest” forecasts are very similar, while the results from the last run (i.e., 22/04/2020,
with init. at 12) are shifted by about 1 tonne to lower values. The visualization, along
the shortest route, of metocean data from such a forecast run and from the one initialized
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at 00, as reported in the map of Figure 10 (red dots in the upper right panel), show
that the overall metocean data pattern is very similar (metocean arrows from the two
forecasts are nearly superimposed), with the exception of the coastal areas near Toulon.
The forecast initialized at 12 is instead characterized by a lower intensity of the adverse
weather conditions. This justifies reduced fuel consumption estimates from the most recent
forecast. Due to the coherence and persistence of the overall spatial pattern, the ordering of
the fuel consumption estimates along the different routes in this case is not influenced by
forecast variability.

Figure 10. In the map to the left: visualization, through the prototype interface, of metocean data along the shortest route.
The data from the forecast runs initialized on 22/04/2020 at 00 and at 12 UTC are superimposed to graphically check their
concordance. The “Routes sorting” table on the top right, shows the fuel consumption estimates, for each one of the four
routes of Figures 8 and 9, as estimated by alternatively using data from four consecutive models runs and in calm weather.
The Time column shows voyage duration in hours and minutes (h:mm).

4.2. S175 Containership on a Medium Length Route in Heavy Weather. Eastern
Mediterranean Sea

As a second case study a simplified numerical model of the S175 containership [155]
is considered (main particulars in Table 1), having performed an engine-hull-propeller
matching with a single shaft line, a FPP propeller, and a single MAN B&W 6S50MC-C8
low speed two-stroke diesel engine.

The selected engine for this purely numerical (and not completely realistic) test model
has a very poor weather margin and is able to drive the ship only up to 20 knots, in
completely calm weather. In further developments of the study, investigations will be
performed by adding auxiliary sails to “help” this “not so powerful” engine. In moving
to more realistic ship models, the issue of “sufficient of propulsion power” in relation
with safety constraints must be carefully evaluated, as investigated in the SHOPERA
Project [177]. Longer Mediterranean routes have been analyzed by considering a voyage
from Port Said (Egypt) to La Valletta (Malta). The time of departure is supposed to be
18/09/2020 at 01:00 UTC, the ship SOG is supposed to be constant at 14 knots. The meteo-
marine conditions are characterized by the development of a (real) relevant event of heavy
weather. A Tropical Like Cyclone (TLC) or Medicane (for Mediterranean hurricane) [178]
forms in the area and, during its evolution, it unavoidably impacts the ship voyage. TLC
formation is not frequent, but, when it happens, its effects are potentially very relevant;
moreover, the occurrence of such systems is growing in the Mediterranean basin, probably
due to climate change [179].
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In Figure 11, the TLC evolution is shown by metocean maps generated through the
prototype interface, based on LaMMA forecast data from the run of 18/09/2020 with
initialization at 00 UTC (Run00). The validity time of each map is reported in the respective
top right box. The SWH is visualized with superimposed Average Wave Direction and
surface Wind Barbs. Panel (a): after its formation and intensification in the Ionian Sea, a
quite intense TLC moves towards Grece. Panel (b): after the landfall, the TLC undergoes a
temporary attenuation. Panel (c): re-intensification of the TLC when returning over the sea
in the SW of Greece. Then, it continues its track passing South of Crete, rapidly moving
towards the Eastern Mediterranean Basin.

Figure 11. Cont.
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Figure 11. Panels (a)–(c) prototype interface showing: SWH, Average Wave Direction, and Wind Barbs maps for three times
during the simulated Port Said-La Valletta voyage. Three alternative routes are shown. Blue arrows indicate ship positions
at the maps’ validity times. Panel (d) fuel estimates: left in calm weather, right with metocean data. The Time columns
show voyage duration in days, hours, and minutes (<days>d hh:mm).

Three alternative routes, all with departure time 18/09/2020 at 01:00 UTC are overlaid
on metocenan conditions in Figure 11. Route R-Center: is the shortest central route; Route
V-North: is the Northern variation; Route V-South: is the Southern variation. The two variated
routes have roughly the same length. For all the routes, a deviation is needed to avoid the
worst conditions in the central part of the voyage, as illustrated in panel (b). In this case of
a containership, a less stringent constraint on Hs is applied, but the poor weather margin
of the propulsive engine still forces a route diversion to avoid the heaviest weather. The
respective positions of the ship are shown by blue full arrows in Figure 11a–c. In Figure 11
bottom panel (d), the “Route sorting” tables from the prototype system are shown, to compare
the fuel consumption along the three routes, computed with metocean data from the LaMMA
forecast data of 18/09/2020 Run00 (right), and the respective consumption in calm weather
conditions (left). The least consuming route is the Northern variation, exploiting some favor-
able conditions. In the initial legs from Port Said to Crete, milder conditions are encountered
with respect to the other two routes. In the central part of the voyage, the shielding effect of
Crete is relevant. Moreover, in proximity of the low-pressure center, the Northern variation
encounters a less extended heavy weather area, thanks to combined effects of the proximity
of the low-pressure center and of the screening and attenuation by the surrounding coastlines.
In this area, the shortest route, running in between the other two, is heavily impacted on
a larger portion of its track. In addition, more prevailing crosswind conditions induce a
smaller contribution from wind resistance on the Northern variation, while the other two,
and especially the Southern variation, are more affected by head wind conditions.

As an example, in Figure 12, the spectral partitions analysis for the two locations
indicated by the blue diamond and the red star in Figure 11c are shown at the same time of
the map (19/09/2020 22:00 UTC). For the blue diamond site, Figure 12a shows a relevant
wind sea component from NE, due to the strong winds related to the actual position of
the TLC center of low pressure, and a weaker but not negligible swell component from
NW. This swell component has a very long period of 9 s and has been generated by the
strong winds of the TLC in its past positions at the north of the area. For the red star
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site, Figure 12b shows a swell component, with a not so high period of 7.5 s, coming
from the W and related to the TLC peripheral medium strength wind condition, and a
weak wind sea component from ESE, due to light near coastal winds NW of Crete. The
possibility to compute the encounter values of the peak periods Tpe for each one of the
spectral components allows us to estimate the consequences of Doppler effect due to the
selected ship speed and allows us to better test possible route variations. Examples are
shown, in Figure 12, for two ship speed configurations tested during the route variations
analysis in this case study. In correspondence of the blue diamond point, the selected ship
speed has the effect of relevantly reducing the perceived period of the Swell 1 component,
being in nearly Head Sea configuration, while, for the Wind Sea, the reduction is smaller
because it is nearly in beam sea condition. In correspondence of the red star point, the
peak period of the Swell 1 component undergoes a similar reduction, while the Wind Sea
component undergoes a relevant increase of the perceived period because it is in proximity
of surfriding conditions (i.e., nearly zero encounter frequency, due to proximity of ship
speed and wave phase speed).

Figure 12. Spectral partitions visualization for 19/09/2020 at 22:00 UTC seaway state in correspon-
dence of the two locations indicated in Figure 13 with: (a) blue diamond, (b) red star. In addition,
shown are the encounter period values for all the wave components, for two, respectively, tested
values of the ship speed.

After a detailed analysis, some further variations to the Northern route V-North of
Figure 11 have been considered, as shown in Figure 13 (now labeled with V2-North). The
route legs in the South of Crete have been brought farther South from Crete coast, to
shorten a little but still exploiting milder conditions in the area. The way points in the
north of the blue diamond point of Figure 11c have been moved more North, to search for
less intense conditions. The consequent elongation of the route is (partly) compensated by
the shortening in the South of Crete. The net result of the changes is a further reduction in
the estimated fuel consumption along the northern variated route. Finally, a new northern
variated route (V-NCrete) has been defined in order to better exploit the milder conditions
in the first leg from Port Said to Crete and in passing North of it. This latter change increases
the route length a bit, but it allows us to fully exploit the wider area of mild conditions in
the North of Crete. As a consequence, this new route is the least consuming one, as shown
by the new fuel consumption estimates reported in the “Routes sorting” panel visualized
in the top right of Figure 13. Moreover, it is also a safer route, due to the relevant shielding
effect of Crete with respect to the harsh weather conditions caused by the evolution of the
TLC system in the area. For this route, a further element is worth to be considered: due to
the longer (and safer) track in the north of Crete, the ship enters at later times in the area
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(West of Crete) more affected by heavy weather, caused by the TLC. At such a later time,
the TLC has already moved further South-East, and the ship finds there already attenuated
heavy weather conditions.

Figure 13. New analysis of four alternative routes from Port Said to La Valletta. The central route and the southern variation
as before. The northern variation and the new one passing North of Crete are new variations. In the top right panel, the
Routes sorting table is shown with fuel consumption estimates for these four routes. The Time column shows voyage
duration in days, hours, and minutes (<days>d hh:mm).

5. Conclusions

A prototype system for performing meteorological navigation tasks has been im-
plemented by exploiting an ECDIS-like Graphical User Interface. The first components
implemented are mainly focused on fuel consumption performance evaluation. The re-
sulting prototype system allows the uploading and visualization of metocean data, the
consequent computation of fuel consumption along each analyzed route, and the evalu-
ation of the encountered meteo-marine conditions on each route way point in a totally
integrated framework. This allows us to “effectively and deeply dig inside” the various
layers of available metocean forecast data regarding atmospheric and marine conditions
and evaluating their effects on ship performance indicators. The approaches adopted for
the present implementation are described, and further alternatives are shortly reviewed.
GIS-based visualization of forecast fields has been exploited, and an innovative visualiza-
tion tool for wave forecast data, based on spectral partitions, has been implemented and
tested, while, for a quick numerical estimation of ship performance, an approach has been
implemented that allows us to perform the heaviest aero-hydrodynamic computations in
off-line mode, storing the results in fast access look-up tables. The analysis of two case
studies, performed by the use of the prototype system, is summarized with the goal of
illustrating the implemented functionalities. The prototype system is still in a preliminary
version, and its potential improvements and extensions are also discussed. In particular,
some of the planned additions and modifications are: a more systematic validation-tuning-
improvement of the ship modeling algorithms, consequent to the integration with a reliable
in-service data recording and processing system; the extension to a wider set of perfor-
mance indicators, not only oriented to propulsive fuel consumption; the addition of the
capability to work with EPS (Ensemble Prediction System) data; and the addition of the
capability to trigger numerical route optimization algorithms, to be implemented as inte-
grated components of the system. These are some of the main components that should
improve the prototype interface towards a powerful and comprehensive meteorological
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navigation tool, potentially applicable both for single ship navigation and on-shore single
ship and fleet monitoring and management, and also integrated with other operational
guidance systems.
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