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Abstract: An adaptive nonsingular fast terminal sliding mode control scheme with extended state
observer (ESO) is proposed for the trajectory tracking of an underwater vehicle-manipulator system
(UVMS), where the system is subjected to the lumped disturbances associating with both parameter
uncertainties and external disturbances. The inverse kinematics for the system is obtained by the
quaternion-based closed-loop inverse kinematic algorithm. The proposed controller consists of the
modified nonsingular fast terminal sliding mode surface (NFTSMS) and ESO, and the adaptive
control law. The utilized NFTSMS can ensure the fast convergence of the tracking errors, together
with avoiding the singularity in the derivation. According to the ESO method, the estimation error
of the lumped disturbance vector can realize the fixed-time convergence to the origin, along with
replacing the sign function with the saturation function to attenuate the chattering. A continuous
fractional PI-type robust term with adaptive laws is introduced to handle the unknown bound of
the estimation error. The closed-loop system is proved to be asymptotically stable by the Lyapunov
theory. Simulations are performed on a ten degree-of-freedom UVMS under four different strate-
gies. Comparative simulation results show that the proposed controller can achieve better tracking
performance and stronger robustness of the disturbance rejection.

Keywords: adaptive nonsingular fast terminal sliding mode control; extended state observer;
quaternion-based closed-loop inverse kinematic algorithm; trajectory tracking; underwater
vehicle-manipulator system

1. Introduction

The ocean environment is a potential treasury of resources, including a variety of
living creatures, mineral deposits and sustainable energy [1]. In the last 20 years, many
efforts have been made to develop marine tools for the ocean exploration and exploitation.
Remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs) are
two common tools among the marine robots [2]. In particular, an underwater vehicle-
manipulator system (UVMS) that contains an underwater vehicle equipped with one or
multiple underwater manipulators, has been applied more significantly in underwater
tasks than the underwater vehicle or underwater manipulator only. Nevertheless, it is
difficult to achieve the trajectory tracking control of the UVMS end-effector.

On the one hand, the UVMS is kinematically redundant because its total degrees of
freedom are usually more than the task-space coordinates that are at most six dimensions.
Thus, such redundant system admits infinite numbers of the joint-space solutions for the
specific coordinates in the task space. Subsequently, lots of inverse kinematic schemes
have been proposed to handle the redundant issue, like weighted pseudo-inverse method
merged with the fuzzy technique [3]. Apart from the fuzzy technique, the joint fault-tolerant
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property has been used for redundancy resolution and coordinated motion of a remotely
operated UVMS [4], while the payload can be considered as one of the secondary objectives
for optimizing the UVMS’s attitude [5]. Another coordinated motion algorithm for the
UVMS has been investigated along with minimizing restoring moment [6]. Moreover,
since the secondary tasks were handled in the null space of the primary task Jacobian,
they had no influence on the primary task but can achieve other additional manipulation,
so the inverse kinematic scheme should be designed properly for settling the kinematic
redundancy of the UVMS.

Another difficult problem is to handle the parameter uncertainties and external dis-
turbances of the UVMS in the trajectory tracking control. Because the UVMS is subjected
to dynamic natures like high nonlinear, strong coupled and time-varying from the in-
teraction between vehicle and manipulator, and also suffers the disturbances caused by
hydrodynamic effects and unknown underwater environment. So far, many advanced
methods have been proved to be useful for nonlinear systems like underwater robots to
solve such uncertain issues, such as sliding mode control (SMC) [7–11], neural network
control [12], fuzzy logic control [13], and so on. SMC has attracted large numbers of
attentions on the controller design owing to its fast convergence and strong robustness
with uncertainties. In [7], a robust control method based on a multiple sliding surfaces has
been proposed and utilized for nonlinear systems with uncertainties, so that the tracking
errors can converge to small neighborhoods of the origin zero. Another robust double loop
integral SMC tracking method has been addressed for the UVMS under external current
disturbances [8]. In [9], a nonlinear dynamics SMC and robust positioning control has
been presented for the over-actuated AUV under ocean current and model uncertainties, in
which the dynamic sliding surface was more complex than that of the traditional PI-type
in [10]. Besides, an adaptive fast nonsingular integral terminal SMC scheme has been
proposed for the trajectory tracking of unmanned underwater vehicles in [11], where the
singularity problem can be avoided. The fast non-singular integral terminal SMC method
in [11] can make the tracking errors achieve the finite-time convergence faster than those
in [9,10]. The reason is that the latter can only ensure the asymptotic convergence of the
tracking errors. Additionally, the chattering problem caused by the sliding mode switched
gains can be eliminated with boundary layer technique [14], high-order SMC [15], etc.
Neural network control and fuzzy logic control are widely applied for the control problem
of the nonlinear systems, due to their capability of approximating linear or nonlinear
functions accurately. By integrating radial basis function neural network and an adaptive
compensator, a hybrid control approach has been developed for the trajectory tracking of
AUVs [12]. Meanwhile, the neural network method was used to approximate the unknown
dynamics and the adaptive compensator was to compensate the unknown disturbance
effects. Another adaptive fuzzy SMC method has been addressed for the trajectory tracking
of multi-link underwater manipulators [13], however, it can only ensure the boundness of
the disturbance estimations but not involve in their fast convergence.

Alternatively, lots of disturbance observer methods have been proposed to handle
the disturbance issues for the control system, so that the disturbance estimation errors
can achieve fast convergence to decrease the effects on the system. Using a disturbance
observer, a coordinated motion control scheme for an autonomous UVMS in the task
space has been proposed [16]. In combination with the PID-like fuzzy control scheme
and a disturbance estimator, a robust nonlinear controller has been addressed for the
trajectory tracking control of an autonomous UVMS [17]. Based on an extended state
observer (ESO), an integral SMC scheme has been presented for the underwater robot with
disturbances and uncertainties [18]. Another SMC scheme combining with the ESO has
been proposed for an UVMS with prescribed performance [19]. Moreover, the estimation
errors of the lumped disturbances in [18,19] can be guaranteed to be uniformly bounded,
rather than in [16,17] they can achieve the asymptotical convergence. Next, to solve the
trajectory tracking problem of an AUV subjected to lumped disturbances, a non-singular
fast fuzzy terminal SMC scheme with a disturbance estimator has been addressed [20].
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It showed that the estimation error of the lumped disturbances can converge to zero in
finite time. Another adaptive disturbance observer has been proposed for the trajectory
tracking control of underwater vehicles with uncertainties and external disturbances [21],
which can also guarantee the finite-time convergence of the estimation error to zero. In
contrast, the finite-time convergence of the estimation error [20,21] can converge faster
than the asymptotical convergence of those in [16,17]. In other way, a fixed-time super-
twisting-like algorithm [22] has been designed, in which its remarkable feature consists in
the convergence time bounded by a constant independent of the initial state conditions.
To meet the high precision operation requirements, suitable strategies should be made to
acquire the trajectory tracking control of the UVMS despite the parameter uncertainties
and external disturbances.

Motivated by the above analysis, in this paper an adaptive nonsingular fast terminal
sliding mode control (NFTSMC) with ESO is proposed for the trajectory tracking of an
UVMS with lumped disturbances, namely, parameter uncertainties and external distur-
bances. Firstly, the quaternion-based CLIKA is applied for solving the reference position
and velocity values of the system through the desired position and orientation of the end-
effector. Then, the proposed controller consists of the modified nonsingular fast terminal
sliding mode surface (NFTSMS) and ESO, and the adaptive control law. The designed
NFTSMS can make the tracking errors achieve fast convergence, along with avoiding the
singularity in the derivation. By taking the lumped disturbance vector as an extended state
of the UVMS, the fixed-time convergent ESO method is utilized to estimate the lumped
disturbances, which can ensure the fixed-time convergence of the disturbance estimation
errors. Meanwhile, the sign function replaced by a saturation function is introduced in
the ESO to alleviate the chattering phenomenon. In general, the conventional robust term
is used for the control law design to handle the unknown boundness of the disturbance
estimation error, while it may cause the chattering due to its own discontinuity. Instead,
an adaptive continuous fractional PI-type controller is to approximate the discontinuous
robust term to handle such chattering problem. The closed-loop system can be proved to
be asymptotically stable by the Lyapunov theory. Simulations of four control methods are
performed on a ten degree-of-freedom (DOF) UVMS consisting of a four DOF underwater
vehicle and a six DOF underwater manipulator. Comparative simulation results validate
the effectiveness of the proposed controller.

Several contributions of this work can be summarized as follows: (1) We propose the
quaternion-based CLIKA with replacement of using the Euler-angle form to simplify the
inverse kinematics; (2) we design a NFTSMS that can avoid the singularity, so that the
tracking errors can achieve the fast convergence; (3) We modify the ESO method to estimate
the lumped disturbance term of the system, by introducing the saturation function instead
of the sign function to alleviate the chattering and (4) we propose a continuous fractional
PI-type controller to achieve the approximation to the conventional discontinuous robust
term to reduce the chattering problem.

This paper is organized in four parts. First, it establishes the forward kinematics and
the quaternion-based CLIKA of the UVMS, and its dynamic equations in the vehicle-fixed
and the earth-fixed frames. Then, it presents the proposed adaptive NFTSMC method with
ESO for the trajectory tracking control of the UVMS end-effector, and the Lyapunov theory
is used to verify the system stability. Another part presents the simulation results using a
ten degree-of-freedom (DOF) UVMS under several situations. Finally, some conclusions
are obtained from the proposed controller.

2. Problem Description
2.1. The Forward Kinematics of the UVMS

This section presents the kinematics of the UVMS containing a six DOF underwater
vehicle and a general n DOF underwater manipulator. The coordinate frames of the UVMS
are shown in Figure 1, where the inertial reference frame called the earth-fixed frame is used
to describe the position and orientation of the vehicle. Define the vector η = [ηT

1 , ηT
2 ]

T ∈ R6,
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where η1 = [x, y, z]T and η2 = [φ, θ, ψ]T are the linear position and orientation Euler-angle
coordinates of the vehicle in the earth-fixed frame, respectively. And, their component
definitions are listed in Table 1. The time derivatives of the vectors

.
η1 and

.
η2 are their

corresponding velocity vectors in the Earth-fixed frame.
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Table 1. Nomenclature for the underwater vehicle.

Variable Definition

x X translation (Surge position)
y Y translation (Sway position)
z Z translation (Heave position)
φ Rotation about X (Roll angle)
θ Rotation about Y (Pitch angle)
ψ Rotation about Z (Yaw angle)

To describe the motion of the vehicle in detail, its velocity in the vehicle-fixed frame
is defined as ν = [νT

1 ,νT
2 ]

T ∈ R6. The vectors ν1 = [u, v, w]T and ν2 = [p, q, r]T are the
linear velocity and angular velocity of the vehicle with respect to the Earth-fixed frame
expressed in the vehicle-fixed frame, respectively. The above velocity vectors satisfy the
following equations:

ν1 = J1(η2)
.
η1 (1)

ν2 = J2(η2)
.
η2 (2)

where J1(η2) expresses the linear velocity transformation matrix from the Earth-fixed frame
to the vehicle-fixed frame, satisfying:

J1(η2) =

 cψcθ sψcθ −sθ
cψsθsφ− sψcφ sψsθsφ + cψcφ cθsφ
cψsθcφ + sψsφ sψsθcφ− cψsφ cθcφ

 (3)

and the angular velocity transformation matrix J2(η2) is defined as:

J2(η2) =

 1 0 −sθ
0 cφ cθsφ
0 −sφ cθcφ

 (4)

where c· = cos(·) and s· = sin(·).
Define the vector q = [q1, · · · , qn]

T ∈ Rn as the joint position coordinate of the
manipulator in each link-fixed frame, and the time derivative

.
q is its joint velocity vector.
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Upon redefining another position vector ζ = [ηT
1 , ηT

2 , qT ]
T and velocity vector ω =

[νT
1 ,νT

2 ,
.
qT

]
T

, and combing with the above velocity relationships of Equations (1) and (2), it
can be represented as follows:

ω = J(η2)
.
ζ (5)

where J(η2) = diag[ J1(η2) J2(η2) In×n ], and In×n denotes the n× n identity matrix.
Here, the control task depends on the position and orientation of the end-effector in

the Earth-fixed frame, which can be defined as xE, i.e., xE = [pT
E , ηT

E]
T ∈ R6, satisfying

xE = kee(ζ) shown in the Appendix A. The vectors pE and ηE are the position and orienta-
tion coordinates of the end-effector in the Earth-fixed frame, respectively, where the vector
ηE is expressed in terms of Euler-angle form. The relationship between

.
xE and

.
ζ can be

deduced from Appendix A, namely:

.
xE = JOE(η2, q)

.
ζ (6)

Also, defining
.
ςE ∈ R6 as the linear velocity and angle velocity coordinate of the

end-effector in the Earth-fixed frame, the corresponding relationship between
.
ςE and

.
ζ

refers to the Appendix A, satisfying:

.
ςE = JE(η2, q) ·

.
ζ (7)

where
.
ςE = [

.
pT

E , wT
E ]

T
, and wE denotes the angle velocity of the end-effector in the Earth-

fixed frame.

2.2. The Quaternion-Based CLIKA of the UVMS

The primary objective of the inverse kinematics is to find a suitable motion variable
ζ(t) through a desired end-effector task xE,d = [pT

E,d, ηT
E,d]

T , where pE,d and ηE,d denote the
desired position and orientation coordinates of the end-effector in the Earth-fixed frame,
respectively.

The utilization of pseudoinverse of the Jacobian matrix in [3] is the simplest way to
invert the mapping Equation (6):

.
ζr = J†

OE
.
xE,d (8)

with the pseudoinverse matrix J†
OE = JT

OE(JOEJT
OE)

−1.
Using the CLIKA in [3] provided by Equation (9), the reference position and orientation

vector ζr(t) can be obtained via the desired end-effector task xE,d, unlike the open-loop
form may cause a numerical drift by integrating the velocities to find the related position
and orientation: .

ζr = J†
OE(

.
xE,d −KEeE) (9)

where eE = [eT
p , eT

o,Eul.]
T , i.e., ep = pE,r − pE,d and eo,Eul. = ηE,r − ηE,d, is the reconstruc-

tion error vector. pE,r and ηE,r denote reference position and orientation vectors of the

end-effector corresponding to ζr, satisfying xE,r = [pT
E,r, ηT

E,r]
T
= kee(ζr). The gain ma-

trix KE = diag[Kp, Ko] ∈ R6×6 is chosen to ensure the asymptotical convergence of the
reconstruction error to zero, where Kp, Ko ∈ R3×3 are diagonal and positive definite
matrices.

Remark 1. The reference value ζr(t) is second order differentiable.

If the task is considered as the position control of the end-effector only, its reconstruc-
tion error is simply given by the difference between the desired and the actual values. For
the case of the orientation, the definition of such error is required to ensure convergence
to the desired value, while involving in large numbers of computations of the related
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trigonometric and inverse trigonometric functions. In this paper the quaternion attitude
representation is used to replace the expression of the orientation error [23], and we define
Qd = [ηd, εT

d ]
T and Qr = [ηr, εT

r ]
T as the desired and reference attitudes expressed by

quaternions, respectively. The quaternion-based CLIKA can be redefined as:

.
ζr = J†

E(
.
ςE,d −KEeE) (10)

along with
.
ςE,d = [

.
pT

E,d, wT
E,d]

T
satisfying:

wE,d = J3(ηE,d)
.
ηE,d (11)

where J3(·) can be found in the Appendix A. Another reconstruction error is eE =

[eT
p , eT

o,Quat.]
T satisfying ep = pE,r − pE,d and eo,Quat. = −[ηrεd − ηdεr − S(εd)εr], where

S(·) denotes the skew symmetric matrix of the vector. Figure 2 presents the computation
process of the quaternion-based CLIKA of the UVMS. And, the output of the inverse
kinematics is the reference position and orientation of the UVMS expressed by ζr(t), which
can be taken as the tracking objective for the design of the dynamic control strategy.
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2.3. The Dynamics of the UVMS

Considering that the 6 + n DOF UVMS contains a six DOF vehicle coupled with a
general n DOF underwater manipulator. Its dynamic equations in the vehicle-fixed frame
can be derived by resorting to the Quasi-Lagrange approach [24] and expressed in the
following form:

M(q)
.

ω + C(q, ω)ω + D(q, ω)ω + G(η2, q) + τd = τ (12)

where M(q) ∈ R(6+n)×(6+n) is the inertia matrix and C(q, ω) ∈ R(6+n)×(6+n) is the cen-
trifugal and Coriolis matrix, and both of them contain their corresponding added mass
terms. D(q, ω) ∈ R(6+n)×(6+n) is the drag matrix. G(η2, q) ∈ R(6+n)×1 denotes the restor-
ing force/moment vector caused by both gravity and buoyancy effects. τd ∈ R(6+n)×1

is the unknown external disturbance vector. And, τ ∈ R(6+n)×1 represents the input
force and moment vector acting on the UVMS. By the use of the velocity relationship in
Equation (5), the dynamic equations of the UVMS in Equation (12) can be transformed into
the Earth-fixed frame and rewritten as:

Mζ(ζ)
..
ζ + Cζ(ζ,

.
ζ)

.
ζ + Dζ(ζ,

.
ζ)

.
ζ + Gζ(ζ) + τζ,d = τζ (13)
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where Mζ(ζ) = JTM(q)J, Cζ(ζ,
.
ζ) = JT(C(q, ω) + M(q)

.
JJ−1)J, Dζ(ζ,

.
ζ) = JTD(q, ω)J,

Gζ(ζ) = JTG(η2, q), τζ,d = JTτd and τζ = JTτ.
Since the external environment, like ocean currents, has significant influence on the

UVMS, the relevant term can be incorporated into the dynamic equations of the system.
Define the relative velocity in the Earth-fixed frame as

.
ζc =

.
ζ − νc, where νc denotes

the current velocity.

Remark 2 [25]. Suppose that the current velocity is irrotational and constant in the Earth-fixed
frame, and it can be expanded to the 6 + n dimensional generalized space, namely:

νc = [νc,x,νc,y,νc,z, 0, · · · , upto(6 + n)]T ∈ R(6+n)×1 (14)

Substituting
.
ζ in Equation (13) with

.
ζc, the dynamic equations of the UVMS under

current effect can be represented as:

Mζ(ζ)
..
ζ + Cζ(ζ,

.
ζc)

.
ζc + Dζ(ζ,

.
ζc)

.
ζc + Gζ(ζ) + τζ,d = τζ (15)

Moreover, the terms related to νc in Equation (15) can be combined as a new vector
τc(ζ,

.
ζ,νc). Hence, the dynamic equations of the UVMS under current effect takes the form:

Mζ(ζ)
..
ζ + Cζ(ζ,

.
ζ)

.
ζ + Dζ(ζ,

.
ζ)

.
ζ + Gζ(ζ) + τc(ζ,

.
ζ,νc) + τζ,d = τζ (16)

It is noted that the UVMS can be influenced by uncertain factors such as parameter
uncertainties, hydrodynamics and external disturbances, the system dynamic equations in
Equation (16) can be rewritten as:

(M̂ζ +∆Mζ)
..
ζ +(Ĉζ +∆Cζ)

.
ζ +(D̂ζ +∆Dζ)

.
ζ +(Ĝζ +∆Gζ)+τc(ζ,

.
ζ,νc)+τζ,d = τζ (17)

For the convenience of the subsequent analysis, the dynamic equations illustrated by
Equation (17) can be transformed into the following form:

..
ζ = F(t) + d(t) + M̂−1

ζ · τζ (18)

where F(t) and d(t) are defined as nominal model term and the lumped disturbance vector
of the system, respectively, and given by:{

F(t) = −M̂−1
ζ (Ĉζ

.
ζ + D̂ζ

.
ζ + Ĝζ)

d(t) = −M̂−1
ζ (∆Mζ

..
ζ + ∆Cζ

.
ζ + ∆Dζ

.
ζ + ∆Gζ + τc(ζ,

.
ζ,νc)) + dζ

(19)

where dζ = −M̂−1
ζ · τζ,d denotes the disturbance term related to the external disturbances.

Assumption 1. The time derivative of the lumped disturbance vector defined as
.
d(t) is bounded by

Ld , i.e.,‖
.
d(t)‖1 ≤ Ld, where the upper bound Ld is a positive constant.

2.4. Notation and Lemmas

In this section, some notations are defined: for any x = [x1, · · · , xn]
T ∈ Rn, xi ∈ R, α =

[α1, · · · , αn]
T ∈ Rn

+, αi ∈ R+, i = 1, · · · , n, ‖x‖1 = ∑n
i=1|xi| and ‖x‖2 =

√
∑n

i=1|xi|2 denote
the 1-norm and 2-norm of the vector x, respectively; consider sig(x1)

α1 = |x1|α1 · sign(x1) where
sign(·) represents the signum function, and define sig(x)α1 = [sig(x1)

α1 , · · · , sig(xn)
α1 ]

T and
sig(x)α = [sig(x1)

α1 , · · · , sig(xn)
αn ]

T .

Lemma 1 [26]. Let k1, · · · , kn > 0 such that the polynomial sn + knsn−1 + · · ·+ k2s + k1 is
Hurwitz, and consider the system

.
x1 = x2, · · · ,

.
xn−1 = xn,

.
xn = u(t). There exists sufficiently

small ϑ ∈ (0, 1) such that, for every α ∈ (1− ϑ, 1), the system can realize the globally finite-time
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stability under the feedback u(t) = −k1 · sig(x1)
α1 − · · · − kn · sig(xn)

αn , where αi, i = 1, · · · , n,
satisfy the recurrent relations αi−1 = αiαi+1/(2αi+1 − αi), i = 1, · · · , n, with αn+1 = 1 and
αn = α.

Lemma 2 [27]. If a bounded signal is square integrable and also has a bounded first order time
derivative, the signal can converge to zero asymptotically.

3. Control Strategy

Define the position tracking error vector e1 and its time derivative
.
e1 satisfying e1 =

ζ − ζr and z1 =
.
e1 =

.
ζ −

.
ζr. The objective is to design a suitable control scheme that can

make the position tracking error vector e1 achieve the asymptotical convergence to zero.

3.1. NFTSMC

Let us define an auxiliary term z2 in the following:

z2 = z1 + C1

∫ t

0
sig(e1)

α1 dt + C2

∫ t

0
sig(z1)

α2 dt (20)

and then, to achieve the fast convergence and avoid singularity, the modified NFTSMS
variable s is designed as follows under the inspiration of both [26,28]:

s = z2 + C3

∫ t

0
sig(z2)

α3 dt + C4

∫ t

0
sig(z2)

β1 dt (21)

where the gain matrices Ci = diag[ci1, · · · , ci,6+n], i = 1, 2, 3, 4, have their components sat-
isfying cij > 0, i = 1, 2, 3, 4, j = 1, · · · , 6 + n. The constant parameter vectors αh, h = 1, 2, 3,
and β1 are defined as αh = [αh1, · · · , αh,6+n]

T , h = 1, 2, 3, and β1 = [β11, · · · , β1,6+n]
T , re-

spectively. Besides, the components of the matrices C1 and C2, and the vector α1 and α2 are
selected based on Lemma 1, i.e., the Hurwitz polynomials s2 + c2js + c1j, j = 1, · · · , 6 + n
and α1j = α2j/(2− α2j), j = 1, · · · , 6 + n with existing a small constant ϑ1 ∈ (0, 1) s.t.
α2j ∈ (1− ϑ1, 1). Next, the constant parameter vectors α3 and β1 are chosen in accordance
with [28], satisfying α3j ∈ (0, 1) and β1j ∈ [1,+∞), j = 1, · · · , 6 + n.

Considering the situation when the sliding mode variable s reaches the sliding
switched surface, namely, s(t) = 0, it can also result

.
s(t) = 0. By the use of Equation (21),

we can derive:
.
z2 + C3sig(z2)

α3 + C4sig(z2)
β1 = 0 (22)

Through Definition 2 in [28], it concludes from Equation (22) that the auxiliary vector
z2 can converge to the origin in finite time. That is, there exists T1 such that z2 = 0 holds
for all t ≥ T1, which can further imply

.
z2 = 0. Based on this, combining with Equation (20),

it yields:
.
z1 + C1sig(e1)

α1 + C2sig(z1)
α2 = 0 (23)

By using z1 =
.
e1 and Lemma 1, it can deduce that the position tracking error vector e1

can achieve the convergence to zero in finite time.
Upon introducing another auxiliary term:

z0 = C1

∫ t

0
sig(e1)

α1 dt + C2

∫ t

0
sig(z1)

α2 dt (24)

and then Equation (20) can be also expressed as z2 = z1 + z0.
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3.2. ESO

Taking the lumped disturbance vector d(t) as an extended state, and combining with
(24), the extended dynamic form of Equation (19) can be expressed as:{ .

z2 = F(t)−
..
ζr +

.
z0 + M̂−1

ζ · τζ + d
.
d = h(t)

(25)

where h(t) denotes the time derivative of the lumped disturbance vector d(t).
The fixed-time convergent ESO is designed referring to [22]. To avoid the chattering

due to the discontinuous signum function, sign (·) in the ESO is replaced by a saturation
function sat (·). The modified ESO can be represented:{ .

ẑ2 = F(t)−
..
ζr +

.
z0 + M̂−1

ζ · τζ + ρ1 · sig(z̃2)
1/2 + ρ2 · sig(z̃2)

γ1 + d̂
.
d̂ = ρ3 · sat(z̃2)

(26)

where the constant gain parameters satisfy ρ1, ρ2, ρ3 > 0 and γ1 > 1. The vectors ẑ2 and
d̂ denote the estimation values of the state vector z2 and d, respectively. And, the vector
z̃2 is the estimation error of the state vector z2, i.e., z̃2 = z2 − ẑ2 with its component form
z̃2 = [z̃21, · · · , z̃2,6+n]

T . Meanwhile, the saturation function sat(z̃2) is defined as:

sat(z̃2j) =

{
tanh(z̃2j/ε1j) for

∣∣z̃2j
∣∣ ≤ ε1j j = 1, · · · , 6 + n

sign(z̃2j) for
∣∣z̃2j
∣∣ > ε1j j = 1, · · · , 6 + n

(27)

Remark 3. Choose the saturation function instead of the conventional sign function, and it can
attenuate the chattering caused by the latter discontinuity.

Combining Equations (25) and (26), the estimation error equation for the ESO can be
expressed as: { .

z̃2 = −ρ1 · sig(z̃2)
1/2 − ρ2 · sig(z̃2)

γ1 + d̃
.
d̃ = −ρ3 · sat(z̃2) + h(t)

(28)

where d̃ = d− d̂ denotes the estimation error of the lumped disturbance vector d.
The result follows from Theorem 2 in [22] that both the estimation errors z̃2 and d̃ can

converge to the origin uniformly in fixed time.

3.3. Adaptive Control Law

An adaptive control scheme can be proposed for the trajectory tracking control of the
UVMS subjected to the lumped disturbances.

Assumption 2. The disturbance estimation error satisfies ‖d̃‖1 ≤ δ where the upper bound δ is
unknown.

Theorem 1. Considering the dynamic equations of the UVMS in Equation (19), and combing the
ESO in Equation (26) under Assumptions 1–2, the proposed control law can be chosen as:

τζ = M̂ζ · [−(F(t)−
..
ζr +

.
z0 + C3sig(z2)

α3 + C4sig(z2)
β1)− d̂−K1 · s− ur] (29)

where K1 = diag[k11, · · · , k1,6+n] is the gain matrix with its components satisfying k1j > 0,
j = 1, · · · , 6 + n. The conventional robust term in Equation (29) is defined as:

ur = δ̂ · sign(s) (30)
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where δ̂ presenting the estimation value of the parameter δ is calculated by the following
adaptive law:

.
δ̂ = ρ4 · ‖s‖1 (31)

Thus, all of the related state signals like s and δ̃ are bounded, and the position tracking
error vector of the system e1 can converge to zero asymptotically.

Proof of Theorem 1. Considering the following Lyapunov function that is positive and define:

V1 = sT · s/2 + δ̃2/(2ρ4) (32)

where δ̃ = δ− δ̂ is the estimation error of the parameter δ.
With respect to combining the above Equations (21), (25), (29)–(31), the time derivative

of V1 yields:

.
V1 = sT · .

s + δ̃ ·
.
δ̃/ρ4

= sT · [F(t)−
..
ζr +

.
z0 + C3sig(z2)

α3 + C4sig(z2)
β1 + M̂−1

ζ · τζ + d]− δ̃ ·
.
δ̂/ρ4

= sT · (d̃−K1 · s− δ̂ · sign(s))− δ̃ · ‖s‖1
≤ ‖d̃‖1 · ‖s‖1 − sTK1s− δ̂ · ‖s‖1 − δ̃ · ‖s‖1

= −sTK1s− (δ− ‖d̃‖1) · ‖s‖1
≤ −sTK1s
≤ −λ1sTs

(33)

where λ1 = λmin(K1), and λmin(·) denotes the minimum eigenvalue of the matrix.
According to Equation (33), we can obtain

.
V1 ≤ −λ1sTs all the time, so the inequality

relation
.

V1 < 0 holds for every s 6= 0, which further demonstrates that the signals like V1,
s and δ̃ are bounded. From the above derivation, we have:

.
s = d̃−K1 · s− δ̂ · sign(s) (34)

For the reason that the vectors s and δ̃ are bounded, in combination with the Assump-
tion 2, we know that the estimation value δ̂ is bounded. Furthermore, it can conclude
the boundness of

.
s. Introducing another new function L1(s) = λ1sTs, both L1(s) and its

time derivative are bounded because of the boundness of the vectors s and
.
s. Then, we

can obtain lim
T→∞

∫ t
0 L1(s) ≤ V1(0)−V1(∞). Since both V1(0) and V1(∞) are bounded, the

sliding mode variable s is square integrable. Hence, the function L(s) can converge to zero
asymptotically via Lemma 2, which further derives the asymptotical convergence of the
sliding mode variable s to zero. Finally, in accordance with the above Equation (21), it
results that the position tracking error vector e1 can achieve the asymptotical convergence
to zero.

As the conventional robust term in Equation (30) contains the discontinuous signum
function, it may cause the chattering problem. Inspired by [26,29], a continuous fractional
PI-type controller is designed as:

ur(s
∣∣∣χ) = χT ·ϕ(s) (35)

where χ = [ χ1 χ2 ]
T and ϕ(s) = [ s

∫ t
0 sig(s)α4 dt ]

T
, α4 ∈ (0, 1). According to the

analysis found in [29], we can use ur(s|χ̂) to approximate the conventional robust term
ur = δ̂sign(s), and the related estimated value χ̂ can be derived from Lyapunov theory.
Consequently, we can get the modified control scheme based on Equation (35) shown in
the following Theorem 2. �

Theorem 2. Consider the dynamic equations of the UVMS described by Equation (19) satisfying
Assumptions 1–2. In combination with the ESO in Equation (26), the control law of the system is
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determined by Equation (29), satisfying the continuous fractional PI-type robust term in Equation
(36) and the adaptive laws in Equations (31) and (37):

ur(s
∣∣∣χ̂) = χ̂T ·ϕ(s) (36)

.
χ̂ = ρ5 ·ϕ(s) · s (37)

Thus, all of the related state signals such as s, δ̃, and χ̃ are bounded, and the position
tracking error vector of the system e1 can achieve the asymptotical convergence to zero.

Proof of Theorem 2. Choosing another positive definite Lyapunov function is expressed as:

V2 = sT · s/2 + δ̃2/(2ρ4) + tr(χ̃T · χ̃)/(2ρ5) (38)

where χ̃ = χ∗ − χ̂ is the estimation error of χ and its optimal value χ∗ is defined as:

χ∗ = arg min
χ∈R2(6+n)×(6+n)

[
sup

s∈R(6+n)×1

∣∣ur(s|χ)− δ̂ · sign(s)
∣∣] (39)

Combining with Equations (29), (31), (36)–(37), the time derivative of V2 yields:

.
V2 = sT · .

s + δ̃ ·
.
δ̃/ρ4 + tr(χ̃T ·

.
χ̃)/ρ5

= sT(d̃−K1 · s− ur(s|χ̂))− δ̃ ·
.
δ̂/ρ4 − tr(χ̃T ·

.
χ̂)/ρ5

= sT(d̃−K1 · s− ur(s|χ̂) + ur(s|χ∗)− ur(s|χ∗))− δ̃ ·
.
δ̂/ρ4 − tr(χ̃T ·

.
χ̂)/ρ5

= sT(d̃−K1 · s + χ̃T ·ϕ(s)− ur(s|χ∗))− δ̃ ·
.
δ̂/ρ4 − tr(χ̃T ·

.
χ̂)/ρ5

= −sTK1s + sT · (d̃− ur(s|χ∗))− δ̃ · ‖s‖1 + tr(χ̃T · (ϕ(s) · s−
.
χ̂/ρ5))

≤ −sTK1s + ‖s‖1 · ‖d̃‖1 − δ̂ · ‖s‖1 − δ̃ · ‖s‖1
= −sTK1s− (δ− ‖d̃‖1) · ‖s‖1

≤ −sTK1s

(40)

Similarly, it can conclude from Equation (40) that
.

V2 ≤ 0 holds for any s ∈ R(6+n)×1,
that is,

.
V2 is negative semi-definite. Therefore, the Lyapunov function V2 is bounded,

which implies that the signals s, δ̃ and χ̃ are bounded. In addition that, we can obtain:

.
s = d̃−K1 · s + χ̃T ·ϕ(s)− ur(s|χ∗) (41)

It is easy to know that the terms on the right of Equation (41) are bounded, thus
the boundness of

.
s can be ensured. According to the similar analysis in Equation (34), it

can finally derive that the position tracking error vector e1 can achieve the asymptotical
convergence to zero. In summary, the asymptotic stability of the system can be guaranteed
by the Lyapunov theory. �

Figure 3 describes the complete control process for the trajectory tracking of the
UVMS. First, the quaternion-based CLIKA can be used to solve the reference position and
orientation through the desired values of the UVMS end-effector. The proposed controller
contains three parts: NFTSMS, ESO and adaptive control law. Combining with the position
and velocity errors, the modified NFTSMS is designed to achieve the fast convergence of
the tracking errors. Based on this, to estimate the lumped disturbances, the ESO method
is utilized by taking the lumped disturbance vector as an extended state of the system.
Meanwhile, an adaptive robust term is applied for handling the unknown boundness of
the disturbance estimation errors. Then, incorporating NFTSMS, ESO and adaptive law
into the control law, the obtained efforts are taken as the control inputs that can drive
both vehicle and manipulator to approximate the reference values. In general, those input
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efforts should act on the thrust equipment of the underwater vehicle like thrusters in [30]
to achieve proper operation, while it’s not the focus of this paper. The actual position
and velocity as the control outputs are used to assign the related position and velocity
errors. After that, the actual position information can be taken as the input of the forward
kinematics to solve the actual position and orientation of the UVMS end-effector. Finally,
the closed-loop control process is formed to support the following simulation.
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Figure 3. The adaptive NFTSMC diagram based on ESO of the UVMS.

4. Simulation

In this section, simulations with the help of MATLAB/Simulink toolbox are performed
on a ten DOF UVMS, where the UVMS contains a four DOF underwater vehicle and a six
DOF underwater manipulator, and its coordinated frames are shown in Figure 4. Then,
some assumptions are given in the following: the gravity of the underwater vehicle equals
its buoyancy; The link density of the manipulator is 2700 kg/m3, and the centre of buoyancy
of the underwater manipulator is coincident with its centre of gravity; the density of the
fluid is 1025.9 kg/m3; the coefficient of water resistance CD = 1.05; The coefficient of
additional mass force is CM = 0.8. The dynamic parameters of the vehicle are expressed
in Table 2 referring to [31,32], and its centres of gravity and buoyancy in the vehicle-fixed
frame are [0, 0, 0] m and [0, 0, 0.04] m, respectively. The related link parameters of the
manipulator are listed in Table 3, and the position of the base origin in the vehicle-fixed
frame is [0.5, 0, 0] m.
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Table 2. The model parameters and hydrodynamic coefficients of the underwater vehicle.

Parameters Value Definition

m (kg) 180 Mass of the vehicle
Iz (kg m2) 28 Moment of inertia in z axis

X .
u,Y .

v,Z .
w (kg) −30, −110, −80 Add mass

N .
r (kg m) −1 Add mass

Xu,Yv,Zw (kg/s) −80, −110, −100 Linear damping
Nr (kg m/s) −10 Linear damping

Xu|u|,Yv|v|,Zw|w| (kg/m) −120, −200, −150 Crossflow drag
Nr|r| (kg m) −15 Crossflow drag
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Table 3. The link parameters of the manipulator.

Parameters Link 1 Link 2 Link 3 Link 4 Link 5 Link 6

αi−1 (rad) 0 π/2 0 π/2 −π/2 −π/2
ai−1 (m) 0 0 1.0 0 0 0
di (m) 0.24 0 0.14 1.28 −0.14 −0.19

θi (rad) θ1 θ2 θ3 θ4 θ5 θ6

Assume that the desired trajectory and attitude of the UVMS end-effector can be
formulated by:

xd = −2 + 3 cos(πt/25) m
yd = −1− 5 sin(πt/25) m

zd = 0.03t− 0.5 m
,


φd = 0.2 · sin(πt/30) rad
θd = 0.1 · cos(πt/30) rad

ψd = 0.15 · cos(πt/30) rad
(42)

The initial position and orientation of the UVMS end-effector is (−0.09 m, 0.4 m,
−1.19 m, 0 rad, 0 rad, 0 rad). And, the ten DOF UVMS is considered to be subjected to
the lumped disturbances, which contain the parameter uncertainties with ∆Mζ = 0.1Mζ ,
∆Cζ = 0.1Cζ , ∆dζ = 0.1dζ , and ∆Gζ = 0.1Gζ , and the velocity of the water currents with
(0.1, 0.1, 0) m/s in the earth-fixed frame. In addition, provided that the unknown external
disturbance vector is expressed as: dζ1 = 0.2 sin(πt/15) m/s2, dζ2 = 0.15 cos(πt/15)
m/s2,dζ3 = 0.2 sin(πt/15) m/s2, dζ4 = 0.15 cos(πt/15) rad/s2, dζ5 = 0.1 sin(πt/15)
rad/s2, dζ6 = 0.12 cos(πt/15) rad/s2, dζ7 = 0.12 sin(πt/15) rad/s2, dζ8 = 0.11 cos(πt/15)
rad/s2,dζ9 = 0.1 sin(πt/15) rad/s2 and dζ10 = 0.1 cos(πt/15) rad/s2. Then, the control
strategies for the first three cases are presented in the following definitions.

In case 1, the controller is applied by the PID-ESO scheme with conventional robust
term, whose control law is:

τ1 = M̂ζ · (−F(t) +
..
ζr −Kd1 · z1 −Kp1 · e1 − d̂− δ̂ · sign(z1)) (43)

along with the adaptive law:
.
δ̂ = ρ4 · ‖z1‖1 (44)

and the related ESO being expressed as:{ .
ẑ1 = F(t)−

..
ζr + M̂−1

ζ · τζ + ρ1 · sig(z̃1)
1/2 + ρ2 · sig(z̃1)

γ1 + d̂
.
d̂ = ρ3 · sat(z̃1)

(45)

with:

sat (z̃1J) =

{
tanh(z̃1j)

∣∣z̃1j
∣∣ ≤ ε1j j = 1, · · · , 10

sign(z̃1j)
∣∣z̃1j
∣∣ > ε1j j = 1, · · · , 10

(46)

and, the control gains Kd1 and Kp1 are diagonal and positive definite matrices.
In case 2, the controller is designed by combining the PID-type SMC-ESO scheme and

the conventional robust term, and its control law satisfies:

τ2 = M̂ζ · [−(F(t)−
..
ζr +

.
z0)−K1 · z2 − d̂− δ̂ · sign(z2)] (47)

together with the SMC variable z2 in Equation (20) and the ESO coinciding with Equations
(45) and (46), and the adaptive law satisfying:

.
δ̂ = ρ4 · ‖z2‖1 (48)
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In case 3, the control law of the PID-type SMC-ESO scheme with continuous fractional
PI-type robust term is designed as:

τ3 = M̂ζ · [−(F(t)−
..
ζr +

.
z0)−K1 · z2 − d̂− ur(z2

∣∣∣χ̂)] (49)

where the SMC variable z2 is the same as that in Equation (20), and the continuous fractional
PI-type robust term ur(z2|χ̂) is chosen as Equation (50) as well as the adaptive laws in
Equations (48) and (51):

ur(z2

∣∣∣χ̂) = χ̂T ·ϕ(z2) (50)

.
χ̂ = ρ5 ·ϕ(z2) · z2 (51)

where ϕ(z2) = [ z2
∫ t

0 sig(z2)
α4 dt ]

T
,α4 ∈ (0, 1).

Proofs of the stability of the control systems for cases 1–3 have been given in the
Appendix A. Here, the proposed control scheme in Theorem 2 is considered as the fourth
case. The related parameter values of the controllers in four cases are assigned in Table 4.
Besides, all of the initial values of the state vectors corresponding to the ESO and the
adaptive laws are set as zeros. Moreover, the complete diagram of the simulation program
for the UVMS is described in Figure S45 of the Supplementary Materials.

Table 4. The parameter values of the controllers.

Terms Value

SMC c1j = 1, c2j = 2, c3j = 3, α2j = 0.95, α3j = 0.9, β1j = 1.1,
j = 1, · · · , 10

ESO ρ1 = 5, ρ2 = 8, ρ3 = 6, γ1 = 3/2, ε1j = 0.02, j = 1, · · · , 10
Control Law Kd1 = 2I10×10, Kp1 = I10×10, K1 = 2I10×10

Adaptive Law ρ4 = 0.01, ρ5 = 5, α4 = 0.9

To obtain the straight analysis for the simulation results, introducing the average posi-
tion and orientation errors of the end-effector, and the average estimation error components
of the lumped disturbances are expressed as follows:

Eκ =

√
‖eκ‖2

2/N1 κ ∈ {x, y, z, φ, θ, ψ} (52)

Eι =

√
‖eι‖2

2/N1 ι ∈ {d1, d2, · · · , d10} (53)

Eτ j =
√
‖τhj‖2

2/N1 h = 1, 2, 3, 4, j = 1, 2, · · · , 10 (54)

where ex, ey, ez and eφ, eθ , eψ denote the position error and orientation error vectors of the
end-effector, respectively. And the vectors eι1 , ι1 ∈ {d1, d2, · · · , d10} are the components of
the lumped disturbance estimation error vector. τhj, h = 1, 2, 3, 4, j = 1, 2, · · · , 10, denote
the jth component vectors of the total control input vector in case h. The number of the
simulation steps from 10 s to 50 s is N1 = 800.

Subsequently, some simulation results under four cases for the trajectory tracking of
the UVMS end-effector are described in Figures 5–17. Figure 5 displays the time history
of the desired and actual trajectories of the UVMS end-effector in cases 1–4. As seen
from it, even if the initial position of the end-effector is quite different from the desired
initial position, after a little time the positions of the end-effector can all achieve the fast
tracking for the desired trajectory. Figures 6–11 present the tracking situation on the
three direction positions and three orientation angles of the end-effector for four cases,
respectively. Actually, in the beginning seconds all of the positions and orientation angles
have a few differences from the desired values and then all of them can quickly reach
the desired values, which are in accord with the results in Figure 5. In the following
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Figures 12–17, we can obtain some results for the three position and orientation angle
errors of the end-effector.
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Figure 5. Trajectories (four cases).
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Figure 6. X direction positions of the end−effector (four cases).
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Figure 7. Y direction positions of the end−effector (four cases).
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Figure 8. Z direction positions of the end−effector (four cases).
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Figure 9. Roll angles of the end−effector (four cases).
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Figure 10. Pitch angles of the end−effector (four cases).



J. Mar. Sci. Eng. 2021, 9, 501 17 of 31J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 18 of 32 
 

 

 

Figure 11. Yaw angles of the end−effector (four cases). 

From Figure 12, the position errors of the end-effector in X direction for cases 2–4 can 

reach [−0.01, 0.01] m at about 6 s, but after three seconds the result in case 1 starts to con-

verge more slowly. Then, Figure 13 shows that the Y direction position error of the end-

effector in case 4 can arrive at [−0.01, 0.01] m within 1.5 s, and the slower is at 4 s in cases 

2–3, and the slowest in case 1 till about 11 s. Figure 14 presents the position error of the 

end-effector in Z direction for cases 1–4, where those in cases 2–4 can reach [−0.01, 0.01] m 

at about 5 s and converge four seconds faster than that in case 1. Moreover, the three 

steady-state position errors of the end-effector in four cases can all obtain the range of 

[−0.002, 0.002] m, and the error values of case 4 change a little smoother than those in cases 

2–3, and the roughest ones are in case 1. 

Figures 15–17 lay out the roll angle, pitch angle and yaw angle errors of the end-

effector under four cases, respectively. Noted that the roll angle errors in cases 2–4 can 

attain [−0.01, 0.01] rad at about 6 s, while that in case 1 can reach till about 14 s. Though 

the pitch angle errors in case 1 can reach [−0.01, 0.01] rad with one second faster than those 

in cases 2–4, after then the latter values can realize faster convergence than that in case 1. 

Seen from Figure 17, the yaw angle error in case 4 can get to [−0.01, 0.01] rad at less than 

4 s, and has two seconds faster than those in cases 2–3, while the one in case 1 can reach 

the feasible range till about 12 s. Then the yaw angle error in case 1 tends to a slower 

convergence rate than those in other cases. Finally, all the three steady-state orientation 

angle errors of the end-effector can realize the range of [−0.007, 0.007] rad, where those in 

case 4 have much smoother changes than those in cases 1–3, and meanwhile those in case 

1 range most largely. In addition, their average position and orientation angle errors of 

the end-effector are listed in Table 5. It is evident that from 10 s to 50 s all of the average 

values for cases 2–4 are much smaller than those in case 1, especially, the last four average 

errors in case 4 are the smallest compared to other cases. 

 

Figure 12. X direction position errors of the end−effector (four cases). 

0 10 20 30 40 50
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

t(s)

Y
a

w
 a

n
g

le
 o

f 
th

e
 e

n
d

-e
ff
e

c
to

r 
(r

a
d

)

 

 
Desired

Case 1

Case 2

Case 3

Case 4

0 10 20 30 40 50
-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

t(s)

X
 d

ir
e

c
ti
o

n
 p

o
s
it
io

n
 e

rr
o

r 
o

f 
th

e
 e

n
d

-e
ff
e

c
to

r 
(m

)

 

 
Case 1

Case 2

Case 3

Case 4

0 5 10 15 20
-0.01

0

0.01

 

 

20 30 40 50
-2.0e-3

0

2.0e-3

 

 

20 30 40 50
-5.0e-4

0

5.0e-4

 

 

Figure 11. Yaw angles of the end−effector (four cases).
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Figure 12. X direction position errors of the end−effector (four cases).
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Figure 13. Y direction position errors of the end−effector (four cases).
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Figure 14. Z direction position errors of the end−effector (four cases).
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Figure 15. Roll angle errors of the end−effector (4 cases).
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Figure 16. Pitch angle errors of the end−effector (four cases).
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Figure 17. Yaw angle errors of the end−effector (four cases).

From Figure 12, the position errors of the end-effector in X direction for cases 2–4
can reach [−0.01, 0.01] m at about 6 s, but after three seconds the result in case 1 starts to
converge more slowly. Then, Figure 13 shows that the Y direction position error of the
end-effector in case 4 can arrive at [−0.01, 0.01] m within 1.5 s, and the slower is at 4 s in
cases 2–3, and the slowest in case 1 till about 11 s. Figure 14 presents the position error
of the end-effector in Z direction for cases 1–4, where those in cases 2–4 can reach [−0.01,
0.01] m at about 5 s and converge four seconds faster than that in case 1. Moreover, the
three steady-state position errors of the end-effector in four cases can all obtain the range
of [−0.002, 0.002] m, and the error values of case 4 change a little smoother than those in
cases 2–3, and the roughest ones are in case 1.

Figures 15–17 lay out the roll angle, pitch angle and yaw angle errors of the end-
effector under four cases, respectively. Noted that the roll angle errors in cases 2–4 can
attain [−0.01, 0.01] rad at about 6 s, while that in case 1 can reach till about 14 s. Though
the pitch angle errors in case 1 can reach [−0.01, 0.01] rad with one second faster than those
in cases 2–4, after then the latter values can realize faster convergence than that in case
1. Seen from Figure 17, the yaw angle error in case 4 can get to [−0.01, 0.01] rad at less
than 4 s, and has two seconds faster than those in cases 2–3, while the one in case 1 can
reach the feasible range till about 12 s. Then the yaw angle error in case 1 tends to a slower
convergence rate than those in other cases. Finally, all the three steady-state orientation
angle errors of the end-effector can realize the range of [−0.007, 0.007] rad, where those in
case 4 have much smoother changes than those in cases 1–3, and meanwhile those in case 1
range most largely. In addition, their average position and orientation angle errors of the
end-effector are listed in Table 5. It is evident that from 10 s to 50 s all of the average values
for cases 2–4 are much smaller than those in case 1, especially, the last four average errors
in case 4 are the smallest compared to other cases.

Table 5. Average position and orientation errors of the end-effector under four cases from 10 s to 50 s.

Case/10−3 Case 1 Case 2 Case 3 Case 4

Ex (m) 1.80 0.18 0.21 0.20
Ey (m) 2.90 0.37 0.34 0.35
Ez (m) 1.50 0.024 0.056 0.007

Eφ (rad) 5.80 0.036 0.115 0.041
Eθ (rad) 1.60 0.052 0.169 0.046
Eψ (rad) 4.90 0.143 0.207 0.016

Figures 18–21 describe the tracking history for the three direction positions and yaw
angle of the vehicle under four cases, in which all the actual values can reach the reference
trajectories within about 10 s. Then, some results for the X, Y, Z direction position and
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yaw angle errors of the vehicle are given in Figures 22–25. In Figure 22, the X direction
position error of the vehicle in case 4 can reach [−0.01, 0.01] m at about 1.5 s, which has
two seconds faster than those in cases 2–3, while that in case 1 can achieve the range till
about 10 s and then converge more slowly than the former three cases. Figures 23 and 24
present the Y and Z direction position errors of the vehicle in cases 1–4, respectively. And,
the two position errors in case 4 can all can arrive at [−0.01, 0.01] m within 1.5 s, and those
in cases 2–3 can reach more slowly between 4 s and 5 s, and the slowest those in case 1 are
till about 11 s. After that, all the three position errors of the vehicle in cases 2–4 have much
faster convergent rates than those in case 1. From Figure 25, the yaw angle error of the
vehicle in case 4 can get to [−0.01, 0.01] rad at about 1.5 s, and after less two seconds those
in cases 2–3 can achieve, while that in case 1 can attain till about 8.5 s and then converge in
a slower rate. Finally, the three direction position and yaw angle errors under four cases
can achieve the steady-state ranges of [–0.003, 0.003] m and [–0.004, 0.004] rad, respectively.
Moreover, all of the steady-state error values in case 4 have much smoother changes than
those in other cases, and the roughest in case 1.
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Figure 18. X direction positions of the vehicle (four cases).

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 22 of 33 
 

 

Figures 18–21 describe the tracking history for the three direction positions and yaw 
angle of the vehicle under four cases, in which all the actual values can reach the reference 
trajectories within about 10 s. Then, some results for the X, Y, Z direction position and 
yaw angle errors of the vehicle are given in Figures 22–25. In Figure 22, the X direction 
position error of the vehicle in case 4 can reach [−0.01, 0.01] m at about 1.5 s, which has 
two seconds faster than those in cases 2–3, while that in case 1 can achieve the range till 
about 10 s and then converge more slowly than the former three cases. Figures 23 and 24 
present the Y and Z direction position errors of the vehicle in cases 1–4, respectively. And, 
the two position errors in case 4 can all can arrive at [−0.01, 0.01] m within 1.5 s, and those 
in cases 2–3 can reach more slowly between 4 s and 5 s, and the slowest those in case 1 are 
till about 11 s. After that, all the three position errors of the vehicle in cases 2–4 have much 
faster convergent rates than those in case 1. From Figure 25, the yaw angle error of the 
vehicle in case 4 can get to [−0.01, 0.01] rad at about 1.5 s, and after less two seconds those 
in cases 2–3 can achieve, while that in case 1 can attain till about 8.5 s and then converge 
in a slower rate. Finally, the three direction position and yaw angle errors under four cases 
can achieve the steady-state ranges of [–0.003, 0.003] m and [–0.004, 0.004] rad, 
respectively. Moreover, all of the steady-state error values in case 4 have much smoother 
changes than those in other cases, and the roughest in case 1. 

 
Figure 18. X direction positions of the vehicle (four cases). 

 
Figure 19. Y direction positions of the vehicle (four cases). 

0 10 20 30 40 50
-4

-3

-2

-1

0

1

2

t(s)

X
 d

ire
ct

io
n 

po
si

tio
n 

of
 th

e 
ve

hi
cl

e 
(m

)

 

 
Reference
Case 1
Case 2
Case 3
Case 4

0.5 1.5 2.5 3.5 4.5 5.5
0.75

0.85

0.95

 

 

0 10 20 30 40 50
-5

-4

-3

-2

-1

0

1

2

3

4

t(s)

Y
 d

ire
ct

io
n 

po
si

tio
n 

of
 th

e 
ve

hi
cl

e 
(m

)

 

 
Reference
Case 1
Case 2
Case 3
Case 4

0.5 1.0 1.5 2.0 2.5
-1.2

-0.7

-0.2

 

 

Figure 19. Y direction positions of the vehicle (four cases).
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Figure 20. Z direction positions of the vehicle (four cases).
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Figure 21. Yaw angles of the vehicle (four cases).
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Figure 22. X direction position errors of the vehicle (four cases).
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Figure 23. Y direction position errors of the vehicle (four cases).
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Figure 24. Z direction position errors of the vehicle (four cases).
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Figure 25. Yaw angle errors of the vehicle (four cases).

Besides, there are some velocity results for the three positions and yaw angle of
the vehicle under four cases in Figures S1–S8, shown in the Supplementary Materials.
From Figures S1–S4, the three direction velocities and yaw angle velocities of the vehicle
in cases 1–4 can reach the reference values at about 5 s. In Figures S5–S7, the corre-
sponding velocity errors in cases 1–4 can all get to [−0.01, 0.01] m/s within 7 s, while
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those in case 1 converge slower than other cases. In the final phase, their steady-state
velocity errors in cases 2–4 can achieve the range of [−10−4, 10−4] m/s and those in
case 1 are [−7× 10−4, 7× 10−4] m/s. Then, in Figure S8 the yaw angle velocity errors
of the vehicle for cases 1–4 can reach [−0.01, 0.01] rad/s within 4 s, and their steady-
state errors can all arrive at [−8× 10−4, 8× 10−4] rad/s. In the Supplementary Materials,
Figures S9–S14 and S21–S26 describe the six joint position and velocity trajectories of the
manipulator for tracking the reference values in four cases, respectively. Seen from them,
the actual joint position and velocity trajectories can all reach the reference ones within 15 s,
and their corresponding tracking error results are shown in Figures S15–S20 and S27–S32
of the Supplementary Materials. Among, it can be obtained from Figures S15–S20 that all
of the six joint position errors can arrive at the range of [−0.01, 0.01] rad at about 13 s, and
their steady-state errors in cases 2–4 can arrive at [−4× 10−4, 4× 10−4] rad and those in
case 1 are [–0.008, 0.008] rad. In Figures S27–S32 all of the six joint velocity errors for cases
1–4 can get to [−0.01, 0.01] rad/s within 9 s, and their steady-state errors in cases 1–4 can
all achieve the range of [–0.003, 0.003] rad/s. Especially, all of the results in case 4 show the
smoothest changes than those in other cases, and the roughest are in case 1.

Figures 26–29 describe the X, Y, Z direction forces and yaw angle moments of the
vehicle in four cases, respectively. Seen that in the beginning all of the forces and moments
change largely, and after five seconds they turn to smooth trends. In addition, the related
six joint moments of the manipulator are shown in Figures S33–S38 of the Supplementary
Materials. Then, the average force and moment values of the UVMS is listed in Table 6,
where the average force and moment values have less 0.1 N and 0.4 N m differences among
the four cases, respectively. That means that after about 10 s, their energy consumptions for
cases 1–4 approach to the same levels, which is consist with the results in Figures S33–S38.
Combining the above analysis for the tracking errors of the UVMS, we can obtain that
the proposed control system in case 4 can have faster convergence and higher precision
tracking performance compared to other three cases.
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Figure 26. X direction forces for the first control input of the vehicle (four cases).

Figures 30 and 31 represent the components and their estimations of the lumped
disturbance vector for the UVMS in case 4, respectively. Some related results in other three
cases are shown in Figures S39–S44 of the Supplementary Materials. Despite that in the
initial time there exist big differences between the lumped disturbance vectors and their
estimations for cases 1–4, after several seconds the disturbance estimations in four cases
can all achieve much better approximation to the lumped disturbances. The reason is
that the ESO is applied to attenuate the effects of the complex lumped disturbances on
the control systems. Furthermore, the average disturbance estimation errors under four
cases from 10 s to 50 s are listed in Table 7. Noted that their average values are small and
have few differences among four cases. Since the tracking errors in case 4 show much
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smoother variation compared to those in other cases, it demonstrates that the proposed
control method has stronger robustness of resisting disturbances.
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Figure 27. Y direction forces for the second control input of the vehicle (four cases).
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Figure 28. Z direction forces for the third control input of the vehicle (four cases).
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Figure 29. Yaw angle moments for the fourth control input of the vehicle (four cases).
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Table 6. Average force and moment values of the UVMS under four cases from 10 s to 50 s.

Terms Case1 Case 2 Case 3 Case 4

Eτ1 (N) 32.5307 32.5300 32.5211 32.5636
Eτ2 (N) 39.6768 39.7046 39.7017 39.7052
Eτ3 (N) 338.6749 338.6780 338.6748 338.6907

Eτ4 (N m) 112.4979 112.4290 112.4317 112.4208
Eτ5 (N m) 120.8286 120.5714 120.5745 120.5689
Eτ6 (N m) 105.9977 106.2860 106.2694 106.3245
Eτ7 (N m) 45.0472 45.1208 45.1160 45.1327
Eτ8 (N m) 5.4377 5.4329 5.4334 5.4321
Eτ9 (N m) 0.6668 0.6648 0.6651 0.6641
Eτ10 (N m) 0.5632 0.5658 0.5657 0.5656
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Figure 30. d1−d4 and their estimations (case 4).
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Table 7. Average estimation errors of the lumped disturbances under four cases from 10 s to 50 s.

Case/10−3 Case1 Case 2 Case 3 Case 4

Ed1 (m/s2) 0.6313 0.6286 0.6280 0.6319
Ed2 (m/s2) 1.1 1.1 1.1 1.1
Ed3 (m/s2) 0.2732 0.2729 0.2730 0.2724

Ed4 (rad/s2) 1.7 1.7 1.7 1.7
Ed5 (rad/s2) 1.1 1.1 1.1 1.1
Ed6 (rad/s2) 1.7 1.7 1.7 1.7
Ed7 (rad/s2) 0.1451 0.1455 0.1459 0.1443
Ed8 (rad/s2) 1.3 1.3 1.3 1.3
Ed9 (rad/s2) 2.5 2.5 2.5 2.5
Ed10 (rad/s2) 6.2 6.3 6.3 6.2

In conclusion, the simulation comparative results validate that the proposed controller
can achieve the better tracking performance and stronger robustness of disturbance rejection.

5. Conclusions

In this paper, the adaptive NFTSMC scheme integrating with ESO is proposed for
the trajectory tracking of the UVMS under the lumped disturbances. First, the quaternion-
based CLIKA is utilized for avoiding the integral drifts in the inverse kinematics. The
proposed controller mainly contains the modified NFTSMS and ESO, and the adaptive
control law. And, the applied NFTSMS can make the tracking errors achieve the fast
convergence, together with avoiding the singularity. The utilization of the ESO is to es-
timate the lumped disturbances so that the estimation error can converge to the origin
in fixed time. At the same time, appending the saturation function to the ESO instead of
the signum function is to reduce the chattering effect. Besides, the continuous fractional
PI-type controller with the adaptive laws is introduced in the control input, so that it can ap-
proximate the conventional discontinuous robust term to attenuate the chattering because
of the discontinuity. Based on the Lyapunov theory, the control system is proved to have
asymptotical stability. Comparative simulations with several other methods demonstrate
that the proposed control system have better tracking performance and stronger robustness
against disturbances. In the future research, we will incorporate the redundancy resolution
scheme into the proposed control strategy to perform the simulation test of the UVMS, in
which the redundancy resolution can realize the secondary objectives, such as avoiding
manipulator joint limits and singularities, minimizing the vehicle motion, thrusters fault
tolerant, etc. And, it can provide a theoretical basis for the later experiments. When the
conditions of the laboratory permit, the control strategy can be applied for practicing to
verify the reliability of the controller via experimental tests.
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Appendix A

The kinematic equation of the end-effector in the vehicle-fixed frame is obtained in
accordance with [33]:

.
ςvE = [v

.
pT

E , vwT
E ]

T
=
[

JT
mp(q) JT

mO(q)
]T .

q (A1)

where vpE denotes the position vector of the end-effector in the vehicle-fixed frame, and v .
pE,

vwE are the linear velocity and angle velocity vectors of the end-effector in the vehicle-fixed
frame, respectively.

Define pE and IRE as the position vector and rotation matrix of the end-effector in the
earth-fixed frame, respectively, satisfying:

pE = η1 +
IRv

vpE (A2)

IRE = IRv
vRE (A3)

Here IRv is the rotation matrix from the vehicle-fixed frame to the earth-fixed frame,
and vRE as the rotation matrix from the end-effector frame to the vehicle-fixed frame.

Using (A2), the time derivative of the position vector pE, which means the linear
velocity of the end-effector in the earth-fixed frame, is given by:

.
pE =

.
η1 +

I .
Rv

vpE + IRv
v .
pE (A4)

satisfying:
I .
Rv = S(Iwv)

IRv (A5)



J. Mar. Sci. Eng. 2021, 9, 501 28 of 31

where Iwv denotes the angle velocity vector of the vehicle in the earth-fixed frame referring
to [34], namely,

Iwv = J3(η2)
.
η2 (A6)

together with:

J3(η2) =

 cψcθ −sψ 0
sψcθ cψ 0
−sθ 0 1

 (A7)

Then, combining (A1) and (A4) with respect to the time derivative of the vector pE,
we have: .

pE =
.
η1 + S(Iwv)

IRv
vpE + IRvJmp(q)

.
q

=
[

I3×3 −S(IRv
vpE)J3(η2)

IRvJmp(q)
]
·

.
ζ

(A8)

where I3×3 is the (3× 3) identity matrix.
Defining wE as the angle velocity of the end-effector in the earth-fixed frame, we can

get its expression by using (A1) and (A6):

wE = Iwv +
IRv

vwE
=
[

O3×3 J3(η2)
IRvJm0(q)

]
·

.
ζ

(A9)

where O3×3 is the (3× 3) null matrix.
Considering the linear velocity and angle velocity of the end-effector with respect to

the earth-fixed frame in (A8) and (A9), respectively, we integrate them into
.
ςE, i.e.:

.
ςE = [

.
pT

E , wT
E ]

T
= JE(η2, q) ·

.
ζ (A10)

with the Jacobian matrix JE(η2, q) satisfying:

JE(η2, q) =
[

I3×3 −S(IRv
vpE)J3(η2)

IRvJmp(q)
O3×3 J3(η2)

IRvJm0(q)

]
(A11)

Define the vector ηE = [φE, θE, ψE]
T as the orientation of the end-effector in the earth-

fixed frame, where φE, θE and ψE denote roll angle, pitch angle and yaw angle in the
Euler-angle form, respectively. And, the three orientation angles can be formulated by the
rotation matrix of the end-effector IRE referring to [35], namely:

ψE = tan−1(IRE(2, 1)/IRE(1, 1)),
θE = sin−1(−IRE(3, 1)),

φE = tan−1(IRE(3, 2)/IRE(3, 3)), θE 6= ±π/2
(A12)

Using (A2) and (A12), we can define the position and orientation of the end-effector in
the earth-fixed frame as xE = [pT

E , ηT
E]

T
= kee(ζ). Then, the angle velocity of the end-effector

in the earth-fixed frame wE can be expressed as follows corresponding to (A6):

wE = J3(ηE)
.
ηE (A13)

In association with (A10) and (A13), the time derivative of the vector xE is denoted as:

.
xE = JOE(η2, q)

.
ζ (A14)

With:
JOE(η2, q) = diag[ I3×3 J−1

3 (ηE) ]JE(η2, q) (A15)

where the existence of the inverse matrix J−1
3 (ηE) is valid for all θE 6= ±π/2.

Part 2: Proofs of the stability of the controllers in cases 1–3

(1) The stability of PID-ESO scheme with conventional robust term in case 1
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Choosing another positive definite Lyapunov function candidate for case 1

V3 = eT
1 Kp1e1/2 + zT

1 · z1/2 + δ̃2/(2ρ4) (A16)

Substituting Equation (43) into Equation (18) and combining integrating Equation (44)
with respect to the time derivative of V3 yields:

.
V3 = et

1Kp1
.
e1 + zt

1 ·
.
z1 + δ̃ ·

.
δ̃/ρ4

= et
1Kp1z1 + zt

1 · [F(t)−
..
ζR + M̂−1

ζ · τζ + d]− δ̃ ·
.
δ̂/ρ4

= −zt
1Kd1z1 + zt

1 · d̃− δ̂zt
1 · sign(z1)− δ̃ ·

.
δ̂/ρ4

≤ −zt
1Kd1z1 + ‖z1‖1 · ‖d̃‖1 − δ̂ · ‖z1‖1 − δ̃ · ‖z1‖1

= −zt
1Kd1z1 − (δ− ‖d̃‖1)‖z1‖1
≤ −zt

1Kd1z1
≤ −λ2zt

1 · z1

(A17)

where λ2 = λmin(Kd1) denotes the minimum eigenvalue of the matrix Kd1.
Seen from (A17), it is evident that

.
V3 ≤ −λ2zT

1 · z1 ≤ 0 holds for any z1 ∈ Rm, in
other words,

.
V3 is negative semidefinite, which can validate the boundness of V3. This fact

can ensure that the signals like e1, z1 and δ̃ are bounded. Also, we can obtain from (A17):

.
z1 = −Kd1 · z1 −Kp1 · e1 + d̃− δ̂ · sign(z1) (A18)

In line with the Assumption 2, the composite term (d̃− δ̂ · sign(z1)) in (A18) can be
guaranteed to be bounded. By substituting z1 =

.
e1 into the above (A18), the expression in

(A18) is rewritten as:

..
e1 + Kd1 ·

.
e1 + Kp1 · e1 = d̃− δ̂ · sign(z1) (A19)

It is concluded from (A19) that the position tracking error vector e1 can converge to
zero asymptotically via the solution for the ordinary differential equations.

(2) The stability of the PID-type SMC-ESO scheme with conventional robust term in
case 2

Consider the following Lyapunov function for case 2:

V4 = zT
2 · z2/2 + δ̃2/(2ρ4) (A20)

Integrating Equations (18), (20), (47) and (48), and substituting them into the time
derivative of V4, we have:

.
V4 = zt

2 ·
.
z2 + δ̃ ·

.
δ̃/ρ4

= zt
2 · [F(t)−

..
ζR +

.
z0 + M̂−1

ζ · τζ + d]− δ̃ ·
.
δ̂/ρ4

= −zt
2K1z2 + zt

2 · d̃− δ̂zt
2 · sign(z2)− δ̃ ·

.
δ̂/ρ4

≤ −zt
2K1z2 + ‖z2‖1‖d̃‖1 − δ̂‖z2‖1 − δ̃‖z2‖1
= −zt

2K1z2 − (δ− ‖d̃‖1)‖z2‖1
≤ −zt

2K1z2

(A21)

Following the proof of Theorem 1 in Equation (33), it can conclude from (A21) that
the SMC variable z2 can converge to zero asymptotically, which can further derive the
asymptotical convergence of the position tracking error vector e1 by Equation (23).

(3) The stability of the PID-type SMC-ESO scheme with continuous fractional PI-type
robust term in case 3
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The stability of the PID-type SMC-ESO scheme with continuous fractional PI-type
robust term in case 3

Choosing another positive and definite Lyapunov function is:

V5 = zT
2 · z2/2 + δ̃2/(2ρ4) + tr(χ̃Tχ̃)/(2ρ5) (A22)

Substituting Equation (49) into Equation (18) and combining with Equations (20), (48),
(50) and (51), the time derivative of V5 turns into the following form:

.
V5 = zt

2 ·
.
z2 + δ̃ ·

.
δ̃/ρ4 + tr(χ̃T ·

.
χ̃)/ρ5

= zt
2 · [F(t)−

..
ζr +

.
z0 + M̂−1

ζ · τζ + d] + δ̃ ·
.
δ̃/ρ4 + tr(χ̃T ·

.
χ̃)/ρ5

= zt
2(−K1 · z2 + d̃− ur(z2

∣∣∣∣χ̂))− δ̃ ·
.
δ̂/ρ4 − tr(χ̃T ·

.
χ̂)/ρ5

= zt
2(−K1 · z2 + d̃− ur(z2

∣∣∣∣χ̂) + ur(z2

∣∣∣∣χ∗)− ur(z2

∣∣∣∣χ∗))− δ̃ ·
.
δ̂/ρ4 − tr(χ̃T ·

.
χ̂)/ρ5

= zt
2(−K1 · z2 + d̃ + χ̃T ·ϕ(z2)− ur(z2

∣∣∣∣χ∗))− δ̃ ·
.
δ̂/ρ4 − tr(χ̃T ·

.
χ̂)/ρ5

= −zt
2K1z2 + zt

2 · d̃− zt
2 · ur(z2

∣∣∣∣χ∗) + tr(χ̃T · (ϕ(z2) · z2 −
.
χ̂/ρ5))− δ̃ ·

.
δ̂/ρ4

≤ −zt
2K1z2 + ‖d̃‖1 · ‖z2‖1 − δ̂ · ‖z2‖1 − δ̃ · ‖z2‖1

= −zt
2K1z2 − (δ− ‖d̃‖1) · ‖z2‖1
≤ −zt

2K1z2
(A23)

In view of the similar analysis for Equation (40), it can be obtained from (A23) that
both of the SMC variable z2 and the position tracking error vector e1 can achieve the
asymptotical convergence to zero.

References
1. Zereik, E.; Bibuli, M.; Miškovic, N.; Ridao, P.; Pascoal, A. Challenges and future trends in marine robotics. Annu. Rev. Control

2018, 46, 350–368. [CrossRef]
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